基于BP神经网络的语音识别技术
基于BP神经网络的语音情感识别研究

基于BP神经网络的语音情感识别研究作者:徐照松元建来源:《软件导刊》2014年第04期摘要:随着科技的迅速发展,人机交互越来越受到人们的重视,语音情感识别更是学术界研究的热点。
将BP神经网络算法用于语音情感识别研究,并在汉语情感数据集上进行了相关实验,识别的准确率达到了91.5%,相较于SVM算法分类精度提高了5%。
关键词关键词:语音情感识别;BP神经网络;SVM中图分类号:TP302文献标识码:A 文章编号文章编号:16727800(2014)004001103作者简介作者简介:徐照松(1990-),男,广西师范学院计算机与信息工程学院硕士研究生,研究方向为数据挖掘、语音情感、智能计算;元建(1986-),男,广西师范学院计算机与信息工程学院硕士研究生,研究方向为数据挖掘、智能计算。
0 引言随着科技的迅速发展,人机交互显得尤为重要。
语音是语言的载体,是人与人之间交流的重要媒介。
相较于其它交流方式而言,语音交流更加直接、便捷。
近年来,随着人机交互研究的不断深入,语音情感识别更成为了学术界研究的热点,其涉及到信号处理、模式识别、人工智能等相关领域。
语音中除了能够传达语义信息外,还包含了一些情感信息,然而这些情感信息往往被人们所忽略[3]。
语音情感识别实际上是利用计算机所提取的语音信号特征来判断其属于哪一类情感。
利用模式识别方法研究语音情感识别的文献较多,朱菊霞[4]等使用SVM算法对语音情感进行识别,并取得了86%的识别率。
余华[5]等使用粒子群算法优化神经网络来进行语音情感识别,识别率较高。
BP神经网络是神经网络的一种,属于多层前馈神经网络,与其它神经网络算法所不同的是采用了反向传播的学习算法,不断地计算输出端的误差向回传递来进行权值调整,从而达到误差最小的效果。
文中结合了BP神经网络的优点,将其用于语音情感识别研究中,并且在汉语情感数据集上进行了相关实验,识别的准确率达到了91.5%,相较于其它方法提高了5%。
基于神经网络的语音情感识别

tains a better perform ance with the application of neural network. Key words: speech emotion recognition;emotion features;artificial neural networks;Mel-Frequency Cepstral Coemcients(MFCC)
Abstract: The main goal of this thesis is to search the most useful features wit h analyzing the features related with emotions, and f ind a recognition m odel to m ake use of these features.It studies t h e m ethod and technolog y in the research of the speech emotion recogn ition,and creates the database of the speech emotion recognition and picks-up t he features of t he speech sig n a1. Then it studies the efect in emotion—speech recognition from those common features such as pitch,amplitude energ y ,formant and
语音识别技术(数学建模)

amplitude
Energy
5 0
1
2
3
4
5
6
7
8
9 x 10
4
3
ZCR
300 400 500 600 700 800
2 1 0 1 2 3 4 5 6 7 8 9 x 10
4
5.4图 5.1.4 快速傅里叶转换(FTT) 由于信号在时域上的变化通常很难看出其特性, 所以通常将它转换成频域上 的能力分布来观察,不同的能量分布,就代表不同的语音特性。故乘上汉明窗后 每个音框还需经过FTT以得到频域上的能量分布。 乘上汉明窗的主要目的, 是要加强音框左端和右端的连续性,这是因为在进 行FFT 时, 都是假设一个音框内的讯号是代表一个周期性讯号,如果这个周期性 不存在, FFT 会为了要符合左右端不连续的变化,而产生一些不存在原讯号的能 量分布,造成分析上的误差。当然,如果我们在取音框时,能够使音框中的讯号 就已经包含基本周期的整数倍, 这时候的音框左右端就会是连续的,那就可以不 需要乘上汉明窗了。但是在实作上,由于基本周期的计算会需要额外的时间, 而 且也容易算错,因此我们都用汉明窗来达到类似的效果。 5.1.5 三角带通滤波器 将能量频谱能量乘以一组20个三角带通滤波器, 求得每一个滤波器输出的对 数能量(Log Energy) 。必须注意的是:这20个三角带通滤波器在梅尔频率(Mel Frequency)上是平均分布的,而梅尔频率和一般频率f的关系式如下:
7
mel(f)=2595*log 10 (1+f/700) 或是 mel(f)=1125*ln(1+f/700) 梅尔频率代表一般人耳对于频率的感受度,由此也可以看出人耳对于频率f 的感受是呈对数变化的:在低频部分,人耳感受是比较敏锐;在高频部分,人耳 的感受就会越来越粗糙。 定义若干个带通三角滤波器(k),0<=m<=M,M为滤波器个数,其中心频率为 f(m),每个带通三角滤波器的频率响应为:
基于深度自编码器神经网络完成语音识别的预训练方法

基于深度自编码器神经网络完成语音识别的预训练方法 深度自编码器神经网也是一种无监督模型,其输出向量与输入向量同维,训练的目标是使其目标值等于输入值,即尝试逼近一个恒等函数。
这样就可以将其隐层激活值看作为对原始数据的压缩表示或有效编码。
通常也采用逐层贪婪训练法来训练深度自编码器神经网。
每次采用基于随机梯度下降的BP算法来训练仅一个隐层的自编码器神经网,然后将其堆叠在一起构成深度网络。
这样的深度自编码器网络也被称为栈式自编码器神经网络。
其训练过程如下:先利用原始输入数据训练一个单隐层自编码器网络,学习其权重参数,从而得到第一个隐层。
然后将其隐层神经元激活值组成的向量作为输入,继续训练一个新的单隐层自编码器网络,从而得到第二个隐层及其权重参数,以此类推。
同样,最后增加一个Softmax层作为输出。
这样也能构成一个自下而上的前馈深层且具有区分性的DNN,并能得到其网络参数的一个有效初值,可以对其进行进一步的基于BP算法的有监督精调训练。
DNN-HMM 对DNN首先进行无监督的预训练,然后进行有监督的调整是DNN-HMM声学模型能够成功应用于语音识别任务,并在性能上超越GMM-HMM的主要原因之一。
无监督预训练避免了有监督训练时常常过拟合于泛化能力很差的局部极值点的问题,而逐层的贪婪训练弥补了梯度消失问题带来的影响。
然而深度学习技术发展迅猛,从近年的研究进展看,预训练的重要性日益降低:①使用海量数据进行训练能有效避免过拟合问题,Dropout等随机优化算法的出现,也极大提高了DNN模型的泛化能力;②采用整流线性单元(Rectified Linear Units, ReLU)作为激活函数,以及采用卷积神经网络(Convolutional Neural Networks, CNN),这种深度网络结构也成功的减小了梯度消失问题的影响。
下面将简短介绍一下ReLU和CNN。
ReLU 相关的研究表明,采用基于ReLU激活函数的DNN与基于Sigmoid激活函数的DNN相比,不仅可以获得更好的性能,而且不需要进行预训练,可以直接采用随机初始化。
BP神经网络在医疗诊断中的应用研究

BP神经网络在医疗诊断中的应用研究随着科技的发展和人民生活水平的提高,人们对医疗服务的要求也越来越高。
在这个过程中,好的医疗诊断技术不仅可以提高医疗效率,还可以提高医疗水平和医生的专业素养,这对于医疗领域的整个发展具有重要意义。
在这样的背景下,BP神经网络作为一种较为先进的人工神经网络,在医疗领域也得到了广泛的应用和研究。
本文将结合我国医疗诊断现状,探讨BP神经网络在医疗诊断中的应用研究。
一、BP神经网络介绍BP神经网络是一种基于反向传播算法的前馈型人工神经网络,它具有学习能力和适应性等特点,是一种常用的人工神经网络之一。
BP神经网络的训练过程是通过在高维空间中不断调整权值和阈值,从而实现对样本特征的提取和矫正,从而实现对样本分类的识别。
BP神经网络具有处理能力强、学习速度快、精度高等优点,被广泛应用于计算机视觉、语音识别、医疗诊断、金融分析、飞行控制等领域。
二、BP神经网络在医疗诊断中的应用1、医疗图像识别医疗图像识别是BP神经网络在医疗领域中的重要应用之一。
目前,很多医疗机构利用医学影像技术进行疾病的诊断、治疗和监测,如CT、MRI等医学影像技术,这些技术可以为医生提供详细的病灶信息,但是对于普通人来说,很难正确地解读这些医疗图像。
因此,使用BP神经网络可以对医疗图像进行识别和分析,准确地判断患者的病情和病变程度,帮助医生制定更加科学合理的治疗方案。
2、慢病诊断慢性疾病是指患者长期存在的疾病,由于患病的隐蔽性和病情的反复,很难进行准确的诊断和治疗。
针对这一问题,利用BP神经网络可以对患者的身体状况和病史等信息进行学习和分析,帮助医生更好地评估患者的病情,提供更加精准的慢病诊断结果,对于治疗和管理患者的病情也更加方便。
3、药物研发药物研发是医疗诊断领域中的一个比较困难的领域,传统的药物研发方法需要耗费大量的时间和金钱,而且成果也不一定会有预期效果。
而利用BP神经网络进行药物研发,可以快速筛选出具有潜力的化合物,并进行有效评价。
误差反向传播算法的数字语音识别技术

误差反向传播算法的数字语音识别技术江丽莎;何朝霞【期刊名称】《电脑知识与技术》【年(卷),期】2015(011)020【摘要】The BP neural network technology in the application of digital speech recognition,based on the figures of speech signal model as a Breakthrough, Collected for the speech signal preprocessing, The extraction of Mel frequency cepstrum coefficient,and will feature parameters for nonlinear time sequence neat for the fixed frame is advantageous for the BP neural network of training and recognition.By the MATLAB analysis of experimental data available ,digital speech recognition based on BP neural network has a high practical value,digital speech recognition rate is high.%研究BP神经网络技术在数字语音识别中的应用,以基于语音信号产生的数字模型作为突破口,对所采集到的语音信号进行预处理,提取Mel频率倒谱系数,并将特征参数序列进行非线性时间规整为固定的帧数以便于BP 神经网络的训练和识别.由MATLAB的实验数据分析可得,基于BP神经网络的数字语音识别技术具有很高的实用价值、数字语音识别率高.【总页数】2页(P141-142)【作者】江丽莎;何朝霞【作者单位】长江大学工程技术学院,湖北荆州434023;长江大学工程技术学院,湖北荆州434023【正文语种】中文【中图分类】TP18【相关文献】1.基于误差反向传播算法的OFDM系统频域均衡 [J], 宋豫全;白琳2.基于误差反向传播算法的代建制项目风险评价研究 [J], 谢亮3.基于迭代式MapReduce的误差反向传播算法 [J], 赵虎;杨宇4.基于误差反向传播算法的多装侦察数据型号识别方法 [J], 张译方; 旷生玉; 梁璟; 徐晶5.基于误差反向传播算法的海上拖航风险 [J], 徐国庆;卢志远;吴晨辉因版权原因,仅展示原文概要,查看原文内容请购买。
BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。
它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。
BP网络的训练过程可以分为两个阶段:前向传播和反向传播。
前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。
反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。
BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。
通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。
2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。
例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。
3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。
通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。
4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。
例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。
5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。
通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。
总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。
它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。
然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。
BP神经网络原理及应用

BP神经网络原理及应用BP神经网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的多层前馈神经网络,常用于分类与回归等问题的解决。
BP神经网络通过反向传播算法,将误差从输出层往回传播,更新网络权值,直至达到误差最小化的目标,从而实现对输入模式的分类和预测。
BP神经网络的结构包括输入层、隐藏层和输出层。
输入层接收外部输入的特征向量,隐藏层负责将输入特征映射到合适的高维空间,输出层负责输出网络的预测结果。
每个神经元与其前后的神经元相连,每个连接都有一个权值,用于调整输入信号的重要性。
BP神经网络利用激活函数(如sigmoid函数)对神经元的输出进行非线性变换,增加网络的非线性表达能力。
1.前向传播:将输入信号传递给网络,逐层计算每个神经元的输出,直至得到网络的输出结果。
2.计算误差:将网络输出与期望输出比较,计算误差。
常用的误差函数包括平方误差和交叉熵误差等。
3.反向传播:根据误差,逆向计算每个神经元的误差贡献,从输出层往回传播到隐藏层和输入层。
根据误差贡献,调整网络的权值和阈值。
4.更新权值和阈值:根据调整规则(如梯度下降法),根据误差贡献的梯度方向,更新网络的权值和阈值。
1.模式识别与分类:BP神经网络可以通过训练学习不同模式的特征,从而实现模式的自动分类与识别。
例如,人脸识别、文本分类等。
2.预测与回归:BP神经网络可以通过历史数据的训练,学习到输入与输出之间的映射关系,从而实现对未知数据的预测与回归分析。
例如,股票价格预测、天气预测等。
3.控制系统:BP神经网络可以用于建模和控制非线性系统,实现自适应、自学习的控制策略。
例如,机器人控制、工业过程优化等。
4.信号处理与图像处理:BP神经网络可以通过学习复杂的非线性映射关系,实现信号的去噪、压缩和图像的识别、处理等。
例如,语音识别、图像分割等。
5.数据挖掘与决策支持:BP神经网络可以根据历史数据学习到数据之间的相关关系,从而帮助决策者进行数据挖掘和决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海海事大学神经网络与语音识别院系: 物流工程学院课程名称: 制造与物流决策支持系统学生姓名: 学号:时间:目录一.绪论计算机的飞速发展,使人们的生活方式发生了根本性的改变,鼠标、键盘,这些传统的人机接口使人们体会到了生活的便利。
科学技术日新月异,假如让“机器”能够听懂人的语言,并根据其信息去执行人的意图,那么这无疑是最理想的人机智能接口方式,因此语音识别作为一门极具吸引力的学科应运而生,很多专家都指出语音识别技术将是未来十年信息技术领域十大重要的科技发展技术之一。
语音识别(Speech Recognition)是指,计算机从人类获取语音信息,对语音信息进行分析处理,准确地识别该语音信息的内容、含义,并对语音信息响应的过程。
语音信号具有非稳定随机特性,这使得语音识别的难度大。
目前人类甚至仍没有完全理解自身听觉神经系统的构造与原理,那么要求计算机能像人类一样地识别语音信号很有挑战性。
研究背景及意义语言在人类的智能组成中充当着很重要的角色,人与人之间的交流和沟通大部分是通过语言的方式有效的完成。
作为人与人之问交流最方便、自然、快捷的手段,人们自然希望它成为人与计算机交流的媒介。
随着数字信号处理及计算机科学的飞速发展,人们对实现人机对话产生越来越迫切的要求,使得语音识别技术近年来得到了迅速的发展,语音识别技术的研究进入了一个比较成熟的时期。
语音识别是一门交叉科学,它综合了声学、语言学、语音学、生理科学、数字信号处理、通信理论、电子技术、计算机科学、模式识别和人工智能等众多学科。
也是人机交互最重要的一步。
语音识别的国内外研究现状通过语音传递信息是人类最重要,最有效,和最方便的交换信息的形式,语音识别主要指让机器转达人说的话,即在各种情况下,准确的识别出语音的内容,从而根据其信息,执行人的各种意图。
广义的语音识别包括说话人的识别和内容的识别两部分。
这里所说的语音识别,是指内容识别方面。
采用计算机进行语音识别到现在已经发展了50年。
从特征参数上改进,采用各种办法进行语音增强是一个研究方向,但是到目前为止,还没有一种办法能把语音信号完美地从噪音环境提取出来。
语音识别有广泛的商业化运用前景,主要可以分为通用场合和专用场合两个方面。
研究内容本文研究的主要内容是结合模式识别的基本理论,研究BP神经网络孤立词语音识别的问题,实现1-5共5个数字的识别。
分析了语音信号的预处理,特征提取及BP神经网络算法实现。
二.语音识别技术语音信号语音信号是随时间变化的一维信号,由一连串的音素组成,各个音素的排列有一定的规则。
语音具有声学特征的物理性质,声音质量与它的频率范围有关,语音信号的频谱分量主要集中在200~3400Hz的范围内。
语音信号的另一个重要特点是它的短时性。
语音信号的特征是随时间变化而变化,只有在一段很短的时间间隔中,才保持相对稳定的特性。
研究表明,在5ms~40ms的范围内语音信号的频谱特性和一些物理特征基本保持不变。
语音信号短时特征和短时参数包括它的短时能量、短时过零率、短时相关函数、短时频谱等。
语音信号的最基本组成单位是音素。
音素可分成浊音和清音两大类。
如果将只有背景噪声的情况定义为“无声”,那么音素可分成“无声”、“浊音”和“清音”三类。
在短时分析的基础上可以判断一小段语音属于哪一类。
如果是浊语音段,还可测定它的另一些重要参数,如基音频率和共振峰等。
语音信号的数学模型建立语音信号的数学模型是语音信号处理的基础。
从人的发音器官的机理来假设,将语音信号分为一些相继的短段进行处理,在这些短段中可以认为语音信号特征是不随着时间变化的平稳随机过程。
这样在这些短段时间内表示语音信号时可以采用线性时不变模型。
通过上面的分析,将语音生成系统分成三个部分,喉的部分称为声门,在声门(声带)以下,称为“声门子系统”,它负责产生激励振动,是“激励系统”。
从声门到嘴唇的呼气通道是声道,是“声道系统”,声道的形状主要由嘴唇和舌头的位置来决定。
在说话的时候,声门处气流冲击声带产生振动,然后通过声道响应变成声音,由于发不同音时,声道的形状不同,所以能够听到不同的语音。
语音从嘴唇辐射出去,所以嘴唇以外是“辐射系统”。
激励的不同情况发不同性质的音,激励一般分为浊音激励和清音激励。
发浊音时声道受到声带振动的激励引起共振,产生间歇的类斜三角形脉冲;发清音时声道被阻碍形成湍流,可以把清音激励模拟成随机白噪声。
完整的语音信号的数学模型可以用三个子模型:激励模型、声道模型、辐射模型的串联来表示。
激励模型一般分为浊音激励和清音激励。
发浊音时,由于声带不断张开和关闭将产生间歇的脉冲波,这个脉冲波类似于斜三角形的脉冲。
发清音时,无论是发阻塞音或摩擦音,声道都被阻碍形成湍流。
所以,可把清音激励模拟成随机白噪声。
声道模型有两种最常见的建模方式。
一是把声道视为由多个等长的不同截面积的管子串联而成的系统,按此观点推导出的叫“声管模型”;另一个是把声道视为一个谐振腔,按此推倒出的叫“共振峰模型”。
从声道模型输出的速度波与语音信号的声压波之倒比称为辐射阻抗,它表征口唇的辐射效应。
由辐射引起的能量损耗正比于辐射阻抗的实部,所以辐射模型是一阶类高通滤波器。
语音识别系统结构孤立词语音识别是对特定的不连续的词语作为处理单元。
语音识别系统的基本组成一般可以分为预处理模块、特征值提取模块及模式匹配三个模块。
如图所示为语音识别系统结构框图。
图语音识别系统结构框图从图的系统整体架构可以看到,建立基于BP神经网络的语音识别系统可分为两个阶段,即训练阶段和识别阶段。
首先由用户通过麦克风输入语音形成原始语音,然后系统对其进行预处理。
预处理包括预加重,加窗分帧和端点检测三个过程。
系统的前端采用了端点检测,目的是在一段语音信号中确定起点和终点。
在特征提取部分,本系统采用了MFCC作为特征参数,用于有效地区分数字1-5.在训练阶段,通过说话人多次重复语音,本系统从原始语音样本中去除冗余信息,提取说话人的特征参数并存储为BP神经网络的输入样本,在此基础上建立输入与输出的BP神经网络模型。
在识别阶段,待测语音经过预处理,使用已经训练好的BP神经网络进行识别得到结果。
语音信号预处理图是语音信号的预处理的流程图。
从图可以看到预处理模块包括预加重,加窗分帧和端点检测。
前级预加重、加窗分帧及端点检测是语音识别的准备工作,每一个环节对整个识别系统的性能有着重要的影响。
前级预处理主要是对信号进行一定的滤波和分帧;加窗分帧就是将语音信号进行分段处理,使语音信号连续并保持一定的重叠率:端点检测是确定语音有用信号的起始点与终止点,并通过一定的手段处理,将没有意义的语音信号去除,从而减少语音匹配识别模块的运算量,同时也可以提高系统的识别率。
预处理不合理或语音起止点及终止点判别不够准确都会使后续的特征矢量提取及模式匹配过程等工作受到很大的影响,甚至达不到语音识别的效果,因此预处理工作作为语音识别的第一步工作,必须达到所需的要求,为下一步的特征参数提取做好铺垫。
图语音信号预处理流程图语音信号的采样Matlab环境中语音信号的采集可使用wavrecord(n,fs,ch,dtype)函数录制,也可使用Windows的“录音机”程序录制成.wav文件然后使用wavread(file) 函数读入。
在本实验中,使用matlab的语音工具包录取0-共10段语音。
如图所示为数字0的训练语音的信号波形图,第(I)幅图为完整的语音波形,第(II)、(III)幅图分别为语音的起始部分和结束部分的放大波形图。
语音信号的分帧语音信号是一种典型的非平稳信号,它的均值函数u(x)和自相关函数R(xl,x2)都随时间而发生较大的变化。
但研究发现,语音信号在短时间内频谱特性保持平稳,即具有短时平稳特性。
因此,在实际处理时可以将语音信号分成很小的时间段(约10~30ms),称之为“帧”,作为语音信号处理的最小单位,帧与帧的非重叠部分称为帧移,而将语音信号分成若干帧的过程称为分帧。
分帧小能清楚地描绘语音信号的时变特征但计算量大;分帧大能减少计算量但相邻帧间变化不大,容易丢失信号特征。
一般取帧长20ms ,帧移为帧长的1/3~1/2。
在语音信号数字处理中常用的窗函数是矩形窗、汉明窗等,它们的表达式如下(其中N 为帧长):矩形窗:⎩⎨⎧-≤≤=其他 ,010 ,1)(N n n ϖ (2-1) 汉明窗:0.540.46cos(2/(1)),01()0,n N n N n πϖ--≤≤-⎧=⎨⎩其他 (2-2) 语音信号的预加重预加重是指在A /D 转换后加一个6dB /倍频程的高频提升滤波器,语音信号的平均功率谱由于受声门激励和口鼻辐射的影响,高频端大约在800Hz 以上按6dB /Oct(倍频程)跌落。
所以求语音信号频谱时,频率越高相应的成份越小,高频部分的频率比低频部分的难求。
因此,预加重的目的是加强语音中的高频共振峰,使语音信号的短时频谱变得更为平坦,还可以起到消除直流漂移、抑制随机噪声和提高清音部分能量的效果,便于进行频谱分析和声道参数分析。
此外,通常的方法是使用一阶零点数字滤波器实现预加重,其形式为: (2-3)频域相对应的形式为:(2-4)其中,a为预加重系数。
基于短时能量和过零率的端点检测在语音信号的预处理中,端点检测是关键的一步,语音信号的模型参数和噪声模型参数以及自适应滤波器中的适应参数都得依赖对应的信号段(语音段或噪声段)来计算确定。
因此,只有准确地判定语音信号的端点,才能正确地进行语音处理。
端点检测的目的是从包含语音的一般信号中确定出语音的起点以及终点,一般采用平均能量或平均幅度值与过零率相乘的方法来判断。
这种利用短时能量和短时平均过零率两种特征共同参与检测,也被称为双门限法。
(1)短时能量设S(n)为加窗语音信号,第t帧语音的短时平均能量为:(2-5)(2-6)其中N为分析窗宽度,St(n)为第t帧语音信号中的第n个点的信号取样值。
上面两式原理是相同的,但后式有利于区别小取样值和大取样值,不会因为取平方而造成很大的差异。
短时平均能量是时域特征参数,把它用于模型参数时,应进行归一化处理。
短时能量主要用途有:(1)可以区分浊音段和清音段,因为浊音的En比清音时大得多。
(2)可以用来区分声母与韵母的分界,有声与无声的分界,连字的分界等。
(3)作为一种超音段信息,用于语音识别中。
(2)短时过零率短时过零表示一帧语音信号波形穿过横轴(零电平)的次数。
对于连续语音信号,过零意味着时域波形通过时间轴;而对于离散信号,如果相邻的取样值的改变符号则称为过零。
过零率就是样本改变符号次数,定义语音信号寿(m)的短时过零率Zn 为:∑∞-∞=---=m n m n m x m x Z )()]1(sgn[)](sgn[ω (2-7)式中sgn[ ]是符号函数,即:)0()0(,,11]sgn[<≥⎩⎨⎧-=x x x (2-8) 短时过零率的主要用途为区分浊音和清音,浊音具有较低的过零率,而清音则具有较高的过零率。