基于BP神经网络的语音识别技术
基于神经网络的语音信号识别

毕业设计(论文)开题报告附表二课题名称基于神经网络的语音信号识别学生姓名崔楠楠学号20102460304专业班级通信工程、三班一、选题的目的意义随着社会的不断发展,计算机的迅速普及,人们渴望一种符合人类自然交往的“人机对话”模式的出现,特别是人机自然语言对话。
目前一些专家和学者在这方面进行了大量的开发和研究工作。
但语音识别技术正处于蓬勃发展的时期,仍有待进行大量的研究工作以取得更进一步的突破。
人机自然语言的接口是一个非常重要的部分。
它要求计算机能说会听,应此要求出现了语音合成和语音识别两门学科。
所谓语音识别,就是利用计算机,对人们的语音信号进行时域或频域处理,识别出所说的是什么,通俗地讲,就是让计算机能够模拟人类的听觉功能。
国际上,对计算机语音识别的研究也有近四十年的历史,经过数辈科学家和科学工作者的艰辛努力,语音识别的研究方面取得了很大的成果。
尤其是近一、二十年,提出了许多有效的语音处理和识别的方法和策略,使得语音识别这门学科的研究日趋兴旺,许多的语音识别系统也正逐步实用化。
人们所期望赋予计算机能说会听的梦想正步步走向现实。
预计在未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域(如门禁系统,手机语音自动拨号系统)。
语音识别系统依照语音识别的单元、语音识别系统是否依赖人可以分成:特定人、孤立词语音识别系统;非特定人、孤立词语音识别系统;特定人、连续语音识别系统和识别系统和非特定人、连续语音识别系统四类。
神经网络是一门新兴交叉学科,是人类智能研究的重要组成部分,已成为脑科学、神经科学、认知科学、心理学、计算机科学、数学和物理学等共同关注的焦点。
它就是指模仿人脑神经网络的结构和某些工作机制建立一种计算模型的处理方法。
由于人工神经网络具备良好的自学习和自适应能力,将其应用于语音合成系统中的韵律模型研究具有很重要的意义。
将神经网络模型与已有的文语转换系统有机结合,可以改变传统的文语转换系统的韵律模型,具有更强的适应性和可训练性,使合成语音的自然度得到显著提高,增加了系统的灵活性和风格的多样性。
语音识别技术(数学建模)

其他 0, W (n) 2 n 0.54 0.46 cos( ), 0 n L 1 L 1
5
对语音信号进行加窗的函数为:
Qn
m
T [x (m )] * w (n m )
其中T[*]表示信号处理方法, {x(m)}为语音帧序列,w(n-m)为各个语音帧上的窗 函数。 窗函数的选择对语音信号的短时分析影响很大,窗函数越宽对信号的平滑 作用越好, 窗函数的主瓣宽度要窄, 旁瓣要尽可能小, 使能量尽量集中在主瓣中, 以抑制频谱的泄露。 若音框化的信号为S(n), n = 0,…N-1,则乘上汉明窗后为S'(n) = S(n)*W(n), 此W(n) 形式如下: W(n, a) = (1 - a) - a cos(2pn/(N-1)),0≦n≦N-1 不同的a值会产生不同的汉明窗,如图5.3(程序见附录) :
Original wave: s(n) 0.4 0.2 0 -0.2 -0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4
After pre-emphasis: s 2(n)=s(n)-a*s(n-1), a=0.950000 0.05
0
-0.05
0
0.2
0.4
0.6
0.8
1
1.2
1.4
二、 问题分析
语音识别系统的结构
样本语言 预加重 加窗分帧 端点检测
建立 BP 神经网络输入样本 训练 BP 神经网络 使用神经网络
特征提取 识别结果
待测语音
预处理
特征提取
2
对于第一问,从图中的系统整体架构可以看到,建立基于 BP 神经网络的语 音识别系统可分为两个阶段,即训练阶段和识别阶段。首先对原始语音进行预处 理。预处理包括预加重,加窗分帧和端点检测三个过程。系统的前端采用了端点 检测,目的是在一段语音信号中确定起点和终点。 而在特征提取部分,本系统采用 了 MFCC 作为特征参数。从而有效区分“流量” 、 “话费” 、 “套餐”和“优惠”四 个音频(wav 格式)文件。在训练阶段,通过说话人多次重复语音,本系统从原始 语音样本中去除冗余信息即去噪,提取说话人语音的特征参数并存储为 BP 神经 网络的输入样本, 在此基础上建立输入与输出的 BP 神经网络模型;在识别阶段, 待测语音经过预处理,使用已经训练好的 BP 神经网络进行识别得到结果,最后 由结果分析误差。 对于第二问, 由第一问中建立出来的模型, 根据 “声学模型” 和 “语言模型” , 为该手机运营商制定出一份可行的用户使用手册。 第三问中,根据第二问中制定的用户使用规则,录制一段“查询话费”的音 频文件,从而检验语音识别模型的正确性。
基于BP神经网络的语音情感识别研究

基于BP神经网络的语音情感识别研究作者:徐照松元建来源:《软件导刊》2014年第04期摘要:随着科技的迅速发展,人机交互越来越受到人们的重视,语音情感识别更是学术界研究的热点。
将BP神经网络算法用于语音情感识别研究,并在汉语情感数据集上进行了相关实验,识别的准确率达到了91.5%,相较于SVM算法分类精度提高了5%。
关键词关键词:语音情感识别;BP神经网络;SVM中图分类号:TP302文献标识码:A 文章编号文章编号:16727800(2014)004001103作者简介作者简介:徐照松(1990-),男,广西师范学院计算机与信息工程学院硕士研究生,研究方向为数据挖掘、语音情感、智能计算;元建(1986-),男,广西师范学院计算机与信息工程学院硕士研究生,研究方向为数据挖掘、智能计算。
0 引言随着科技的迅速发展,人机交互显得尤为重要。
语音是语言的载体,是人与人之间交流的重要媒介。
相较于其它交流方式而言,语音交流更加直接、便捷。
近年来,随着人机交互研究的不断深入,语音情感识别更成为了学术界研究的热点,其涉及到信号处理、模式识别、人工智能等相关领域。
语音中除了能够传达语义信息外,还包含了一些情感信息,然而这些情感信息往往被人们所忽略[3]。
语音情感识别实际上是利用计算机所提取的语音信号特征来判断其属于哪一类情感。
利用模式识别方法研究语音情感识别的文献较多,朱菊霞[4]等使用SVM算法对语音情感进行识别,并取得了86%的识别率。
余华[5]等使用粒子群算法优化神经网络来进行语音情感识别,识别率较高。
BP神经网络是神经网络的一种,属于多层前馈神经网络,与其它神经网络算法所不同的是采用了反向传播的学习算法,不断地计算输出端的误差向回传递来进行权值调整,从而达到误差最小的效果。
文中结合了BP神经网络的优点,将其用于语音情感识别研究中,并且在汉语情感数据集上进行了相关实验,识别的准确率达到了91.5%,相较于其它方法提高了5%。
基于神经网络的语音情感识别

tains a better perform ance with the application of neural network. Key words: speech emotion recognition;emotion features;artificial neural networks;Mel-Frequency Cepstral Coemcients(MFCC)
Abstract: The main goal of this thesis is to search the most useful features wit h analyzing the features related with emotions, and f ind a recognition m odel to m ake use of these features.It studies t h e m ethod and technolog y in the research of the speech emotion recogn ition,and creates the database of the speech emotion recognition and picks-up t he features of t he speech sig n a1. Then it studies the efect in emotion—speech recognition from those common features such as pitch,amplitude energ y ,formant and
语音识别技术(数学建模)

amplitude
Energy
5 0
1
2
3
4
5
6
7
8
9 x 10
4
3
ZCR
300 400 500 600 700 800
2 1 0 1 2 3 4 5 6 7 8 9 x 10
4
5.4图 5.1.4 快速傅里叶转换(FTT) 由于信号在时域上的变化通常很难看出其特性, 所以通常将它转换成频域上 的能力分布来观察,不同的能量分布,就代表不同的语音特性。故乘上汉明窗后 每个音框还需经过FTT以得到频域上的能量分布。 乘上汉明窗的主要目的, 是要加强音框左端和右端的连续性,这是因为在进 行FFT 时, 都是假设一个音框内的讯号是代表一个周期性讯号,如果这个周期性 不存在, FFT 会为了要符合左右端不连续的变化,而产生一些不存在原讯号的能 量分布,造成分析上的误差。当然,如果我们在取音框时,能够使音框中的讯号 就已经包含基本周期的整数倍, 这时候的音框左右端就会是连续的,那就可以不 需要乘上汉明窗了。但是在实作上,由于基本周期的计算会需要额外的时间, 而 且也容易算错,因此我们都用汉明窗来达到类似的效果。 5.1.5 三角带通滤波器 将能量频谱能量乘以一组20个三角带通滤波器, 求得每一个滤波器输出的对 数能量(Log Energy) 。必须注意的是:这20个三角带通滤波器在梅尔频率(Mel Frequency)上是平均分布的,而梅尔频率和一般频率f的关系式如下:
7
mel(f)=2595*log 10 (1+f/700) 或是 mel(f)=1125*ln(1+f/700) 梅尔频率代表一般人耳对于频率的感受度,由此也可以看出人耳对于频率f 的感受是呈对数变化的:在低频部分,人耳感受是比较敏锐;在高频部分,人耳 的感受就会越来越粗糙。 定义若干个带通三角滤波器(k),0<=m<=M,M为滤波器个数,其中心频率为 f(m),每个带通三角滤波器的频率响应为:
基于神经网络的语音信号识别研究

基于神经网络的语音信号识别研究近年来,随着技术的发展和普及,人们对于语音信号的需求也越来越大。
而语音信号识别技术则是其中非常重要的一环。
智能语音助手、语音识别软件等等,都需要依赖于语音信号识别技术实现。
而基于神经网络的语音信号识别技术,则是当前最为流行和具有应用价值的一种。
一、什么是语音信号识别技术语音信号识别技术,是指将人类语音转换成计算机识别的数字信号,并对该数字信号进行分析和处理,以达到自动识别语音内容的目的。
语音信号识别技术即自动语音识别技术,是应用领域广泛的关键技术之一。
二、神经网络在语音信号识别中的应用神经网络(Neural Network)是由一组构成各层次的神经元(neuron)所组成的网络。
在语音信号识别中,神经网络第一次被引入是在20世纪80年代初期。
早期的神经网络在语音信号识别中应用的效果并不好,主要因为神经网络的学习算法和初始参数的设定都存在问题。
然而,随着技术的发展和经验的积累,神经网络逐渐在语音信号识别中发挥重要作用。
在基于神经网络的语音信号识别技术中,通常采用的是深度神经网络(Deep Neural Network)。
深度神经网络在语音信号识别中的作用主要分为两个方面:特征提取和分类。
其中,特征提取主要是指对于语音信号进行预处理,提取出其中优秀的特征;分类则是指对于提取出的特征,进行归类识别。
在深度神经网络中,通常采用的算法是卷积神经网络(Convolutional Neural Network)或递归神经网络(Recurrent Neural Network)。
三、语音信号识别中常用的数据集针对于语音信号识别,目前已经出现了很多开发用的数据集,其中最为流行的有TIMIT、WSJ、Switchboard三个数据集。
TIMIT数据集是由美国宾夕法尼亚大学为了开发语音识别系统而录制的语音语料库,包含了625个不同说话人的6300句语音材料。
这个数据集是英语语音识别研究领域中最常用的数据集之一。
BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。
它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。
BP网络的训练过程可以分为两个阶段:前向传播和反向传播。
前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。
反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。
BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。
通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。
2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。
例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。
3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。
通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。
4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。
例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。
5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。
通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。
总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。
它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。
然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。
BP神经网络原理及应用

BP神经网络原理及应用BP神经网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的多层前馈神经网络,常用于分类与回归等问题的解决。
BP神经网络通过反向传播算法,将误差从输出层往回传播,更新网络权值,直至达到误差最小化的目标,从而实现对输入模式的分类和预测。
BP神经网络的结构包括输入层、隐藏层和输出层。
输入层接收外部输入的特征向量,隐藏层负责将输入特征映射到合适的高维空间,输出层负责输出网络的预测结果。
每个神经元与其前后的神经元相连,每个连接都有一个权值,用于调整输入信号的重要性。
BP神经网络利用激活函数(如sigmoid函数)对神经元的输出进行非线性变换,增加网络的非线性表达能力。
1.前向传播:将输入信号传递给网络,逐层计算每个神经元的输出,直至得到网络的输出结果。
2.计算误差:将网络输出与期望输出比较,计算误差。
常用的误差函数包括平方误差和交叉熵误差等。
3.反向传播:根据误差,逆向计算每个神经元的误差贡献,从输出层往回传播到隐藏层和输入层。
根据误差贡献,调整网络的权值和阈值。
4.更新权值和阈值:根据调整规则(如梯度下降法),根据误差贡献的梯度方向,更新网络的权值和阈值。
1.模式识别与分类:BP神经网络可以通过训练学习不同模式的特征,从而实现模式的自动分类与识别。
例如,人脸识别、文本分类等。
2.预测与回归:BP神经网络可以通过历史数据的训练,学习到输入与输出之间的映射关系,从而实现对未知数据的预测与回归分析。
例如,股票价格预测、天气预测等。
3.控制系统:BP神经网络可以用于建模和控制非线性系统,实现自适应、自学习的控制策略。
例如,机器人控制、工业过程优化等。
4.信号处理与图像处理:BP神经网络可以通过学习复杂的非线性映射关系,实现信号的去噪、压缩和图像的识别、处理等。
例如,语音识别、图像分割等。
5.数据挖掘与决策支持:BP神经网络可以根据历史数据学习到数据之间的相关关系,从而帮助决策者进行数据挖掘和决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海海事大学神经网络与语音识别院系: 物流工程学院课程名称: 制造与物流决策支持系统学生姓名: 学号:时间:目录一.绪论 (3)1.1 研究背景及意义 (3)1.2 语音识别的国内外研究现状 (3)1.3研究内容 (4)二.语音识别技术 (5)2.1语音信号 (5)2.2语音信号的数学模型 (5)2.3语音识别系统结构 (6)2.4语音信号预处理 (7)2.4.1 语音信号的采样 (8)2.4.2语音信号的分帧 (8)2.4.3语音信号的预加重 (9)2.4.4 基于短时能量和过零率的端点检测 (9)2.5 特征参数提取 (13)三.基于BP神经网络语音识别算法实现 (16)3.1 BP神经网络原理 (16)3.2 输入层神经元个数的确定 (16)3.3网络隐含层数的确定 (17)3.4隐含层神经元个数的确定 (17)3.5 BP神经网络构造 (17)3.6 BP神经网络的训练 (18)3.6.1训练样本集合和目标值集合 (18)3.6.2 网络训练 (18)3.7网络训练 (19)3.8 语音的识别结果 (20)四.总结 (21)参考文献 (22)附录 (23)一.绪论计算机的飞速发展,使人们的生活方式发生了根本性的改变,鼠标、键盘,这些传统的人机接口使人们体会到了生活的便利。
科学技术日新月异,假如让“机器”能够听懂人的语言,并根据其信息去执行人的意图,那么这无疑是最理想的人机智能接口方式,因此语音识别作为一门极具吸引力的学科应运而生,很多专家都指出语音识别技术将是未来十年信息技术领域十大重要的科技发展技术之一。
语音识别(Speech Recognition)是指,计算机从人类获取语音信息,对语音信息进行分析处理,准确地识别该语音信息的内容、含义,并对语音信息响应的过程。
语音信号具有非稳定随机特性,这使得语音识别的难度大。
目前人类甚至仍没有完全理解自身听觉神经系统的构造与原理,那么要求计算机能像人类一样地识别语音信号很有挑战性。
1.1 研究背景及意义语言在人类的智能组成中充当着很重要的角色,人与人之间的交流和沟通大部分是通过语言的方式有效的完成。
作为人与人之问交流最方便、自然、快捷的手段,人们自然希望它成为人与计算机交流的媒介。
随着数字信号处理及计算机科学的飞速发展,人们对实现人机对话产生越来越迫切的要求,使得语音识别技术近年来得到了迅速的发展,语音识别技术的研究进入了一个比较成熟的时期。
语音识别是一门交叉科学,它综合了声学、语言学、语音学、生理科学、数字信号处理、通信理论、电子技术、计算机科学、模式识别和人工智能等众多学科。
也是人机交互最重要的一步。
1.2 语音识别的国内外研究现状通过语音传递信息是人类最重要,最有效,和最方便的交换信息的形式,语音识别主要指让机器转达人说的话,即在各种情况下,准确的识别出语音的内容,从而根据其信息,执行人的各种意图。
广义的语音识别包括说话人的识别和内容的识别两部分。
这里所说的语音识别,是指内容识别方面。
采用计算机进行语音识别到现在已经发展了50年。
从特征参数上改进,采用各种办法进行语音增强是一个研究方向,但是到目前为止,还没有一种办法能把语音信号完美地从噪音环境提取出来。
语音识别有广泛的商业化运用前景,主要可以分为通用场合和专用场合两个方面。
1.3研究内容本文研究的主要内容是结合模式识别的基本理论,研究BP神经网络孤立词语音识别的问题,实现1-5共5个数字的识别。
分析了语音信号的预处理,特征提取及BP神经网络算法实现。
二.语音识别技术2.1语音信号语音信号是随时间变化的一维信号,由一连串的音素组成,各个音素的排列有一定的规则。
语音具有声学特征的物理性质,声音质量与它的频率范围有关,语音信号的频谱分量主要集中在200~3400Hz的范围内。
语音信号的另一个重要特点是它的短时性。
语音信号的特征是随时间变化而变化,只有在一段很短的时间间隔中,才保持相对稳定的特性。
研究表明,在5ms~40ms的范围内语音信号的频谱特性和一些物理特征基本保持不变。
语音信号短时特征和短时参数包括它的短时能量、短时过零率、短时相关函数、短时频谱等。
语音信号的最基本组成单位是音素。
音素可分成浊音和清音两大类。
如果将只有背景噪声的情况定义为“无声”,那么音素可分成“无声”、“浊音”和“清音”三类。
在短时分析的基础上可以判断一小段语音属于哪一类。
如果是浊语音段,还可测定它的另一些重要参数,如基音频率和共振峰等。
2.2语音信号的数学模型建立语音信号的数学模型是语音信号处理的基础。
从人的发音器官的机理来假设,将语音信号分为一些相继的短段进行处理,在这些短段中可以认为语音信号特征是不随着时间变化的平稳随机过程。
这样在这些短段时间内表示语音信号时可以采用线性时不变模型。
通过上面的分析,将语音生成系统分成三个部分,喉的部分称为声门,在声门(声带)以下,称为“声门子系统”,它负责产生激励振动,是“激励系统”。
从声门到嘴唇的呼气通道是声道,是“声道系统”,声道的形状主要由嘴唇和舌头的位置来决定。
在说话的时候,声门处气流冲击声带产生振动,然后通过声道响应变成声音,由于发不同音时,声道的形状不同,所以能够听到不同的语音。
语音从嘴唇辐射出去,所以嘴唇以外是“辐射系统”。
激励的不同情况发不同性质的音,激励一般分为浊音激励和清音激励。
发浊音时声道受到声带振动的激励引起共振,产生间歇的类斜三角形脉冲;发清音时声道被阻碍形成湍流,可以把清音激励模拟成随机白噪声。
完整的语音信号的数学模型可以用三个子模型:激励模型、声道模型、辐射模型的串联来表示。
激励模型一般分为浊音激励和清音激励。
发浊音时,由于声带不断张开和关闭将产生间歇的脉冲波,这个脉冲波类似于斜三角形的脉冲。
发清音时,无论是发阻塞音或摩擦音,声道都被阻碍形成湍流。
所以,可把清音激励模拟成随机白噪声。
声道模型有两种最常见的建模方式。
一是把声道视为由多个等长的不同截面积的管子串联而成的系统,按此观点推导出的叫“声管模型”;另一个是把声道视为一个谐振腔,按此推倒出的叫“共振峰模型”。
从声道模型输出的速度波与语音信号的声压波之倒比称为辐射阻抗,它表征口唇的辐射效应。
由辐射引起的能量损耗正比于辐射阻抗的实部,所以辐射模型是一阶类高通滤波器。
2.3语音识别系统结构孤立词语音识别是对特定的不连续的词语作为处理单元。
语音识别系统的基本组成一般可以分为预处理模块、特征值提取模块及模式匹配三个模块。
如图2.1所示为语音识别系统结构框图。
图2.1 语音识别系统结构框图从图2.1的系统整体架构可以看到,建立基于BP神经网络的语音识别系统可分为两个阶段,即训练阶段和识别阶段。
首先由用户通过麦克风输入语音形成原始语音,然后系统对其进行预处理。
预处理包括预加重,加窗分帧和端点检测三个过程。
系统的前端采用了端点检测,目的是在一段语音信号中确定起点和终点。
在特征提取部分,本系统采用了MFCC作为特征参数,用于有效地区分数字1-5.在训练阶段,通过说话人多次重复语音,本系统从原始语音样本中去除冗余信息,提取说话人的特征参数并存储为BP神经网络的输入样本,在此基础上建立输入与输出的BP神经网络模型。
在识别阶段,待测语音经过预处理,使用已经训练好的BP神经网络进行识别得到结果。
2.4语音信号预处理图2.2是语音信号的预处理的流程图。
从图2.2可以看到预处理模块包括预加重,加窗分帧和端点检测。
前级预加重、加窗分帧及端点检测是语音识别的准备工作,每一个环节对整个识别系统的性能有着重要的影响。
前级预处理主要是对信号进行一定的滤波和分帧;加窗分帧就是将语音信号进行分段处理,使语音信号连续并保持一定的重叠率:端点检测是确定语音有用信号的起始点与终止点,并通过一定的手段处理,将没有意义的语音信号去除,从而减少语音匹配识别模块的运算量,同时也可以提高系统的识别率。
预处理不合理或语音起止点及终止点判别不够准确都会使后续的特征矢量提取及模式匹配过程等工作受到很大的影响,甚至达不到语音识别的效果,因此预处理工作作为语音识别的第一步工作,必须达到所需的要求,为下一步的特征参数提取做好铺垫。
图2.2 语音信号预处理流程图2.4.1 语音信号的采样Matlab环境中语音信号的采集可使用wavrecord(n,fs,ch,dtype)函数录制,也可使用Windows的“录音机”程序录制成.wav文件然后使用wavread(file) 函数读入。
在本实验中,使用matlab的语音工具包录取0-共10段语音。
如图2.3所示为数字0的训练语音0a.wav的信号波形图,第(I)幅图为完整的语音波形,第(II)、(III)幅图分别为语音的起始部分和结束部分的放大波形图。
2.4.2语音信号的分帧语音信号是一种典型的非平稳信号,它的均值函数u(x)和自相关函数R(xl,x2)都随时间而发生较大的变化。
但研究发现,语音信号在短时间内频谱特性保持平稳,即具有短时平稳特性。
因此,在实际处理时可以将语音信号分成很小的时间段(约10~30ms),称之为“帧”,作为语音信号处理的最小单位,帧与帧的非重叠部分称为帧移,而将语音信号分成若干帧的过程称为分帧。
分帧小能清楚地描绘语音信号的时变特征但计算量大;分帧大能减少计算量但相邻帧间变化不大,容易丢失信号特征。
一般取帧长20ms ,帧移为帧长的1/3~1/2。
在语音信号数字处理中常用的窗函数是矩形窗、汉明窗等,它们的表达式如下(其中N 为帧长):矩形窗:⎩⎨⎧-≤≤=其他 ,010 ,1)(N n n ϖ (2-1) 汉明窗:0.540.46cos(2/(1)),01()0,n N n N n πϖ--≤≤-⎧=⎨⎩其他 (2-2)2.4.3语音信号的预加重预加重是指在A /D 转换后加一个6dB /倍频程的高频提升滤波器,语音信号的平均功率谱由于受声门激励和口鼻辐射的影响,高频端大约在800Hz 以上按6dB /Oct(倍频程)跌落。
所以求语音信号频谱时,频率越高相应的成份越小,高频部分的频率比低频部分的难求。
因此,预加重的目的是加强语音中的高频共振峰,使语音信号的短时频谱变得更为平坦,还可以起到消除直流漂移、抑制随机噪声和提高清音部分能量的效果,便于进行频谱分析和声道参数分析。
此外,通常的方法是使用一阶零点数字滤波器实现预加重,其形式为:(2-3)频域相对应的形式为:(2-4)其中,a 为预加重系数。
2.4.4 基于短时能量和过零率的端点检测在语音信号的预处理中,端点检测是关键的一步,语音信号的模型参数和噪声模型参数以及自适应滤波器中的适应参数都得依赖对应的信号段(语音段或噪声段)来计算确定。
因此,只有准确地判定语音信号的端点,才能正确地进行语音处理。