最新整理初二数学教案八年级数学上册《一次函数》教学案例.docx
八年级《一次函数》教学设计

课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。
教学难点一次函数的图象的性质。
教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。
如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。
(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。
5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。
一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。
八年级数学上册《一次函数》教案

八年级数学上册《一次函数》教课设计教课目的(一)教课知识点1.学会用待定系数法确立一次函数分析式.2.详细感知数形联合思想在一次函数中的应用(二)能力训练目标1.经历待定系数法应用过程,提升研究数学识题的技术.2.体验数形联合,逐渐学习利用这一思想剖析解决问题.教课要点待定系数法确立一次函数分析式.教课难点灵巧运用有关知识解决有关问题.教课方法归纳─总结教具准备多媒体演示.教课过程1.提出问题,创建情境我们前面学习了有关一次函数的一些知识,掌握了其分析式的特色及图象特色,并学会了已知分析式画出其图象的方法以及剖析图象特色与分析式之间的联系规律.假如反过来,告诉我们有关一次函数图象的某些特色,可否确立分析式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?Ⅱ.导入新课有这样一个问题,大家来剖析思虑,追求解决的方法.[ 活动 ]活动设计内容:已知一次函数图象过点(3, 5)与( -4 , -9 ),求这个一次函数的分析式.联系从前所学知识,你能总结归纳出一次函数分析式与一次函数图象之间的转变规律吗?活动设计企图:经过活动掌握待定系数法在函数中的应用,从而经历思虑剖析,归纳总结一次函数分析式与图象之间转变规律,加强数形联合思想在函数中重要性的理解.教师活动:指引学生剖析思虑解决由图象到分析式转变的方法过程,从而总结归纳二者转变的一般方法.学生活动:在教师指导下经过独立思虑,研究议论顺利达成转变过程.归纳论述一次函数分析式与图象转变的一般过程.活动过程及结论:剖析:求一次函数分析式,要点是求出 k、 b 值.由于图象经过两个点,因此这两点坐标必合适分析式.由此可列出对于 k、b 的二元一次方程组,解之可得.设这个一次函数分析式为y=kx+b .3k b 5由于 y=k+b 的图象过点( 3, 5)与( -4 , -9 ),因此4kb 9k 2解之,得 b 1故这个一次函数分析式为y=2x-1 。
结论:函数分析式选用知足条件的两定点画出一次函数的图象y=kx+b 解出( x1,y1)与( x1,y2)选用直线 L像这样先设出函数分析式,再依据条件确立分析式中未知的系数,从而详细写出这个式子的方法,叫做待定系数法.练习:1.已知一次函数y=kx+2 ,当 x=5 时 y 的值为 4,求 k 值.2.已知直线y=kx+b 经过点( 9, 0)和点( 24, 20),求 k、 b 值.3.生物学家研究表示 , 某种蛇的长度 y (CM) 是其尾长 x(CM)的一次函数 , 当蛇的尾长为 6CM时 ,蛇的长为45.5CM;当蛇的尾长为14CM时 ,蛇的长为105.5CM. 当一条蛇的尾长为10 CM 时 , 这条蛇的长度是多少 ?4. 教科书第 35 页第 6 题.解答:1.当 x=5 时 y 值为 4.2即 4=5k+2,∴ k= 50 9k b2.由题意可知:2024k bk 4 3解之得,b12作业 :教科书第35 页第 5,7 题 .备选题 :1.已知一次函数 y=3x-b 的图象经过点 P(1,1), 则该函数图象必经过点 ( )A.(-1,1)B.(2,2)C.(-2,2)D.(2,-2)2.若一次函数y=2x+b 的图像与坐标轴围成的三角形的面积是9,求 b 的值.3.点 M(-2 , k)在直线y=2x+1 上,求点M到 x 轴的距离 d 为多少 ?内容总结(1)这将是我们这节课要解决的主要问题,大家可有兴趣。
初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
八级数学上册《一次函数》课案(教师用)

课案(教师用)一次函数(新授课)【理论支持】数学思想方法是通过数学知识的载体来体现的,函数概念来源于客观实际需要,也是来自数学内部发展的需要,它是以变化与对应的思想为基础的,它的实质就是运动变化与联系对应.使学生了解对于许多客观事物必须从运动变化的角度研究,许多问题中的各种变量是相互联系的.借助实际问题情境,由具体到抽象认识函数,由特殊到一般引起认知冲突,符合学生的认知规律,体现数学的建模思想.教材分析:一次函数是义务教育课程标准实验教科书八年级上册内容,它是在学生了解了正比例函数后被引出的 ,一次函数定义的学习为学生学习一次函数的图像性质奠定了基础,它在现在生活中有着广泛的作用,一次函数的概念蕴含着从特殊到一般的认识规律,是培养学生思维能力的重要内容之一.教法、学法分析:1.充分以学生为主体进行教学,让学生多实践,经历从特殊到一般的过程,采用“先特殊化、简单化,再一般化、复杂化”的过程教学.2.通过问题探究,提高观察、归纳能力、发展抽象思维能力,通过类比正比例函数与一次函数,加强对知识内在联系的认识.【教学目标】1.知识目标:(1)掌握一次函数解析式的特点及意义(2)理解一次函数的概念以及它与正比例函数的关系2.能力目标:通过类比的方法学习一次函数,体会数学研究方法多样性.根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题,进一步提高分析概括、总结归纳能力.3.情感目标:在探索过程中,发展抽象思维能力和概括能力,体验特殊和一般的辩证关系,激发学生的求知欲望,培养学生积极学习数学的态度.数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心.【重点难点】重点:一次函数解析式的特点难点:一次函数与正比例函数关系、依据数量关系确定一次函数关系式【课时安排】一课时【教学设计】课前延伸1.正比例函数有何特点?它的一般形式是什么?2.指出下列函数是否是正比例函数?比例系数是多少?(1)y =3x (2)y =x 2 (3)y =2x (4)S = πr 2 〖解析〗1.正比例函数是常数与自变量乘积的形式.它的一般形式是y=kx (k 是常数,k ≠0)〖答案〗(1)是 比例系数是3 (2)不是 (3)是 比例系数是21 (4)不是 〖设计说明〗巩固学生对正比例函数的理解,为进一步研究一次函数打好坚实基础.课内探究一、创设情境,激发求知问题:某登山队大本营所在地的气温为5℃,海拔每升高1 km 气温下降6 ℃,登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃,试用解析式表示y 与x 的关系.分析:y 随x 的变化规律是:从大本营向上当海拔增加x 千米时,气温从5 ℃减少6x ℃.因此y 与x 的关系为y =5-6x这个函数也可以写成y =-6x +5思考:这个关系式与正比例函数的解析式相比,有什么不同点呢?〖设计说明〗通过创设问题情境,引起学生的认知冲突.二、探索共性,形成概念1.多媒体展示如下问题,并提问:下列问题中的对应关系可用怎样的函数表示?这些函数有什么共同点?(1)有人发现,在20~50℃时蟋蟀每分鸣叫的次数c 与温度t (单位:℃)有关,即c 的值约是t 的7倍与35的差;(2)一种计算成年人标准体重G (单位:千克)的方法是,以厘米为单位量出身高值h ,再减去常数105,所得差是G 的值;(3)某城市的市内电话的月收费额y (单位:元)包括:月租费22元,拔打电话x 分的计时费(按0.1元/分收取);(4)把一个长10cm 、宽5cm 的长方形的长减少x cm ,宽不变,长方形的面积y (单位:平方厘米)随x 的值而变化.让学生独立思考,有问题的也可以互相讨论,完成以后,由学生发言,师生共同讨论,教师作总结,给出上面问题中的函数解析式.〖答案〗上面问题中的函数解析式分别为:(1)C =7t -35 (2)G =h -105 (3)y =0.1x +22 (4)y =-5x +502.请大家仔细观察我们得到的5个函数解析式,看看它们有什么共同的特点?(鼓励学生积极发言,引导学生总结出一次函数的含义)共同特点为:它们的形式与y =-6x +15一样,函数的形式都是自变量x 的k 倍与一个常数的和.如果我们用b 来表示这个常数的话,这些函数形式就可以写成:y=kx+b (k ≠0)3.揭示课题,整理概念(板书)一般地,形如y=kx+b (k 、b 是常数,k ≠0•)的函数,叫做一次函数(•linearfunction ).当b =0时,y=kx+b 就变成为y=kx .所以说正比例函数是一种特殊的一次函数.〖设计说明〗通过对具体问题的探究,建立一次函数的数学模型,培养学生观察归纳和抽象思维能力.三、例题剖析,理解定义1.下列哪些函数是一次函数,哪些又是正比例函数.(1)y = -8x +2 (2)y =3x 2-6 (3)y =-0.5x +1(4)y =x7- (5)m =62+x (6)y =9x 2.已知y =(m +1)x +2,当m 满足何条件时,y是x 的一次函数.〖答案〗1.一次函数有:(1)、(3)、(6) 正比例函数有:(6)2.由一次函数的定义可知:m +1≠0 则m ≠-1, 所以当m ≠-1时,y是x 的一次函数.〖设计说明〗通过对例题的分析,理解一次函数的概念,实现学以致用的效果,体现交流合作的优势.四、运用新知,深化理解1.下列函数哪些是一次函数,哪些又是正比例函数?(1)y =-8x (2)y =x8- (3)y =5x 2+6 (4)y =-0.5x -1 2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米/秒.(1)求小球速度v (单位:米)随时间t (单位:秒)变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.3.汽车油箱中原有汽油50升,如果行驶中每小时用油5升,求油箱中的汽油y (单位:升)随行驶时间x (单位:时)变化的函数关系式,并写出自变量x 的取值范围.y 是x 的一次函数吗?〖答案〗1.一次函数有:(1)、(4) 正比例函数有:(1)2.(1) v=2t 它是一次函数(2) 当t =2.5时 v =2×2.5=5(米/秒)答: 第2.5秒时小球的速度为5米/秒.3. y =-5x ﹢50 (0≤x ≤10) y 是x 的一次函数〖设计说明〗检查学生对所学知识的掌握情况以及对一次函数与正比例函数的关系的理解,使学生初步体会知识的运用.五、巩固练习,自主探究1.下列函数:①y =x -2 ②y =x 2- ③y =-x 2+(x +1)(x -2) ④y =2x -其中是一次函数的有几个? ( )A .1个B .2个C .3个D .0个2.已知│a +1│+(b -2)2=0,则函数y=(b +3)x -a +b 2-8b +16是什么函数?当x=-51 时函数值y 是多少? 3.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x 张.(1)写出零星租碟方式应付金额y 1(元)与租碟数量x (张)之间的函数关系式:(2)写出会员卡租碟方式应付金额y 2(元 )与租碟数量x (张)之间的函数关系式:(3)小彬选取哪种租碟方式更合算?〖答案〗1. C 2. 33.(1) y 1 =x (2) y 2 =0.4x ﹢12(3)当租碟数量不足20张时,选择第一种租碟方式合算;当租碟数量为20张时,两种租碟方式应付金额相同;当租碟数量超过20张时,选择第二种租碟方式合算.〖设计说明〗加强学生对所学知识的理解, 让学生在学习新知的同时,利用新知解决实际生活问题,体现了数学来源于生活应用于生活.六、归纳小结,课堂作业1.一次函数有何特点?它的一般形式是什么?2.一次函数与正比例函数的关系3.课本120页第3题〖答案〗1.一次函数是自变量x 的k (常数)倍与一个常数的和.它的一般形式为:y=kx﹢b (k ,b 是常数,k ≠0)2.正比例函数是一次函数的一种特殊情形(当b=0时,y=kx ﹢b 即y=kx )〖设计说明〗检查学生对一次函数及一般形式的理解,是否掌握了一次函数与正比例函数的关系,培养学生的反思能力.课后提升1.下列式子中哪些是一次函数,哪些又是正比例函数?若不是一次函数,请说明理由.(1)y =-6x ; (2)8y x -=; (3)20.32y x =+; (4)y=x ;(5)127t c =-; (6)6y =-; (7) c =4π; (8)6x +8; (9)y +x =6 (10)y=kx 2.(1)2m y m x =++,当m = ,y 是x 的一次函数.3.2(1)1y m x m =-+-,当m = ,y 是x 的正比例函数.4.已知y 与4x -1成正比例,且当x =3时,y =6,写出y 与x 的函数关系式 .5.已知y 与x -3成正比例,当x =4时,y =3.(1)写出y 与x 之间的函数关系式;(2)y 与x 之间是什么函数关系;(3)求x =2.5时,y 的值.6.已知函数y =(m ﹢2)x ∣m ∣-1 +(n -2),当m 且n 时,它是一次函数;当m 且n 时它是正比例函数.7.学校里现有粉笔15000盒,如果每个星期领出60盒子,求仓库内余下的粉笔Q 与星期数t 之间的函数关系式 .8.梯形的上底长为4,下底长为7,一腰长为12.请写出梯形的周长y 与另一腰长x 之间的函数关系式,并写出自变量x 的取值范围.〖答案〗1.一次函数有:(1)、(4)、(5)、(6)、(9) 正比例函数有:(1)、(4)2.m =1 3. m =-1 4.y =1124x -116 5.(1)y=3x-9 (2)y 是x 的一次函数 (3)-1.56.m =2且n ≠2;m =2且n =27.Q =-60t ﹢15000 8.y =x ﹢23 (9<x <15)〖设计说明〗加强学生对一次函数的含义的理解,领悟一次函数与正比例函数的关系,培养学生的分析能力和解决问题的能力.把所学知识与实际生活结合起来,培养学生的建模能力.。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例

3.创设具有挑战性的问题情境,激发学生的思考,培养学生解决问题的能力。
(二)问题导向
1.引导学生提出问题,培养学生的问题意识。例如,在讲解商店促销活动时,引导学生思考:“购买不同数量的商品,费用如何变化?”
2.设计具有启发性的问题,引导学生进行思考、讨论,培养学生分析问题、解决问题பைடு நூலகம்能力。
(四)反思与评价
1.引导学生进行自我反思,总结一次函数在实际问题中的应用方法和规律。
2.组织学生进行互评、师评,评价学生在解决问题过程中的表现,给予鼓励和指导。
3.教师根据学生的表现,及时调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示商店促销活动的图片,引导学生关注实际问题。
5.作业小结的个性化设计:本节课的作业小结具有个性化设计,让学生运用一次函数的知识解决实际问题,例如家庭用电费用计算、购物预算等。这种作业设计既能够巩固所学知识,提高学生的应用能力,还能够激发学生的创新意识。
3.引导学生掌握一次函数的解析式,学会用数学模型表示实际问题。
4.讲解一次函数的性质,例如斜率、截距等,让学生了解一次函数的变化规律。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享各自对一次函数应用的理解。
2.讨论一次函数在实际问题中的变化规律,例如购买商品数量与费用的关系。
3.引导学生通过举例、绘制图像等方式,验证一次函数的性质。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
一、案例背景
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例,主要针对八年级学生进行设计。本节课的主要内容是让学生掌握一次函数在实际生活中的应用,通过具体案例的分析,让学生了解一次函数在解决实际问题中的重要性。
八年级数学上册《一次函数》教案、教学设计

在此环节,我将设计以下课堂练习:
1.基础练习:针对一次函数的定义、性质和图像,设计一些基础题,让学生巩固所学知识。
2.提高练习:设置一些具有挑战性的题目,让学生运用一次函数的知识解决实际问题。
3.互相批改:学生互相批改练习,发现问题,及时纠正。
(五)总结归纳
在总结归纳环节,我将进行以下工作:
(1)填空题:补充完整下列一次函数的解析式,并说明斜率和截距的值。
(2)选择题:从给出的四个选项中,选择正确的一次函数图像。
(3)解答题:已知一次函数的图像,求其斜率和截距。
2.应用题:结合实际生活,运用一次函数的知识解决问题。
(1)小明骑自行车去公园,已知自行车的速度和行驶时间,求小明行驶的路程。
1.注重引导学生从实际问题中提炼出一次函数模型,培养学生的抽象思维能力。
2.加强对一次函数图像性质的讲解,通过丰富的实例和图像演示,帮助学生更好地理解。
3.关注学生的个体差异,针对不同学生的理解程度和接受能力,进行差异化教学。
4.鼓励学生积极参与课堂讨论,提高学生的课堂参与度和思维能力。
三、教学重难点和教学设想
八年级数学上册《一次函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的一般形式:y=kx+b,并了解其中k、b的含义及作用。
2.学会判断一个函数是否为一次函数,并能根据实际问题的情境,构建一次函数模型。
3.掌握一次函数图像的性质,了解斜率k和截距b对图像的影响,能够画出一次函数的图像。
5.情感态度,培养价值观
(1)注重激发学生的学习兴趣,鼓励学生积极思考、勇于探索。
(2)强调数学在实际生活中的应用,提高学生对数学价值的认识。
八年级数学上册 一次函数公开教学教案 人教新课标版【教案】

14.2.2一次函数(1)教学设计教学目标:知识与技能:1、了解一次函数的定义;2、能运用一次函数解决简单的实际问题。
过程与方法:1、通过对山高与气温的关系探究,获得对一次函数的初步认识;2、经历实际问题的分析和求解过程,体会数学与现实的密切联系,提高解决问题的能力。
情感、态度与价值观:通过实际操作经历对实际问题的数据关系的探索,培养学生积极探索的精神以及提高学生的观察、抽象、概括的能力和语言表达能力。
教学重、难点一次函数的定义是重点也是难点。
教学过程一、创设情境,引入新课同学们,请看我手中的弹簧拉力器,哪位同学能将拉力器拉的更长些?哪位同学能拉得比第一位同学更长些?可见,用力越大,拉力器的伸长就越长,看来拉力与弹簧伸长的长度有一定的关系,究竟是一种什么样的关系呢?这就是我们今天要学习的一次函数——板书课题,引入新课。
二、讲授新课 1(一)展示图片问题.:某登山队大本营所在地的气温为5℃,海拔每升高1 km气温下降6 ℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y ℃,试用解析式表示y与x的关系.分析:y随x的变化规律是,从大本营向上当海拔增加x千米时,气温从5 ℃减少6x ℃.因此y与x的关系为y=5-6x这个函数也可以写成 y=-6x+5(二)、一次函数概念的学习1多媒体展示如下问题,并提问:下列问题中的对应关系可用怎样的函数表示?这些函数有什么共同点?(1)有人发现,在20~50 ℃时蟋蟀每分鸣叫的次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减去常数105,所得差是G的值;(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拔打电话x分的计时费(按0.1元/分收取);(4)把一个长10cm、宽5cm的长方形的长减少x cm,宽不变,长方形的面积y(单位:平方厘米)随x 的值而变化(5)某弹簧的自然长度为3厘米,在弹性限度内,每增加1千克物体弹簧伸长0.5厘米,弹簧长度y(cm)随所挂物体的质量x(千克)的变化而变化2、让学生独立思考,有问题的也可以互相讨论,给出上面问题中的解析式。
八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新整理初二数学教案八年级数学上册《一次函数》
教学案例
八年级数学上册《一次函数》教学案例
师:一次函数的一般表达式是y=kx+b(k、b为常数,k≠0,请同学们在黑板上写出一些常数较简单的一次函数表达式,行吗?(生表现踊跃,写出了十多个)
师:黑板上这些一次函数大致有几个类型?
生:(讨论后)四类,即k》0,b》0;k》0,b《0;k《0,b》0;k《0,b 《0。
教师按不同类型在学生板书的函数中各选两个,并把复杂的常数更换成简单的常数,找到如下函数:y=2x+2,y=-2x+3,y=-x+1,y=x+2,y=-2x-2,y=x-2,y=-x-3,y=2x-1.(教师在这里是让学生自己准备学习素材。
)
教师启发学生找到画直线的“两点式”简易方法后,把画上述八个函数图象的任务分配给八个小组,一组一个,八人一组在已画好坐标系的小黑板上动手操作。
学生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃。
教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅。
师:请同学们小组之间比较一下,你们画的图象位置一样吗?
生;不一样。
师:有什么不一样?(开始聚焦矛盾)
生A:走向不一样。
生B:经过的象限不一样。
生C:我们的图象在原点的上方,他们的图象在原点的下方。
师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的)
生:是由k、b的取值确定的。
师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏)
热烈讨论后,生A回答并板书,当k》0时,图象从“左下”到“右上”;当k《0时,图象从“右上”到“左下”。
生B板书:当b》0时,图象在原点的上方,当b《0时,图象在原点的下方。
生C板书:当k》0,b》0时,图象过一、二、三象限。
另一生D跑到黑板前补充:当k》0,b《0时,图象过一、三、四象限;当k《0,b》0时,图象过一、二、四象限,当k《0,b《0时,图象过二、三、四象限。
(这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。
怎么没有一个学生说出一次函数的性质呢?短暂停顿后,教师确定了思路)
师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质?(学生茫然)
师:请看同学们的板书,能揣摩图象“走向”的意思吗?
生:(七嘴八舌)当k》0时,图象向上爬;当k《0时,图象向下走。
(未出现教师所预期的结论)
师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?
生:当k》0时,x与y同向变化;当k《0时,x与y异向变化。
师:也就是说,k》0,x增大,y……
师:当k《0时,x……y……
生:x增大,y减小;x减小,y增大。
(在这里,教师努力避免了“告诉”的知识传授方式。
间接引导需要智慧,是一种艺术)
师:好了,我们就用x与y之间的变化规律来表述一次函数的性质,好吗?请同学们在书上补充一下图象的性质,并熟悉一下一次函数的性质。
(接下来学生练习几道题)
师;有人能得出正比例函数性质吗?
生:它是y=kx+b中b=0时的性质,其实y=kx与y=kx+b的性质是一致的。
(特殊与一般的关系,学生理解起来非常容易)
[案例反思]
这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。
通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到一次函数的性质。
花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受一次函数性质是困难的。
真正的形成往往来源于真实的自主探究。
只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。
在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
首先,要设计适合学生探究的素材。
教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学。