分式方程题型集锦
分式方程的解精选题33道

分式方程的解精选题33道一.选择题(共13小题)1.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.52.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0B.a≠0C.a≠5D.a≠5且a≠0 3.若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.64.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=75.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10B.12C.14D.166.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2 7.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.38.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠29.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3B.﹣2C.1D.210.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣1811.关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4B.k<4C.k>﹣4且k≠4D.k<4且k≠﹣4 12.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣5613.已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6二.填空题(共12小题)14.若关于x的方程=+1无解,则a的值是.15.若关于x的方程+=无解,则m的值为.16.已知关于x的方程=3的解是正数,则m的取值范围是.17.若关于x的分式方程=2a无解,则a的值为.18.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.19.若关于x的分式方程+3=无解,则实数m=.20.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.21.关于x的分式方程﹣=3的解为非负数,则a的取值范围为.22.若关于x的分式方程无解,则a=.23.已知关于x的分式方程﹣2=有正数解,则k的取值范围为.24.关于x的分式方程﹣=0无解,则m=.25.关于x的分式方程+=1的解为非正数,则k的取值范围是.三.解答题(共8小题)26.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.27.关于x的分式方程﹣2m=无解,求m的值.28.如果关于x的方程无解,求a的值.29.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为==x+﹣(a+b),所以关于x的方程x+=a+b 有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣1、x2=4,则p=,q=;(2)方程x+=4的两个解中较大的一个为;(3)关于x的方程2x+=2n的两个解分别为x1、x2(x1<x2),求的值.30.若关于x的分式方程无解,求m的值.31.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为,所以关于x的方程x+=a+b有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣2、x2=3,则p=,q=;(2)方程x+=8的两个解中较大的一个为;(3)关于x的方程2x+=2n+2的两个解分别为x1、x2(x1<x2).求的值.32.已知关于x的方程无解,求m的值.33.若关于x的方程﹣=无解,求实数m的值.分式方程的解精选题33道参考答案与试题解析一.选择题(共13小题)1.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.【点评】此题考查了分式方程的解,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.2.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0B.a≠0C.a≠5D.a≠5且a≠0【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.【解答】解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.【点评】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.3.若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.6【分析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴﹣3≤a<5,a=﹣1(舍,此时分式方程为增根),a=﹣3,a=1,a=3,(a=0,﹣2,2或4时,y 不是整数),它们的和为1.故选:B.【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.4.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.【点评】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10B.12C.14D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选:A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.6.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.7.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3【分析】分别解分式方程和不等式组,从而得出a的范围,从而得整数a的取值,进而得所有满足条件的整数a的值之积.【解答】解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时,a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:1,2∴所有满足条件的整数a的值之积是2.故选:C.【点评】本题考查了含参数分式方程和含参数一元一次不等式组的解的问题,注意分式方程取增根的情况及明确不等式组解集的取法,是解题的关键.8.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【解答】解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.9.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3B.﹣2C.1D.2【分析】表示出不等式组的解集,由不等式有且只有4个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【解答】解:,不等式组整理得:,由不等式组有且只有四个整数解,得到0<≤1,解得:﹣2<a≤2,即整数a=﹣1,0,1,2,=2,分式方程去分母得:y+a﹣2a=2(y﹣1),解得:y=2﹣a,由分式方程的解为非负数以及分式有意义的条件,得到a为﹣1,0,2,之和为1.故选:C.【点评】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣18【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是(﹣8)+(﹣4)=﹣12,故选:B.【点评】本题考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解题关键.11.关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4B.k<4C.k>﹣4且k≠4D.k<4且k≠﹣4【分析】分式方程去分母转化为整式方程,求出整式的方程的解得到x的值,根据分式方程解是正数,即可确定出k的范围.【解答】解:分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.【点评】此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.12.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣56【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a的值,求出之和即可.【解答】解:不等式组整理得:,由解集为x≤a,得到a≤7,分式方程去分母得:y﹣a+3y﹣4=y﹣2,即3y=a+2,解得:y=,由y为正整数解,且y≠2得到a=1,71×7=7,故选:A.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为非负数,可得不等式,解不等式,可得答案.【解答】解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x=,∵分式方程的解为非负数,∴5﹣m≥0且≠1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.【点评】本题考查了分式方程的解,先求出分式方程的解,再求出不等式的解.二.填空题(共12小题)14.若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.15.若关于x的方程+=无解,则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x==±4,解得:m=5或﹣,综上所述:m=﹣1或5或﹣,故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.16.已知关于x的方程=3的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式组求出m 的取值范围.【解答】解:解关于x的方程得x=m+6,∵x﹣2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式组的综合题目,解关于x的方程是关键,解关于m的不等式组是本题的一个难点.17.若关于x的分式方程=2a无解,则a的值为1或.【分析】直接解分式方程,再利用当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.18.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m<6且m ≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.19.若关于x的分式方程+3=无解,则实数m=3或7.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:7+3(x﹣1)=mx,整理,得(m﹣3)x=4,当整式方程无解时,m﹣3=0,m=3;当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7,∴m的值为3或7.故答案为3或7.【点评】本题考查了分式方程无解的条件,是需要识记的内容.20.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【解答】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2且a≠1综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1,故答案为:1.【点评】本题考查了解一元一次不等式组,分式方程,本题易错,易忽视分式方程有意义的条件.21.关于x的分式方程﹣=3的解为非负数,则a的取值范围为a≤4且a≠3.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.【点评】本题考查分式方程的解、解一元一次不等式组,解答本题的关键是明确解分式方程的方法.22.若关于x的分式方程无解,则a=1或﹣2.【分析】分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.【解答】解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.故答案为:1或﹣2.【点评】分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.23.已知关于x的分式方程﹣2=有正数解,则k的取值范围为k<6且k≠3.【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【解答】解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程﹣2=有正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.【点评】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.24.关于x的分式方程﹣=0无解,则m=0或﹣4.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当x=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.【点评】本题考查了分式方程无解的条件,是需要识记的内容.25.关于x的分式方程+=1的解为非正数,则k的取值范围是k≥1且k≠3.【分析】分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.【解答】解:去分母得:x+k+2x=x+1,解得:x=,由分式方程的解为非正数,得到≤0,且≠﹣1,解得:k≥1且k≠3,故答案为:k≥1且k≠3【点评】此题考查了分式方程的解,始终注意分母不为0的条件.三.解答题(共8小题)26.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.【分析】(1)分式方程去分母转化为整式方程,将m=2代入计算即可求出x的值;(2)分式方程去分母转化为整式方程,由分式方程有增根,将x=1或x=﹣2代入计算,即可求出m的值.【解答】解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4时,(4+1)x=﹣5,解得:x=﹣1经检验:x=﹣1是原方程的解.(2)∵分式方程无解,∴m+1=0或(x+2)(x﹣1)=0,当m+1=0时,m=﹣1;当(x+2)(x﹣1)=0时,x=﹣2或x=1.当x=﹣2时m=;当x=1是m=﹣6,∴m=﹣1或﹣6或时该分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.27.关于x的分式方程﹣2m=无解,求m的值.【分析】先应用解分式分式方程的解法求解,得到关于x的代数式,根据分式方程无解可得关于m的方程,解方程求得m的值.【解答】解:给分式方程两边同时乘以x﹣3,得,x﹣2m(x﹣3)=m,(2m﹣1)x=5m,①2m﹣1=0,则m=;②2m≠1,解得x=,由方程增根为x=3,则=3,解得m=3,综上,m=或3.【点评】此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.28.如果关于x的方程无解,求a的值.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣1)(x+1)﹣x(x+2)=ax+2,即(a+2)x+3=0∵关于x的方程无解,∴x=1或x=﹣2,∴当x=1时,﹣3=a+2,即a=﹣5,当x=﹣2时,3=﹣2a+2,即a=﹣,另当a=﹣2时,方程变为3=0,不成立,所以a=﹣2时,方程也无解∴a=﹣5或﹣2或﹣时方程无解.【点评】本题考查了分式方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.29.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为==x+﹣(a+b),所以关于x的方程x+=a+b 有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣1、x2=4,则p=﹣4,q=3;(2)方程x+=4的两个解中较大的一个为3;(3)关于x的方程2x+=2n的两个解分别为x1、x2(x1<x2),求的值.【分析】(1)根据材料可得:p=﹣1×4=﹣4,q=﹣1+4=3,计算出结果;(2)设方程x+=4的两个解为a,b,同理得ab=3,a+b=4,解出可得结论;(3)将原方程变形后变为:2x+1+=2n+1,未知数变为整体2x+1,根据材料中的结论可得:x1=,x2=,代入所求式子可得结论.【解答】解:(1)∵方程x+=q的两个解分别为x1=﹣1、x2=4,∴p=﹣1×4=﹣4,q=﹣1+4=3,故答案为:﹣4,3;(2)设方程x+=4的两个解为a,b,则ab=3,a+b=4,∴a=1,b=3或a=3,b=1,∴两个解中较大的一个为3;故答案为:3;(3)∵2x+=2n,∴2x+1+=2n+1,2x+1+=(n+2)+(n﹣1),∴2x+1=n+2或2x+1=n﹣1,x=或,∵x1<x2,∴x1=,x2=,∴===1.【点评】此题考查了分式方程的解,弄清题中的规律是解本题的关键.30.若关于x的分式方程无解,求m的值.【分析】分式方程去分母转化为整式方程,求出整式方程的解,由分式方程无解求出x 的值,代入整式方程的解求出m的值即可.【解答】解:解分式方程得,x=,∵上述分式方程无解,∴x2﹣1=0,即x=1或x=﹣1,∴=1或=﹣1,解得m=2或m=﹣4.【点评】此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.31.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为,所以关于x的方程x+=a+b有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣2、x2=3,则p=﹣6,q=1;(2)方程x+=8的两个解中较大的一个为7;(3)关于x的方程2x+=2n+2的两个解分别为x1、x2(x1<x2).求的值.【分析】(1)由已知可得p=(﹣2)×3=﹣6,q=(﹣2)+3=1;(2)由题意可得ab=7,a+b=8;(3)已知式子化为,即可求得,,再将所求的根代入即可.【解答】解:(1)由已知可得p=(﹣2)×3=﹣6,q=(﹣2)+3=1,故答案为﹣6,1;(2)∵ab=7,a+b=8,∴a=1,b=7,故答案为7;(3)∵,∴,;∴2x﹣1=n+3或2x﹣1=n﹣2,∴或,又∵x1<x2,∴,,∴.【点评】本题考查分式方程的解;理解题意,能够将所求分式方程的解转化为一元一次方程的解是解题的关键.32.已知关于x的方程无解,求m的值.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:去分母,整理得(m+3)x=4m+8,①由于原方程无解,故有以下两种情况:(1)方程①无实数根,即m+3=0,而4m+8≠0,此时m=﹣3.(2)方程①的根x=是增根,则=3,解得m=1.因此,m的值为﹣3或1.【点评】本题考查了分式方程无解的条件,是需要识记的内容.33.若关于x的方程﹣=无解,求实数m的值.【分析】方程去分母转化为整式方程,求出x的表达式,根据分式方程无解可得x=0或x=﹣1或x的表达式中分母为0,再代入x的表达式中即可求出m的值.【解答】解:方程两边同时乘以x(x+1),得:2mx﹣(m+1)=x+1,当2m﹣1=0时,方程也无解,解得:m=,当2m﹣1≠0时,解得:x=,∵方程无解,∴x(x+1)=0,∴x=0或x=﹣1,当x=0时,,解得:m=﹣2,当x=﹣1时,,解得:m=,综上,m的值为﹣2或﹣或.【点评】本题考查分式方程的解,熟练掌握分式方程的解的特点,并能分情况进行讨论是解题的关键.。
中考数学分式方程专题训练100题(含参考答案)

30.养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法()
A.有道理,池中大概有1200尾鱼B.无道理
C.有道理,池中大概有7200尾鱼D.有道理,池中大概有1280尾鱼
45.某市计划对道路进行维护.已知甲工程队每天维护道路的长度比乙工程队每天维护道路的长度多50%,甲工程队单独维护30千米道路的时间比乙工程队单独维护24千米道路的时间少用1天.
(1)求甲、乙两工程队每天维护道路的长度是多少千米?
(2)若某市计划对200千米的道路进行维护,每天需付给甲工程队的费用为25万元,每天需付给乙工程队的费用为15万元,考虑到要不超过26天完成整个工程,因工程的需要,两队均需参与,该市安排乙工程队先单独完成一部分,剩下的部分两个工程队再合作完成.问乙工程队先单独做多少天,该市需付的整个工程费用最低?整个工程费用最低是多少万元?
A.甲、丁B.乙、丙C.甲、乙D.甲、乙、丙
37.若关于x的一元一次不等式组 有解,且关于y的分式方程 = 的解是正整数,则所有满足条件的整数a的值之和是()
A.﹣14B.﹣15C.﹣16D.﹣17
38.已知关于x的方程 有增根,则a的值为( )
A.4B.5C.6D.﹣5
39.若关于x的分式方程 +1= 有整数解,且关于y的不等式组 恰有2个整数解,则所有满足条件的整数a的值之积是( )
34.美是一种感觉,当人体下半身长与身高的比值越接近黄金分割比时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高L的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为().
分式方程经典题(附答案)

分式方程经典习题一、选择题:1.以下是方程121x =--xx 去分母的结果,其中正确的是A . x-2(x-1)=1B .x 2-2x-2=1C .x 2-2x-2=x 2-xD .x 2-2x+2=x 2-x 2.在下列方程中,关于x 的分式方程的个数有 .①0432221=+-x x ②. 4=a x , ③4=x a ④. 1392=+-x x ⑤621=+x⑥.211=-+-a x a x A.2个 B.3个 C.4个 D.5个3.分式5m 2+的值为1时,m 的值是 .A .2B .-2C .-3D .34.不解下列方程,判断下列哪个数是方程32133112--++=+x x x x 的解 . A .x=1 B .x=-1 C .x=3 D .x=-36.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12D 、-18.关于x 的方程4532=-+x a ax 的根为x=2,则a 应取值 . A.1 B. 3 C.-2 D.-37.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x x B 、 1421280280=++x x C 、1211010=++x x D 、1421140140=++x x 8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1 B.3 C.-2 D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则x ☆23)1(=+x 的解为 .A .32=xB .1=xC .32-=x 或1 D .32=x 或1-10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A . 32180180=+-x xB . 31802180=-+x xC . 32180180=--x xD . 31802180=--xx11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:① 3x -72=x ②372x x =- ③x-3x=72 ④372=-xx上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、 填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天. 16.阅读材料:方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 三、 解答题:17.解方程 )2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x ax 的解是正数,求a 的取值范围。
分式方程应用题的常见类型汇总(含答案)

分式方程应用题的常见类型汇总类型1 工程问题1.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为________________.2.(十堰中考)甲、乙两名学生练习计算机打字,甲打一篇1 000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?3.(扬州中考)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.求原来每天制作多少件?4.一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?类型2 行程问题5.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回.出租车的平均速度比公共汽车多20千米/时,回来时路上所花的时间比去时节省了14.设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( )A.40x+20=34×40xB.40x=34×40x+20C.40x+20+14=40xD.40x=40x+20-146.(贵阳中考)2014年12月26日,西南真正意义上的第一条高铁——贵阳至广州高速铁路将开始试运行.从贵阳到广州,乘特快列车的行程约为1 800 km,高铁开通后,高铁列车的行程约为860 km,运行时间比特快列车所用的时间减少了16 h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.类型3 销售问题7.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?8.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2 500元,购买B品牌足球花费了2 000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌的足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A、B两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B品牌足球?9.某商场销售的一款空调机,每台的标价是1 635元.在一次促销活动中,按标价的8折销售,仍有9%的利润率.(1)求这款空调机每台的进价;(利润率=利润进价=售价-进价进价)(2)在这次促销活动中,商场销售了这款空调机100台.问:共盈利多少元?参考答案1.520+45x=12.设乙每分钟打x个字,则甲每分钟打(x+5)个字,由题意得1 000x+5=900x,解得x=45.经检验:x=45是原方程的解.答:甲每分钟打50个字,乙每分钟打45个字.3.设原来每天制作x件,由题意,得480x-480(1+50%)x=10,解得x=16.检验:x=16时,1.5x≠0,所以x=16是原分式方程的解.答:原来每天制作16件.4.(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1x+11.5x=112,解得x=20,经检验x=20是方程的解且符合题意.1.5x=30.故甲,乙两公司单独完成此项工程,各需20天,30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,根据题意得12(y+y-1 500)=102 000,解得y=5 000,甲公司单独完成此项工程所需的施工费为:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为:30×(5 000-1 500)=105 000(元).故甲公司的施工费较少.5.A6.设特快列车的平均速度为x km/h,根据题意可列出方程为1 800x=8602.5x+16,解得x=91.检验:当x=91时,2.5x≠0.所以x=91是方程的根.答:特快列车的平均速度为91 km/h.7.设九年级学生有x人,根据题意,列方程得:1 936x×0.8=1 936x+88,整理得0.8(x+88)=x,解得x=352.经检验x=352是原方程的解.答:这个学校九年级学生有352人.8.(1)设购买一个A品牌足球x元,则购买一个B品牌足球(x+30)元,根据题意得2 500x=2 000x+30×2,解得x=50.经检验,x=50是原方程的解.x+30=80.答:购买一个A品牌足球需50元,购买一个B品牌足球80元.(2)设本次购买a个B品牌足球,则购进A品牌足球(50-a)个,根据题意得50×(1+8%)(50-a)+80×0.9a≤3 260,解得a≤3119 .∵a取正整数,∴a最大值为31.答:此次华昌中学最多可购买31个B品牌足球.9.(1)设这款空调机每台的进价为x元,则根据利润率公式有:9%=1 635×0.8-xx.解这个方程,得x=1 200.检验略.答:这款空调机每台的进价为1 200元.(2)1 200×0.09×100=10 800.答:商场盈利10 800元.。
分式方程重点题型

分式易考题型※【典例剖析】例1(分式概念)(1) 当x 时,分式x -13无意义; (2)当x 时,分式392--x x 的值为零. 随堂练习11要使式子33-+x x ÷42-+x x 有意义,x 的取值应为 。
2、当x 时,分式33+-x x 的值为0。
3、使分式1122+-a a 有意义的a 的取值是( ) A 、a ≠1 B 、a ≠±1 C 、a ≠-1 D 、a 为任意实数4、当x = -3时,下列分式中有意义的是( )A 、33-+x xB 、33+-x x C 、)2)(3()2)(3(--++x x x x D 、)2)(3()2)(3(-++-x x x x 5、判断下列各分式中x 取什么值时,分式的值为0?x 取什么值时,分式无意义⑴)1)(3(2x x x --+; ⑵2522+-x x ; ⑶2231--+x x .例2(分式的约分) 已知311=-y x ,求yxy x y xy x ---+55的值.随堂练习21、下列变形不正确的是( ) A.2222+-=---a a a a B.11112--=+x x x (x ≠1) C.1212+++x x x =21 D.2126336-+=-+y x y x 2、若2x =-y ,则分式22y x xy -的值为________. 3、化简求值:(1)222222484y x y xy x -+- 其中x =2,y =3. (2)已知yx =2,求222263y xy x y xy x +++-的值.例3(分式的乘除法)使分式22222)(y x ay ax y a x a y x ++⋅--的值等于5的a 的值是( ) A.5 B.-5 C.51 D.-51 随堂练习3计算:(1)(xy -x 2)÷xy y x - (2)24244422223-+-÷+-+-x x x x x x x x例4(分式加减法)例4-1化简求值:当x =21时,求1121122-+-++-x x x x x 的值.例4-262)1(33)1)(1()1(3)1)(1(313)1)(1(313132--=+--=-++--+-=---+-=----x x x x x x x x x x x x x x x x (1)上述计算过程中,从哪一步开始出现错误:(2)从B 到C 是否正确; 。
(完整版)解分式方程专项练习200题(精心整理有答案)

解分式方程专项练习200题(有答案)(1)=1﹣;(2)+=1.(3)+=1;(4)+2=.(5)+=(6)+=﹣3.(7)(8).(9)(10)﹣=0.(11)(12).(13)+3=(14)+=.(15)=;(16).(17)(18).(19)﹣=1 (20)=+1.(21);(22).(23)=1;(24).(25);(26).(27);(28).(29)=;(30)﹣=1.(31);(32).(33);(34).(35)=(36)=.(37)(38)(39)(40)(41);(42).(43)=(44).(45)(46)=1﹣.(47);(48).(49)(50).(51)=;(52)=1﹣.(53)(54).(55).(56);(57).(58)=;(59).(60)﹣1=(61)+=.(62)(63).(64)(65).(66).(67)﹣=.(68);(69).(70)(71).(72)(73).(74);(75).(76)(77).(78).(79)(80).(81)(82).(83)(84).(85)(86).(87);(88).(89)﹣1=;(90)﹣=.(91)﹣=1;(92)﹣1=.(93);(94).(95)﹣=1;(96)+=1.(97).(98).(99).(100)+=.(101).(102).(103)+2=.(104).(105)(106)﹣=.(107)+=1.(108)=+3.(109)(110)﹣=1(111)(112).(113)=1.(114)(115)=﹣.(116).(117).(118).(119).(120).(121);(122).(123)(124)(125).(126)(127)+=(128)(129);(130).(131)(132)(133)(134)(135)(136).(137)+2=(138)=﹣.(139).(140).(141).(142).(143).(144)(145).(146)(147)(148)﹣=1﹣.(149)(150).(151);(152).(153)(154)(155).(156)(157).(158);(159);(160);(161).(162);(163).(164);(165).(166);(167).(168)+=+.(169)﹣=﹣.(170)(171).(172);(173)=0.(174)(175).(176)(177).(178)(179).(180)(181).(182).(183)=;(184).(185)=;(186)=.(187);6yue28 (188);(189);(190).(191)=;(192).(193)=1;(194).(195)+=(196)=1;(197)(198)﹣=;(199)﹣=0(m≠n).(200)+=0;(201)+=﹣2.参考答案:(1)去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)去分母得:x2﹣4x+4+4=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解3.解方程:(3)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解;(4)去分母得:1﹣x+2x﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解(5)去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,原分式方程无解;(6)去分母得:1﹣x+1=﹣3x+6,移项合并得:2x=4,解得:x=2,经检验x=2是增根,原分式方程无解(7)由原方程,得1﹣x﹣6+3x=﹣1,即2x=4,解得x=2.经检验x=2是增根.所以,原方程无解.(8)由原方程,得7(x﹣1)+(x+1)=6x,即2x=6,解得x=3.经检验x=3是原方程的根.所以,原方程的解为:x=3(9)方程两边同乘(x﹣2)(x+2),得x(x+2)+2=(x﹣2)(x+2),解得x=﹣3,检验:当x=﹣3时,(x﹣2)(x+2)≠0,所以x=﹣3是原分式方程的解;(10)方程两边同乘x(x﹣1),得3x﹣(x+2)=0,解得x=1,检验:当x=1时,x(x﹣1)=0,x=1是原分式方程的增根.所以,原方程无解(11)去分母额:x+1﹣2(x﹣1)=4,去括号得:x+1﹣2x+2=4,移项合并得:﹣x=1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(12)去分母得:3+x(x﹣2)=(x﹣1)(x﹣2),整理得:﹣2x+3x=2﹣3,解得:x=﹣1,经检验x=﹣1是分式方程的解(13)去分母得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(14)去分母得:2x﹣2+3x+3=6,移项合并得:5x=5,解得:x=1,经检验x=1是增根,分式方程无解(15)去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解;(16)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(17)去分母得:3(x﹣5)=2x,去括号得:3x﹣15=2x,移项得:3x﹣2x=15,解得:x=15,检验:当x=15时,3(x﹣5)≠0,则原分式方程的解为x=15;(18)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,去括号得:15x﹣12+3x﹣6﹣4x=10,移项合并得:14x=28,解得:x=2,检验:当x=2时,3(x﹣2)=0,则原分式方程无解(19)去分母得:x(x+2)﹣1=x2﹣4,即x2+2x﹣1=x2﹣4,移项合并得:2x=﹣3,解得:x=﹣,经检验是分式方程的解;(20)去分母得:2x=4+x﹣2,移项合并得:x=2,经检验x=2是增根,分式方程无解(21)去分母得:6x﹣15﹣4x2﹣10x+4x2﹣25=0,移项合并得:﹣4x=40,解得:x=﹣10,经检验x=﹣10是分式方程的解;(22)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(23)去分母得:x(x+2)+6(x﹣2)=x2﹣4,去括号得:x2+2x+6x﹣12=x2﹣4,移项合并得:8x=8,解得:x=1,经检验x=1是分式方程的解;(24)去分母得:4x﹣4+5x+5=10,移项合并得:9x=9,解得:x=1,经检验x=1是增根,分式方程无解(25)方程两边都乘以x﹣2得:x﹣1+2(x﹣2)=1,解方程得:x=2,∵经检验x=2是原方程的增根,∴原方程无解;(26)方程两边都乘以(x+1)(x﹣1)得:(x﹣1)2﹣16=(x+1)2,解得:x=﹣4,∵经检验x=﹣4是原方程的解,∴原方程的解是x=﹣4(27)解:两边同乘x﹣2,得:3+x=﹣2(x﹣2),去括号得:3+x=﹣2x+4,移项合并得:3x=1,解得:x=,经检验,x=是原方程的解;(28)两边同乘(x﹣1)(x+1),得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验,x=1是原方程的增根,则原方程无解(29)去分母得:2(x+1)=3x,去括号得:2x+2=3x,解得:x=2,经检验:x=2是原方程的解;(30)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验:x=1 是原方程的增根,原方程无解(31)去分母得:2(x﹣9)+6=x﹣5,去括号得:2x﹣18+6=x﹣5,解得:x=7;(32)去分母得:3x+15+4x﹣20=2,移项合并得:7x=7,解得:x=1(33)去分母得:2x﹣18+6=x﹣5,移项合并得:x=7;(34)去分母得:5(x+2)﹣4(x﹣2)=3x,去括号得:5x+10﹣4x+8=3x,移项合并得:2x=18,解得:x=9(35)去分母得:6x=3x+3﹣x,移项合并得:4x=3,解得:x=,经检验x=是原方程的根;(36)去分母得:6x+x(x+1)=(x+4)(x+1),去括号得:6x+x2+x=x2+5x+4,移项合并得:2x=4,解得:x=2,经检验x=2是原方程的根(37)方程两边同乘(x﹣1)(x+1),得:2(x﹣1)﹣x=0,整理解得x=2.经检验x=2是原方程的解.(38)方程两边同乘(x﹣3)(x+3),得:3(x+3)=12,整理解得x=1.经检验x=1是原方程的解(39)方程两边同乘(x+1)(x﹣1),得:(x+1)2﹣4=(x+1)(x﹣1),整理解得x=1.检验x=1是原方程的增根.故原方程无解.(40)方程两边同乘x﹣5,得:3+x+2=3(x﹣5),解得x=10.经检验:x=10是原方程的解(41)方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得x=2,经检验x=2是原方程的解;(42)方程两边同乘2(x﹣1),得:3﹣2=6x﹣6,解得x=,经检验x=是方程的根(43)原方程变形得2x=x﹣1,解得x=﹣1,经检验x=﹣1是原方程的根.∴原方程的解为x=﹣1.(44)两边同时乘以(x2﹣4),得,x(x﹣2)﹣(x+2)2=8,解得x=﹣2.经检验x=﹣2是原方程的增根.∴原分式方程无解(45)方程两边同乘(x﹣2),得:x﹣1﹣3(x﹣2)=1,整理解得x=2.经检验x=2是原方程的增根.∴原方程无解;(46)方程两边同乘(3x﹣8),得:6=3x﹣8+4x﹣7,解得x=3.经检验x=3是方程的根(47)方程两边同乘以(x﹣2),得1﹣x+2(x﹣2)=1,解得x=4,将x=4代入x﹣2=2≠0,所以原方程的解为:x=4;(48)方程两边同乘以(2x+3)(2x﹣3),得﹣2x﹣3+2x﹣3=4x,解得x=﹣,将x=﹣代入(2x+3)(2x﹣3)=0,是增根.所以原方程的解为无解(49)方程两边同乘以(x﹣1)(x+1)得,2(x﹣1)﹣(x+1)=0,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3;(50)方程两边同乘以(x﹣2)(x+2)得,(x﹣2)2﹣(x﹣2)(x+2)=16,解得x=﹣2,经检验x=﹣2是原方程的增根,所以原方程无解(51)方程两边同乘x(x+1),得5x+2=3x,解得:x=﹣1.检验:将x=﹣1代入x(x+1)=0,所以x=﹣1是原方程的增根,故原方程无解;(52)方程两边同乘(2x﹣5),得x=2x﹣5+5,解得:x=0.检验:将x=0代入(2x﹣5)≠0,故x=0是原方程的解(53)方程两边同乘以(x﹣3)(x+3),得x﹣3+2(x+3)=12,解得x=3.检验:当x=3时,(x﹣3)(x+3)=0.∴原方程无解;(54)方程的两边同乘(x﹣2),得1﹣2x=2(x﹣2),解得x=.检验:当x=时,(x﹣2)=﹣≠0.∴原方程的解为:x=(55).(55)方程的两边同乘(x+1)(x﹣1),得1﹣3x+3(x2﹣1)=﹣(x+1),3x2﹣2x﹣1=0,(4分)解得:.经检验,x1=1是原方程的增根,是原方程的解.∴原方程的解为x2=﹣.(56);(57).(56)方程两边同乘2(x﹣2),得:3﹣2x=x﹣2,解得x=.检验:当x=时,2(x﹣2)=﹣≠0,故原方程的解为x=;(57)方程两边同乘3(x﹣2),得:3(5x﹣4)=4x+10﹣3(x﹣2),解得x=2.检验:当x=2时,3(x﹣2)=0,所以x=2是原方程的增根(58)=;(59).(58)方程两边同乘以(2x+3)(x﹣1),得5(x﹣1)=3(2x+3)解得:x=﹣14,检验:当x=﹣14时,(2x+3)(x﹣1)≠0所以,x=﹣14是原方程的解;(59)方程两边同乘以2(x﹣1),得2x=3﹣4(x﹣1)解得:,检验:当时,2(x﹣1)≠0∴是原方程的解(60)方程两边都乘以2(3x﹣1)得:4﹣2(3x﹣1)=3,解这个方程得:x=,检验:∵把x=代入2(3x﹣1)≠0,∴x=是原方程的解;(61)原方程化为﹣=,方程两边都乘以(x+3)(x﹣3)得:12﹣2(x+3)=x ﹣3解这个方程得:x=3,检验:∵把x=3代入(x+3)(x﹣3))=0,∴x=3是原方程的增根,即原方程无解(62)方程的两边同乘(x﹣3),得2﹣x﹣1=x﹣3,解得x=2.检验:把x=2代入(x﹣3)=﹣1≠0.∴原方程的解为:x=2.(63)方程的两边同乘6(x﹣2),得3(x﹣4)=2(2x+5)﹣3(x﹣2),解得x=14.检验:把x=14代入6(x﹣2)=72≠0.∴原方程的解为:x=14(64)方程的两边同乘2(3x﹣1),得﹣2﹣3(3x﹣1)=4,解得x=﹣.检验:把x=﹣代入2(3x﹣1)=﹣4≠0.∴原方程的解为:x=﹣;(65)方程两边同乘以(x+2)(x﹣2),得x(x﹣2)﹣(x+2)2=8,x2﹣2x﹣x2﹣4x﹣4=8,解得x=﹣2,将x=﹣2代入(x+2)(x﹣2)=0,所以原方程无解(66)方程两边同乘以(x﹣2)得:1+(1﹣x)=﹣3(x ﹣2),解得:x=2,检验:把x=2代入(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程的解为:x=2;(67)解:方程两边同乘以(x+1)(x﹣1)得:(x+1)﹣2(x﹣1)=1解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,即x=2是原分式方程的解,则原分式方程的解为:x=2(68)方程的两边同乘2(x﹣2),得:1+(x﹣2)=﹣6,解得:x=﹣5.检验:把x=﹣5代入2(x﹣2)=﹣14≠0,即x=﹣5是原分式方程的解,则原方程的解为:x=﹣5.(69)方程的两边同乘x(x﹣1),得:x﹣1+2x=2,解得:x=1.检验:把x=1代入x(x﹣1)=0,即x=1不是原分式方程的解;则原方程无解(70)方程的两边同乘(2x+1)(2x﹣1),得:2(2x+1)=4,解得x=.检验:把x=代入(2x+1)(2x﹣1)=0,即x=不是原分式方程的解.则原分式方程无解.(71)方程的两边同乘(2x+5)(2x﹣5),得:2x(2x+5)﹣2(2x﹣5)=(2x+5)(2x﹣5),解得x=﹣.检验:把x=﹣代入(2x+5)(2x﹣5)≠0.则原方程的解为:x=﹣(72)原式两边同时乘(x+2)(x﹣2),得2x(x﹣2)﹣3(x+2)=2(x+2)(x﹣2),2x2﹣4x﹣3x﹣6=2x2﹣8,﹣7x=﹣2,x=.经检验x=是原方程的根.(73)原式两边同时乘(x2﹣x),得3(x﹣1)+6x=7,3x﹣3+6x=7,9x=10,x=.经检验x=是原方程的根(74)方程两边都乘以(x+1)(x﹣1)得,3(x+1)﹣(x+3)=0,解得x=0,检验:当x=0时,(x+1)(x﹣1)=(0+1)(0﹣1)=﹣1≠0,所以,原分式方程的解是x=0;(75)方程两边都乘以2(x﹣2)得,3﹣2x=x﹣2,解得x=,检验:当x=时,2(x﹣2)=2(﹣2)≠0,所以,原分式方程的解是x=(76)最简公分母为x(x﹣1),去分母得:3x﹣(x+2)=0,去括号合并得:2x=2,解得:x=1,将x=1代入得:x(x﹣1)=0,则x=1为增根,原分式方程无解;(77)方程变形为﹣=1,最简公分母为x﹣3,去分母得:2﹣x﹣1=x﹣3,解得:x=2,将x=2代入得:x﹣3=2﹣3=﹣1≠0,则分式方程的解为x=2(78)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,经检验x=2是增根,原分式方程无解(79)去分母得:x2﹣6=x2﹣2x,解得:x=3,经检验x=3是分式方程的解;(80)去分母得:x﹣6=2x﹣5,解得:x=﹣1,经检验x=﹣1是分式方程的解(81)去分母得:x=3x﹣6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解;(82)去分母得:(x﹣2)2﹣x2+4=16,整理得:﹣4x+4+4=16,移项合并得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解(83)方程两边同时乘以y(y﹣1)得,2y2+y(y﹣1)=(3y﹣1)(y﹣1),解得y=.检验:将y=代入y(y﹣1)得,(﹣1)=﹣符合要求,故y=是原方程的根;(84)方程两边同时乘以x2﹣4得,(x﹣2)2﹣(x+2)2=16,解得x=﹣2,检验:将x=2代入x2﹣4得,4﹣4=0.故x=2是原方程的增根,原方程无解(85)去分母得:x﹣3+x﹣2=﹣3,整理得:2x=2,解得:x=1,经检验x=1是分式方程的解;(86)去分母得:x(x﹣1)=(x+3)(x﹣1)+2(x+3),去括号得:x2﹣x=x2﹣x+3x﹣3+2x+6,移项合并得:﹣5x=3,解得:x=﹣,经检验x=﹣是分式方程的解(87)原方程可化为:,方程的两边同乘(2x﹣4),得1+x﹣2=﹣6,解得x=﹣5.检验:把x=﹣5代入(2x﹣4)=﹣14≠0.∴原方程的解为:x=﹣5.(88)原方程可化为:,方程的两边同乘(x2﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x2﹣1)=0.∴x=1不是原方程的解,∴原方程无解.(89)去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(90)去分母得:(x﹣2)2﹣16=(x+2)2,去括号得:x2﹣4x+4﹣16=x2+4x+4,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解(91)去分母得:x(x+1)﹣2(x﹣1)=x2﹣1,去括号得:x2+x﹣2x+2=x2﹣1,解得:x=3,经检验x=是分式方程的解;(92)去分母得:x(x+2)﹣(x+2)(x﹣1)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,原方程无解(93)去分母得:3﹣2=6x﹣6,解得:x=,经检验是分式方程的解;(94)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(95)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解;(96)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解(97)解:方程的两边同乘(x+2)(x﹣2),得x+2+x﹣2=3,解得x=.检验:把x=代入(x+2)(x﹣2)=﹣≠0.∴原方程的解为:x=(98)去分母两边同时乘以x(x﹣2),得:4+(x﹣2)=3x,去括号得:4+x﹣2=3x,移项得:x﹣3x=2﹣4,合并同类项得:﹣2x=﹣2,系数化为1得:x=1.把x=1代入x(x﹣2)=﹣1≠0,∴原方程的解是:x=1(99)去分母得:x2﹣9=x2+3x﹣3,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解(100)方程的两边同乘(x+1)(x﹣1),得6x+x(x+1)=(x+4)(x﹣1),解得x=﹣1.检验:把x=﹣1代入(x+1)(x﹣1)=0.∴原方程无解(101)方程两边都乘以(x﹣1)(x+2)得,3﹣x(x+2)+(x+2)(x﹣1)=0,解得x=1,检验:当x=1时,(x﹣1)(x+2)=0,所以,x=1是原方程的增根,故原方程无解(102方程两边同时乘以(x+2)(x﹣2),得x(x﹣2)﹣3(x+2)(x﹣2)=8,整理,得x2+x﹣2=0,∴x1=﹣2,x2=1.经检验x1=﹣2是增根,x2=1是原方程的解,∴原方程的解为x2=1(103)方程两边都乘以x(x+1)去分母得:1+2x2+2x=2x2+x,解得x=﹣1,检验:当x=﹣1时,x(x+1)=﹣1×(﹣1+1)=0,所以,x=﹣1不是原方程的解,所以,原分式方程无解(104)原方程可化为:﹣=1,方程的两边同乘(2x﹣5),得x﹣6=2x﹣5,解得x=﹣1.检验:把x=﹣1代入(2x﹣5)=﹣7≠0.∴原方程的解为:x=﹣1(105)方程两边同乘(x﹣1)(x+2),得:x(x+2)=(x﹣1)(x+2)+3化简得2x=x﹣2+3,解得x=1.经检验x=1时,(x﹣1)(x+2)=0,1不是原方程的解,∴原分式方程无解(106)去分母得:x﹣1+2(x+1)=1,去括号得:x﹣1+2x+2=1,移项合并得:3x=0,解得:x=0,经检验x=0是分式方程的解(107)解:去分母得:x2+5x+2=x2﹣x,移项合并得:6x=﹣2,解得:x=﹣,经检验是分式方程的解(108)解:去分母得:x﹣1=3﹣x+3x+6,解得:x=﹣10,经检验x=﹣10是分式方程的解(109)解:去分母得:2(x+1)﹣4=5(x﹣1),2x+2﹣4﹣5x+5=0,﹣3x=﹣3,∴x=1,经检验x=1是增根舍去,所以原方程无解(110)解:﹣=1﹣=1(4分)=1,∴a=2.经检验a=2是原方程的解,故此方程的根为:a=2(111)解:原方程可化为:=1+,方程的两边同乘(2x﹣1),得x﹣1=2x﹣1+2,解得x=﹣2.检验:把x=﹣2代入(2x﹣1)=﹣5≠0.∴原方程的解为x=﹣2(112)解:.=,=,(x﹣1)2+9=3(x+2)x2﹣5x+4=0,x1=4,x2=1检验:把x1=4分别代入(x+2)(x﹣1)=18≠0,∴x1=4是原方程的解;把x2=1分别代入(x+2)(x﹣1)=0,∴x2=1不是原方程的解,∴x=4是原方程的解(113)解:原方程可化为:﹣=1,方程的两边同乘(a﹣1)2,得(a﹣1)(a+1)﹣a2=(a﹣1)2,﹣1=(a﹣1)2,因为(a﹣1)2是非负数,故原方程的无解(114)解:原方程化为:+=﹣,去分母,得5(x+3)+5(x﹣3)=﹣4(x+3)(x﹣3),去括号,整理,得2x2+5x﹣18=0,即(2x+9)(x﹣2)=0,解得x1=﹣,x2=2,经检验,当x=﹣或2时,5(x+3)(x﹣3)≠0,所以,原方程的解为x1=﹣,x2=2(115)解:方程的两边同乘15(m2﹣3+7m),得15(m﹣9)=﹣7(m2﹣3+7m),整理,得7m2+64m﹣156=0,解得m1=2,m2=﹣.检验:把m1=2代入15(m2﹣3+7m)≠0,则m1=2是原方程的根;把m2=﹣代入15(m2﹣3+7m)≠0,则m2=﹣是原方程的根.故原方程的解为:m1=2,m2=﹣(116)解:方程两边同乘以(x+1)(x﹣1),得(x+1)2﹣12=(x+1)(x﹣1),x2+2x+1﹣12=x2﹣1x2+2x﹣11﹣x2+1=0,2x﹣10=02x=10x=5,经检验:x=5是原分式方程的解,所以原方程的解为x=5(117)解:原方程可化为:﹣+=0,方程的两边同乘x2﹣4得:﹣6+2(x+2)=0,解得x=1.检验:把x=1代入x2﹣4=﹣3≠0,方程成立,∴原方程的解为:x=1(118)方程两边同乘最简公分母x(x﹣1),得x+4=3x,解得x=2,检验:当x=2时,x(x﹣1)=2×(2﹣1)=2≠0,∴x=2是原方程的根,故原分式方程的解为x=2(119)方程两边都乘以(x﹣1)(x+1)得,(x﹣2)(x+1)+3(x﹣1)=(x﹣1)(x+1),x2﹣x﹣2+3x﹣3=x2﹣1,2x=4,x=2,检验:当x=2时,(x﹣1)(x+1)≠0,所以,原分式方程的解x=2(120)方程的两边同乘2(x﹣2)(x+2),得3(x+2)﹣2x(x﹣2)=(x﹣2)(x+2),3x+6﹣2x2+4x=x2﹣4,3x2﹣7x﹣10=0,解得x1=﹣1,x2=.经检验:x1=﹣1,x2=是原方程的解(121)去分母得:x﹣3+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解;(122)去分母得:x(x+2)﹣x﹣14=2x(x﹣2)﹣x2+4,去括号得:x2+2x﹣x﹣14=2x2﹣4x﹣x2+4,移项合并得:5x=18,解得:x=3.6,经检验x=3.6是分式方程的解(123)解:方程两边同乘3(x﹣3)得2x+9=3(4x﹣7)+6(x﹣3)解得x=3经检验x=3是原方程增根,∴原方程无解(124)方程两边同乘6(x﹣2),得3(5x﹣4)+3(x﹣2)=2(2x+5),整理得:15x﹣12+3x﹣6=4x+10,解得:x=2.检验:将x=2代入6(x﹣2)=6(2﹣2)=0.∴可得x=2是增根,原方程无解.(125)方程化为:=+1,方程两边都乘以(x+3)(x﹣1)得:x+3=4+(x+3)(x﹣1),整理得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x1=﹣2,x2=1,检验:当x=1时,(x+3)(x﹣1)=0,即x=1是增根;当x=﹣2时(x+3)(x﹣1)≠0,即x=﹣2是方程的根,即原方程的解是x=﹣2.(126)方程两边同乘以x(x﹣1)得3(x﹣1)+2x=x+5,3x﹣3+2x=x+5,4x=8,x=2,经检验知:x=2是原方程的解(127).+=x2+2x+5(x+1)=(x+4)(x﹣1)4x=﹣9x=﹣检验:x=﹣时,(x+1)(x﹣1)≠0,所以x=﹣是原分式方程的解(128)解:原方程变形为,,,,∴x2﹣13x+42=x2﹣9x+20,∴x=,检验知x=是方程的根(129)方程的两边同乘x(x+1),得x2+x(x+1)=(2x+2)(x+1),解得x=﹣.检验:把x=﹣代入x(x+1)=﹣≠0.∴原方程的解为:x=﹣;(130)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=﹣5,解得x=﹣.检验:把x=﹣代入(x+1)(x﹣1)=≠0.∴原方程的解为:x=﹣(131)方程的两边同乘2(x﹣3),得2(x﹣2)=x﹣3+2,解得x=3.检验:把x=3代入2(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(132)方程的两边同乘(x﹣4),得5﹣x﹣1=x﹣4,解得x=4.检验:把x=4代入(x﹣4)=0.x=4是原方程的增根,∴原方程无解.(133)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x+1)(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(134)方程的两边同乘(x+2)(x﹣2),得(x﹣2)2﹣16=(x+2)2,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.x=﹣2是原方程的增根,∴原方程无解.(135)方程的两边同乘x(x﹣1),得6x+3(x﹣1)=x+5,解得x=1.检验:把x=1代入x(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(136)方程的两边同乘x(x﹣1),得x2﹣2(x﹣1)=x(x﹣1),解得x=2.检验:把x=2代入x(x﹣1)=2≠0.∴原方程的解为:x=2(137)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(138)去分母得:15x﹣12=4x+10﹣3(x﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(139)解:去分母得:6x﹣3+5x=x+27,移项合并得:10x=30,解得:x=3.经检验x=3是分式方程的解(140)去分母得:3(x﹣2)﹣2(x﹣2)=2,即x﹣2=2,解得:x=4,经检验x=4是分式方程的解(141)解:去分母得:2﹣2x﹣3x﹣3=6,移项合并得:﹣5x=7,解得:x=﹣,经检验是分式方程的解(142)方程两边都乘以x(x+1)得,2(x+1)+6x=15,2x+2+6x=15,8x=13,x=,检验:当x=时,x(x+1)=×(+1)≠0,所以x=是分式方程的解,因此,原分式方程的解释x=(143)﹣=﹣,==方程两边都乘以(x+1)(x+2)(x+3)(x+4)得:(x+3)(x+4)=(x+1)(x+2)解方程得:x=﹣,经检验x=﹣是原方程的解,即原方程的解为x=﹣(144)原方程可化为:+2=,方程的两边同乘x﹣3,得1+2(x﹣3)=x﹣4,解得x=1.检验:把x=1代入x﹣3=﹣2≠0.∴原方程的解为:x=1;(145)方程的两边同乘(x+2)(x﹣2),得4+(x+2)(x+3)=(x﹣1)(x﹣2),解得x=﹣1.检验:把x=﹣1代入(x+2)(x﹣2)=﹣3≠0.∴原方程的解为:x=﹣1(146)方程两边同乘以(x+1)(2﹣x),得:(2﹣x)+3(x+1)=0;整理,得:2x+5=0,解得:x=﹣2.5;经检验,x=﹣2.5是原方程的解.(147)原方程可化为:(1+)﹣(1+)=(1+)﹣(1+),整理得:=,去分母得:(x+5)(x+7)=(x+1)(x+3),即:x2+12x+35=x2+4x+3,解得x=﹣4;经检验,x=﹣4是原方程的解(148)去分母得:7(x﹣1)+3(x+1)=x(x2﹣1)﹣x(x2﹣7),去括号得:7x﹣7+3x+3=x3﹣x﹣x3+7x,移项合并得:4x=4,解得:x=1,经检验x=1是增根,原分式方程无解(149)方程的两边同乘(2x﹣3),得:x﹣5=4(2x﹣3),解得:x=1.检验:把x=1代入(2x﹣3)=﹣1≠0,即x=1是原分式方程的解.则原方程的解为:x=1.(150)方程的两边同乘(x+2)(x﹣2),得:x(x﹣2)﹣(x+2)2=8,解得:x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0,即x=﹣2不是原分式方程的解.则原方程无解(151)方程的两边同乘(2x﹣1)(x﹣2),得2x(x﹣2)+(x﹣1)(2x﹣1)=2(2x﹣1)(x﹣2),解得x=3.检验:把x=﹣1代入(2x﹣1)(x﹣2)=5≠0.∴原方程的解为:x=3.(152)方程的两边同乘2(x+3)(x﹣3),得2(x﹣3)﹣(x+3)=3x﹣5,解得x=﹣2.检验:把x=﹣2代入2(x+3)(x﹣3)=﹣10≠0.∴原方程的解为:x=﹣2(153)方程的两边同乘(4x2﹣8)(1﹣2x),得:8(1﹣2x)+(2x+3)(4x2﹣8)=﹣(4x2﹣8)(1﹣2x),即2x2﹣2x﹣3=0,解得:x=.检验:把x=代入(4x2﹣8)(1﹣2x)≠0,故原方程的解为:x=.(154)方程的两边同乘x(x﹣1),得:3(x﹣1)+6x=7,解得:x=.检验:把x=代入x(x﹣1)=≠0,即x=是原分式方程的解,则原方程的解为:x=.(155)方程的两边同乘(3x﹣8),得:6=3x﹣8+(4x ﹣7),解得:x=3.检验:把x=3代入(3x﹣8)=1≠0,即x=3是原分式方程的解,则原方程的解为:x=3(156)去分母得:x(x﹣2)﹣(x+2)2=8,去括号得:x2﹣2x﹣x2﹣4x﹣4=8,即﹣6x=12,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解;(157)去分母得:3x=2x+3x+3,移项合并得:2x=﹣3,解得:x=﹣,经检验x=﹣是原分式方程的解(158)方程的两边同乘(x+2)(x﹣2)得3(x+2)=2(x﹣2),解得x=﹣10.检验:把x=﹣10代入(x+2)(x﹣2)=96≠0.∴原方程的解为:x=﹣10.(159)方程的两边同乘(y﹣2),得1=y﹣1﹣3(y﹣2),解得y=2.检验:把y=2代入(y﹣2)=0.y=2是原方程的增根,∴原方程无解.(160)方程的两边同乘(x+2)(x﹣2)得(x﹣2)2﹣(x+2)2=16,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.∴x=﹣2是原方程的增根,∴原方程无解.(161)原方程可化为:﹣20=,方程的两边同乘x,得3000﹣20x=2500,解得x=25.经检验:x不为0,x=25是原方程的解(162)方程两边都乘以(4x﹣8)(3x﹣6)得:9x﹣18=4x﹣8,9x﹣4x=﹣8+18,5x=10,x=2,检验:把x=2代入(4x﹣8)(3x﹣6)=0,即x=2是增根,即原方程无解.(163)原方程化为:+=1﹣,方程的两边都乘以(x﹣1)(x﹣3)得:﹣2(x﹣3)+x(x﹣1)=x2﹣4x+3﹣(2x﹣1),去括号得:﹣2x+6+x2﹣x=x2﹣4x+3﹣2x+1,整理得:3x=﹣2,x=﹣,检验:把x=﹣代入(x﹣1)(x﹣3)≠0,即x=﹣是原方程的解(164)方程两边都乘以2(x﹣2)得,1+x﹣2=6,解得x=7,检验:当x=7时,2(x﹣2)=2×(7﹣2)=10≠0,所以x=7是分式方程的解,故原分式方程的解是x=7;(165)方程两边都乘以(x+2)(x﹣2)得,x﹣2+4x=2(x+2),解得x=2,检验:当x=2时,(x+2)(x﹣2)=(2+2)(2﹣2)=0,所以x=2不是分式方程的解,是增根,故原分式方程无解(166)方程变形得:﹣3=,去分母得:1﹣3(x﹣2)=1﹣x,去括号得:1﹣3x+6=1﹣x,移项合并得:﹣2x=﹣6,解得:x=3,将x=3代入检验是分式方程的解;(167)最简公分母为x(x+3)(x﹣3),去分母得:x﹣3=2x+x+3,移项合并得:2x=﹣6,解得:x=﹣3,将x=﹣3代入得:x(x+3)(x﹣3)=0,则x=﹣3是增根,原分式方程无解(168)方程变形得:+=+,即1﹣+1﹣=1﹣+1﹣,整理得:+=+,即﹣=﹣,化简得:=,可得x2﹣3x+2=x2﹣13x+42,解得:x=4,经检验x=4是分式方程的解(169)方程变形得:﹣=﹣,即1﹣﹣1+=1﹣﹣1+,整理得:﹣=﹣,即=,整理得:=,去分母得:x2+5x+6=x2+13x+42,解得:x=﹣4.5,经检验是分式方程的解(170)方程的两边同乘(x﹣3),得2x+1=4x﹣5+2(x﹣3),解得x=3.检验:把x=3代入(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(171)方程的两边同乘(x﹣1)2,得x2﹣3x﹣(x+1)(x﹣1)=2(x﹣1),解得x=.检验:把x=代入(x﹣1)2=≠0.∴原方程的解为:x=(172)方程的两边同乘(x+3)(x﹣3),得x﹣3﹣2(x+3)=12,解得x=﹣21.检验:把x=﹣21代入(x+3)(x﹣3)≠0.∴原方程的解为:x=﹣21.(173)方程的两边同乘(x2﹣1),得x2﹣3x+2(x2﹣1)﹣3x(x+1)=0,解得x=﹣.检验:把x=﹣代入(x2﹣1)=﹣≠0.∴原方程的解为:x=﹣(174)方程两边同乘3(x+1),得:3x=2x+3x+3,解得:x=﹣1.5.检验:把x=﹣1.5代入3(x+1)=﹣1.5≠0.所以原方程的解为:x=﹣1.5;(175)方程两边同乘x(x+2)(x﹣2),得:3(x﹣2)﹣(x+2)=0,解得x=4.检验:把x=4代入x(x+2)(x﹣2)=48≠0,故原方程的解为:x=4(176)方程的两边同乘(x﹣2),得1=x﹣1﹣3(x﹣2),解得x=2.检验:把x=2代入(x﹣2)=0.∴x=2是原方程的解为增根解,∴原方程无解;(177)方程的两边同乘(x+4)(x﹣4),得5(x+4)(x﹣4)+96=(2x﹣1)(x﹣4)+(3x﹣1)(x+4),解得x=8.检验:把x=8代入(x+4)(x﹣4)=48≠0.∴原方程的解为:x=8(178)(179).(178)方程两边同时乘以x﹣4得:x﹣4+(x﹣5)=1,则x﹣4+x﹣5=1解得:x=5,检验:当x=5时,x﹣4=1≠0,则方程的解是x=5.(179)原方程即:+=,方程两边同时乘以6(x﹣2)得:3(5x﹣4)+3=2(2x+5)解得:x=,检验:当x=时,6(x﹣2)≠0,则方程的解是:x=(180)(181).(180)去分母得:10x﹣5=4x﹣2,移项合并得:6x=3,解得:x=0.5,经检验x=0.5是分式方程的解;(181)去分母得:5x2﹣80+96=(2x﹣1)(x﹣4)+(3x ﹣1)(x+4),去括号得:5x2﹣80+96=5x2+2x,移项合并得:2x=16,解得:x=8,经检验x=8是分式方程的解(182)原方程可化为:+=1+方程两边乘x(x+1)(x﹣1)得,7(x﹣1)+3(x+1)=x(x+1)(x﹣1)+x(7﹣x2)化简得,4x=4∴x=1检验:把x=1代入x(x+1)(x﹣1)=0∴x=1是原方程的增根.∴原方程无解(183)去分母得:5x+2=3x,移项合并得:2x=﹣2,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(184)去分母得:2x2﹣4x﹣x2﹣2x=x2﹣4﹣x﹣11,移项合并得:﹣5x=﹣15,解得:x=3,经检验x=3是分式方程的解(185)去分母得:3﹣2x=x+1,移项合并得:3x=2,解得:x=;(186)去分母得:(x﹣1)2﹣x(x+2)=9,整理得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解(187)方程两边都乘(x+4)(x﹣4),得x+4=4解得x=0.检验:当x=0时,(x+4)(x﹣4)≠0.∴x=0是原方程的解.(188)方程两边都乘x(x﹣1),得3x﹣(x+2)=0,解得x=1.检验:当x=1时,x(x﹣1)=0.∴原方程无解.(189)方程两边都乘(x﹣3),得2﹣x﹣1=3(x﹣3),解得x=.检验:当x=时,x﹣3≠0.∴x=是原方程的解.(190)方程两边都乘6(x﹣2),得3(5x﹣4)=2(2x+5)﹣3×6(x﹣2),解得x=2.检验:当x=2时,6(x﹣2)≠0.∴x=2是原方程的解(191)原方程可化为:,方程两边都乘(x﹣2)(x﹣3),得:x(x﹣3)﹣(1﹣x2)=2x(x﹣2),解得x=1检验:当x=1时,(x﹣2)(x﹣3)≠0,∴x=1是原方程的解.(192)原方程可化为:,方程两边都乘(x+3)(x﹣2)(x﹣4),得5x(x﹣4)+(2x﹣5)(x﹣2)=(7x﹣10)(x+3),解得x=1.检验:当x=1时,(x+3)(x﹣2)(x﹣4)≠0.∴x=1是原方程的解(193)=1,方程两边同乘以(1﹣x)(3﹣x),得2(3﹣x)﹣x(1﹣x)+(2x﹣1)=(1﹣x)(3﹣x),去括号,得6﹣2x﹣x+x2+2x﹣1=3﹣3x﹣x+x2,整理,得3x=﹣2,解得:x=﹣.检验:当x=﹣时,(1﹣x)(3﹣x)≠0,∴x=﹣是原方程的解.(194),原方程可化为,约分,得,方程两边同乘以(x+3)(x﹣4),得:3(x﹣4)=4(x+3),3x﹣12=4x+12,﹣x=24,∴x=﹣24,检验:当x=﹣24时,(x+3)(x﹣4)≠0,∴x=﹣24是原方程的解(195)方程两边都乘(1+3x)(1﹣3x),得:(1﹣3x)2﹣(1+3x)2=12,解得x=﹣1.检验:当x=﹣1时,(1+3x)(1﹣3x)≠0∴x=﹣1是原方程的解(196)方程两边都乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),解得x=1.检验:当x=1时,(x+1)(x﹣1)=0.∴原方程无解.(197)方程两边都乘(3x﹣5)(2x﹣3),得(3x+4)(2x﹣3)+(3x﹣5)(2x﹣3)=(4x+1)(3x ﹣5),解得x=.检验:当x=时,(3x﹣5)(2x﹣3)≠0.∴x=是原方程的解(198)解:两边同乘以2(3x﹣1),得3(3x﹣1)﹣2=5,解得.经检验,是原方程的解.(199)解:两边同乘以x(x+1),得m(x+1)﹣nx=0,解得:.经检验是方程的解(200)方程两边同乘(x+1)(1﹣2x),得(x﹣1)(1﹣2x)+2x(x+1)=0,整理解得:x=.经检验:x=是原方程的解.(201)方程两边同乘(x﹣2),得3﹣x=﹣2(x﹣2),解得:x=1.经检验:x=1是原方程的解。
分式方程练习题精选(含答案)

分式方程练习题精选(含答案)一、 选择题:1.以下是方程211x x x -=-去分母的结果,其中正确的是 . A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=-2.在下列方程中,关于x 的分式方程的个数有 . ①0432212=+-x x ②.4=a x ③;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 . A .x=1 B .x=-1 C .x=3 D .x=-35.若关于x 的方程122x m x x +=++有增根,则m 的值为 . A .1 B .-1 C .-2 D .26.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12D 、-17.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x xB 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=x C .32-=x 或1 D .32=x 或1- 10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--x x 11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:①723x x -=②723x x -=③372x x +=④372x x=-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、 填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xm x x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 .三、 解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x a x 的解是正数,求a 的取值范围。
分式方程专项练习50题(有答案)

分式方程专项练习50题(有答案)1.$\frac{x}{x+2}=\frac{2}{x-1}$,改写为$x(x-1)=2(x+2)$。
2.$\frac{5x-3}{x^2}=0$,当 $5x-3=0$ 时成立,即$x=\frac{3}{5}$。
3.$\frac{x}{x}+\frac{1}{x}=1$,当 $x\neq 0$ 时成立。
4.$x^2+2x=0$,当 $x=0$ 或 $x=-2$ 时成立。
5.$\frac{13}{x(x-2)}=\frac{1}{x-1}$,改写为 $13(x-1)=x(x-2)$。
6.$\frac{1}{x-1}-\frac{2}{x+1}=\frac{1}{2}$,改写为$3x^2-2x-5=0$,当 $x=\frac{1}{3}$ 或 $x=-\frac{5}{3}$ 时成立。
7.$\frac{x+1}{x-1}=\frac{x}{x+1}$,改写为 $x^2-1=0$,当 $x=1$ 或 $x=-1$ 时成立。
8.$\frac{2x-5}{3-x}=\frac{2x-2}{x+1}$,改写为 $4x^2-13x+7=0$,当 $x=1$ 或 $x=\frac{7}{4}$ 时成立。
9.$\frac{2x-5}{x-2}-\frac{1}{x+2}=x$,改写为 $3x^2-4x-3=0$,当 $x=\frac{1\pm\sqrt{13}}{3}$ 时成立。
10.$\frac{2x-1}{x+1}=1-\frac{1}{x+1}$,改写为 $x^2+3x-2=0$,当 $x=-3+\sqrt{11}$ 或 $x=-3-\sqrt{11}$ 时成立。
11.$\frac{x}{x+1}+\frac{x}{x-1}=2$,改写为 $2x^2-2x-1=0$,当 $x=\frac{1\pm\sqrt{3}}{2}$ 时成立。
12.$\frac{1}{x-1}+\frac{1}{x+1}=\frac{4}{x^2-1}$,改写为 $3x^4-8x^2-5=0$,当 $x=\pm\sqrt{\frac{5}{3}}$ 或$x=\pm\sqrt{\frac{8}{3}}$ 时成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程题型集锦
一、增根产生的原因及去除方法
(一):定义:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.增根不是原分式方程的根(一元方程的“解”也叫“根”),但它是去分母后所得的整式方程的根。
增根是不适合原方程的根,它不能作为方程的根,是需要排除掉的根。
(二)去除增根方法:要去除因为化解分式方程产生的增根,办法是可以把解方程的结果(即x等于什么具体数),一一代入最简公分母检验,如果使最简公分母为零,那么这个根就是原要去掉的原来方程的增根。
二、有增根与无解是两个不同的概念
分式方程的增根与无解是分式方程中常见的两个不同概念,学习分式方程时,常常容易会对这两个概念混淆不清。
(一)、分式方程有增根,是指解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围,因而得出的根只符合新的整式方程,而并不符合原来的分式方程。
(二)、分式方程无解,是指不论未知数取何值,使分式、整式方程两边的值都不相等。
把分式方程化为整式方程,若整式方程无解,则分式方程一定无解;若整式方程有解,但要使分式方程无解,则该解必必须是能使最简公分母为0时对应的未知数的数值,此时相应的参数(字母系数值)使分式方程无解。
分式方程无解包含两种情形:
1、把分式方程化为整式方程,若整式方程无解,则分式方程一定无解(方程得出的解若能使新的化简式无解,自然代入原分式方程也会无解)。
2、若整式方程有解,但要使分式方程无解,则该解必为是能使最简公分母为0时对应的未知数的数值,此时相应的参数(字母系数)使分式方程无解。
(方程得出的解若能使新的化简式有解,但却要想使原分式方程无解,那就要取出增根。
“增根代入化简式,直接求系数”)。
方程无解的条件,关键是看转化后的整式方程解的情况.既要考虑整式方程无解的条件,又要考虑整式方程有解,但它是分式方程增根的可能性.考虑问题要全面、周到。
三、分式方程解题的三把钥匙
验根口诀:验根代入公分母,不
能等于0
增根口诀:增根代入化简式,直接
求系数
验根口诀“验根代入公分母,不能等于0”的解释
在解分式方程把分式方程转化为整式方程这一变形过程中,由于去分母扩大了未知数的取值范围,而可能产生只符合新的整式方程,却并不适合原分式方程的增根。
为了保证根的准确性,使求得的整式方程的根,能符合原分式方程中的各分式的分母必须都不为零的要求,就需要进行验根,验根的方法,就是将解整式方程所求的根代入化简时所乘的最简公分母中去,看得出的结果是否为零.如果为零,即为增根。
验根的工具就是本口诀。
增根口诀“增根代入化简式,直接求系数”的解释
适用于有一个未知数、有系数、共两个未知量(①未知数x;②字母系数m、k),化简后只有一个根的一元方程。
若题目已知条件确定分式方程有增根,或直言有具体增根x等于几求系数;或已知分式方程无解或无实数根求系数时,都适用于这个增根公式。
①先按照步骤求出整式化简式;②再直接从各分式分母中或从最简公分母中取出增根;
③将增根代入化简式,④直接就能求出系数(常用m、k等字母,系数又叫“参数”或“字母系数”)。
特别注意,若题目已知条件确定分式方程有解或有实数根求系数时,也适用于这个公式,但得到的系数正负符号要再反过来。
因为得出的系数是在有增根时的系数,不换符号就不符合题目的要求。
根的判别式
分式方程化为一元二次方程后的根的判别式是△(符号读音delta),
方程实数根的个数需要用根的判别式判定。
当分式方程化为整式方程,化简式为一元二次整式方程时,它的根的个数有三种情况,即有两个、一个或0个根。
究竟有几个根需要用根的判别式来判定。
运用一元二次方程根的判别式可以判断一个一元二次方程
ax2+bx+c=0根的个数状况。
将ax2+bx+c=0中的三个系数abc代入根的判别式中。
当b2-4ac>0时,即△>0,这个一元二次方程有两个根;
当b2-4ac=0时,即△=0,这个一元二次方程有一个根(或叫有两个相等的根);
当b2-4ac<0时,即△<0,这个一元二次方程没有根。
四、分式方程解题带答案
题型一:正常验根
验根口诀:验根代入公分母,不能等于0
步骤:①最简公分母,②化简式;③得出根,④验根代入公分母
题型二:已知有增根求系数
增根口诀:增根代入化简式,直接求系数
步骤:①最简公分母,②化简式;③取出增根;
④增根代入化简式
(一)已知有增根求系数
(二)已知有具体增根求系数
增根口诀:增根代入化简式,直接求系数
步骤:(完全同上):①最简公分母,②化简式;③取出增根;④增根代入化简式,直接求系数。
题型三:已知有解或有实数根求系数
有解或有实数根,相当于无增根或不全部是增根,故只能借用增根公式,但最后又要用一句话否定这个系数的值即可,如最后的结论是“系数a或m ≠某数时,原来方程有解”。
增根口诀:增根代入化简式,直接求系数
注意本题型解题步骤第六步时,最后系数符号要反过来。
(一)已知有解求系数
步骤:解题步骤:
①最简公分母;
②化简式;
③判别式(适用于分式方程化为一元二次方程)
④取增根;
⑤增根代入化简式。
⑥反符号
提示:
第六步反符号,指最后把得出的系数值符号反过来,换一个相反符号。
反符号适用于“有解求系数”,“有实数根求系数”的题型,说明它没有受增根的影响,它与有增根的意思相反,故使用有增根的公式“增根代入化简式,直接求系数”后,最终得出系数值后,还要再把符号反过来。
但是,像本题型后面的题型四“已知无解、无实数根求系数”中,无解、无实数根,顾名思义,就又和有增根属于一类,故就不需要再在最后把系数换符号了。
归纳:反符号,即得出的系数值换符号,只适用于“有解,有实数根求系数”的题型。
题型四:已知无解或无实数根求系数
无解或无实数根,相当于有增根,故可以直接用增根公式,最后也不需要用一句话否定这个系数的值。
增根口诀:增根代入化简式,直接求系数
解题步骤:
①最简公分母;
②化简式;
③判别式(适用于分式方程化为一元二次方程)
④取增根;
⑤增根代入化简式。
(注意少了第六步反符号)。