进程间的通信

合集下载

进程间通信(补充材料)

进程间通信(补充材料)
• id //消息队列的描述符
• msgp //用来存放欲接收消息的用户数据结构的地址
• size //指示msgp中数据数组的大小
• type //为0接收该队列的第一个消息;为正,接收类型为 type的第一个消息;为负,接收小于或等于type绝对值 的最低类型的第一个消息
• flag //规定倘若该队列无消息,核心应当做什么事。若设 置 IPC_NOWAIT , 则 立 即 返 回 ; 若 在 flag 中 设 置 MSG_NOERROR,且所接收的消息大学大于size,核心 截断所接收的消息。
1. Linux的共享存储区
• 创建或打开共享存储区(shmget):依据用户给出的整数值key, 创建新区或打开现有区,返回一个共享存储区ID。
• 连接共享存储区(shmat):连接共享存储区到本进程的地址空间, 可以指定虚拟地址或由系统分配,返回共享存储区首地址。父 进程已连接的共享存储区可被fork创建的子进程继承。
• 拆除共享存储区连接(shmdt):拆除共享存储区与本进程地址空 间的连接。
• 共享存储区控制(shmctl):对共享存储区进行控制。如:共享存 储区的删除需要显式调用shmctl(shmid, IPC_RMID, 0);
• 头文件:sys/types.h, /sys/ipc.h, sys/shm.h
• flag // 本 身 由 操 作 允 许 权 和 控 制 命 令 值 相
“或”得到,如:IPC_CREAT|0400表示是否
该队列应被创建,IPC_EXCL|0400表示该队
列的创建应是互斥的。
• msgqid是该系统调用返回的描述符,失败则 返回-1
int msgsnd(int id, struct msgbuf *msgp,

第十章进程间通信

第十章进程间通信
IPC没有名字,无法在文件系统中索引它们, 因此不能使用文件IO来操作,而必须使用 专门的系统调用函数来操作
12
消息队列
消息队列克服了早期UNIX IPC的缺点,例 如信号能够传输的信息量有限,而管道/命 名管道只能传输无格式的字节流,并且受 缓冲区大小限制
消息队列是一个消息的链表,消息相当于 记录,具有特定的格式和优先级,对消息 队列有写权限的进程可以按照一定的规则 添加新消息,对消息队列有读权限的进程 可以从消息队列中读消息
当进程不再使用该信号量控制的共享资源 时,该信号量加1,如果有进程在休眠等待 此信号量则唤醒它们
15
信号量
为正确使用信号量,对其的测试及减1操作 应当是原子操作,通常在内核实现
初始值为1的信号量称为双态信号量,它控 制单个资源
与信号量相关的数据结构为semid_ds 创建一个信号量集合 信号量的操作
第十章
进程间通信
LO嵌GO入式 1
进程间通信的概念
进程间通信IPC(InterProcess Communication)是一种进程之间交换信息 的一种技术,IPC表示各种进程通信方式的 统称
IPC的类型有管道、消息队列、信号量、共 享存储、网络等
并不是所有的系统都支持所 有的进程间通 信方式
FIFO又称命名管道。不相关的进程也能通 过命名管道来交换数据
FIFO管道的创建 非阻塞标志对管道的影响 类似普通管道,若写一个尚无进程为读打
开的FIFO,产生信号SIGPIPE。 一个给定的FIFO可以有多个写进程,参数
PIPE_BUF说明了原子写的最大数据量。 若某个FIFO的最后一个写进程关闭了该
10
许可权结构
当创建IPC时,系统为每个IPC设置一个 ipc_perm结构,该结构规定了IPC的许可 权和所有者

Python中的进程间通信与同步技巧

Python中的进程间通信与同步技巧

Python中的进程间通信与同步技巧在多进程编程中,进程间通信和同步是必不可少的。

Python提供了许多技巧和模块来帮助我们实现进程间的通信和同步操作。

本文将介绍一些常用的Python进程间通信与同步的技巧。

1. 队列(Queue)队列是一种常用的进程间通信方式。

Python中的multiprocessing模块提供了一个Queue类,它可以实现多个进程之间的消息传递。

通过使用put()和get()方法,一个进程可以向队列中添加消息,而另一个进程则可以从队列中获取消息。

队列提供了线程安全的方法,可以防止多个进程同时修改队列。

2. 管道(Pipe)管道是一种双向的进程间通信方式。

与队列不同,管道允许进程之间进行双向的数据传输。

Python的multiprocessing模块提供了Pipe类,它可以用于创建管道,然后通过发送和接收方法进行数据的传输。

3. 共享内存(Shared Memory)共享内存是一种高效的进程间通信方式。

Python的multiprocessing模块提供了Value和Array两个类,它们分别用于在进程之间共享单个值和数组。

通过这些类,我们可以在多个进程之间共享内存,达到共享数据的目的。

4. 信号量(Semaphore)信号量是一种用于进程间同步的机制。

Python的multiprocessing模块提供了BoundedSemaphore和Semaphore两个类来实现信号量。

通过使用这些类,我们可以控制同时进行的进程数量,从而实现进程间的同步操作。

5. 事件(Event)事件是一种用于进程间通信和同步的机制。

Python的multiprocessing模块提供了Event类,它可以用于创建事件对象。

通过设置和清除事件对象的状态,不同进程可以进行等待和通知的操作,实现进程间的同步和通信。

6. 锁(Lock)锁是用于进程间同步的常用机制。

Python的multiprocessing模块提供了Lock 类,它可以用于创建锁对象。

Python中的进程间通信

Python中的进程间通信

Python中的进程间通信进程间通信(IPC,Inter-Process Communication)是一种进程之间传递数据和消息的方式。

在操作系统中,进程是程序在运行时分配给它的内存空间和系统资源的实例。

不同的进程可能运行在不同的计算机上或者同一台计算机上的不同CPU中。

进程间通信是实现多个进程相互合作完成任务的必要手段之一。

进程间通信的方式可以分为多种,包括管道、消息队列、共享内存、信号量等。

Python通过提供不同的模块实现了这些方式,使得进程可以在Python中相互通信,完成不同的任务,实现高效的协作。

1.管道(Pipe)管道是在两个进程之间建立的一条通信通道,可以进行双向通信。

通常情况下,一个进程的输出被重定向到管道中,另一个进程则从管道中读取输入。

在Python中可以使用os模块的pipe()方法来建立管道。

示例代码:```pythonimport ospipe = os.pipe()pid = os.fork()if pid == 0:#子进程从管道中读取数据os.close(pipe[1])data = os.read(pipe[0], 1024)print(f"子进程读取到的数据:{data}") os._exit(0)else:#父进程向管道中写入数据os.close(pipe[0])os.write(pipe[1], b"Hello, Pipe!")os.wait()```在上面的代码中,我们先调用了pipe()方法创建了一个管道,然后使用fork()方法创建了一个子进程。

子进程从管道中读取数据,父进程则向管道中写入数据,最终等待子进程结束。

2.消息队列(Message Queue)消息队列是一种进程间通信机制,可以在不同的进程之间传递消息。

消息队列通常是先进先出的,每个消息都有一个标识符来标记其类型。

在Python中可以使用sysv_ipc模块来使用消息队列。

实验六 进程间通信

实验六 进程间通信

3.2 实验内容(2)

进程的管道通信
编写程序,实现进程的管道通信:父进程使用系统调用pipe() 建立一个管道。创建两个子进程p1和p2,分别向管道个发一 条信息后结束: Child 1 is sending a message to parent. Child 2 is sending a message to parent. 父进程从管道中分别接收两个子进程发来的消息并显示在屏 幕上,然后父进程结束。要求父进程先接受子进程p1发来的 消息,然后再接收子进程p2发来的消息。
实验六 进程间通信

预备知识
Linux进程间通信 进程软中断通信
管道和消息队列

实验指导
软中断通信函数
管道通信的使用
消息队列的应用

实验目的、内容
2.1 软中断通信函数(1)

向一个进程或一组进程发送一个信号: int kill(pid, sig)
pid>0时,核心将信号发送给进程pid
理程序
2.1 软中断通信函数(2)

pid_t wait(int * status)
暂时停止目前进程的执行,直到有信号来或子进程结束

pid_t waitpid(pid_t pid, int * status, int options)
pid的取值 pid=-1时,等待任何一个子进程退出,相当于wait() pid=0时,等待进程组ID与目前进程相同的任何子进程 pid<-1时,等待进程组ID为pid绝对值的任何子进程 options有两个常数参数,可使用或运算,不用时设为0 WNOHANG:即使没有任何子进程退出,它也会立即返回 WUNTRACED:子进程进入暂停执行状态并马上返回,但结束 状态不予以理会

进程间通信和线程间通信的几种方式

进程间通信和线程间通信的几种方式

进程间通信和线程间通信的⼏种⽅式进程进程(Process)是计算机中的程序关于某数据集合上的⼀次运⾏活动,是系统进⾏资源分配和调度的基本单位,是结构的基础。

在早期⾯向进程设计的计算机结构中,进程是程序的基本执⾏实体;在当代⾯向线程设计的计算机结构中,进程是线程的容器。

程序是指令、数据及其组织形式的描述,进程是程序的实体。

进程是⼀个具有独⽴功能的程序关于某个数据集合的⼀次运⾏活动。

它可以申请和拥有系统资源,是⼀个动态的概念,是⼀个活动的实体。

它不只是程序的,还包括当前的活动,通过的值和处理的内容来表⽰。

进程的概念主要有两点:第⼀,进程是⼀个实体。

每⼀个进程都有它⾃⼰的地址空间,⼀般情况下,包括区域(text region)、数据区域(data region)和(stack region)。

⽂本区域存储处理器执⾏的代码;数据区域存储变量和进程执⾏期间使⽤的动态分配的内存;堆栈区域存储着活动过程调⽤的指令和本地变量。

第⼆,进程是⼀个“执⾏中的程序”。

程序是⼀个没有⽣命的实体,只有器赋予程序⽣命时(操作系统执⾏之),它才能成为⼀个活动的实体,我们称其为。

进程是具有⼀定独⽴功能的程序关于某个数据集合上的⼀次运⾏活动,进程是系统进⾏资源分配和调度的⼀个独⽴单位。

每个进程都有⾃⼰的独⽴内存空间,不同进程通过进程间通信来通信。

由于进程⽐较重量,占据独⽴的内存,所以上下⽂进程间的切换开销(栈、寄存器、虚拟内存、⽂件句柄等)⽐较⼤,但相对⽐较稳定安全。

线程线程是进程的⼀个实体,是CPU调度和分派的基本单位,它是⽐进程更⼩的能独⽴运⾏的基本单位.线程⾃⼰基本上不拥有系统资源,只拥有⼀点在运⾏中必不可少的资源(如程序计数器,⼀组寄存器和栈),但是它可与同属⼀个进程的其他的线程共享进程所拥有的全部资源。

线程间通信主要通过共享内存,上下⽂切换很快,资源开销较少,但相⽐进程不够稳定容易丢失数据。

⼀个线程可以创建和撤消另⼀个线程,同⼀进程中的多个线程之间可以并发执⾏。

windows进程间通信的几种方法

windows进程间通信的几种方法

windows进程间通信的几种方法(实用版4篇)目录(篇1)1.引言2.Windows进程间通信概述3.管道通信4.共享内存通信5.消息队列通信6.套接字通信7.结论正文(篇1)一、引言Windows操作系统以其强大的功能和灵活性,吸引了众多用户。

在Windows平台上,进程间通信(IPC)是实现应用程序之间数据交换和协作的关键。

本文将介绍几种常用的Windows进程间通信方法。

二、Windows进程间通信概述Windows进程间通信是指不同进程之间通过某种机制实现数据交换。

它允许应用程序在不同的线程或进程之间传递信息,从而实现协同工作。

在Windows平台上,有多种进程间通信机制可供选择,包括管道、共享内存、消息队列和套接字等。

三、管道通信1.概述:管道是一种用于不同进程之间数据交换的同步机制。

它提供了一种单向数据流,可实现父子进程之间的通信。

2.创建:使用CreateNamedPipe函数创建命名管道或使用CreatePipe函数创建匿名管道。

3.读取/写入:使用ReadFile和WriteFile函数进行数据的读取和写入。

4.关闭:使用CloseHandle函数关闭管道句柄。

四、共享内存通信1.概述:共享内存允许多个进程访问同一块内存区域,从而实现数据共享和快速数据访问。

2.创建:使用CreateFileMapping函数创建共享内存映射。

3.读取/写入:使用MapViewOfFile函数将共享内存映射到进程的地址空间,并进行数据的读取和写入。

4.同步:使用原子操作或信号量进行数据的同步和互斥访问。

五、消息队列通信1.概述:消息队列允许不同进程之间传递消息,实现异步通信。

它可以实现消息的批量发送和接收,适用于高并发的消息传递场景。

2.创建:使用CreateMailslot函数创建消息队列。

3.发送/接收:使用SendMessage函数发送消息,使用SendMessage 函数的异步版本接收消息。

进程间通信的几种方式

进程间通信的几种方式

进程间通信的⼏种⽅式典型回答1. 套接字套接字为通信的端点。

通过⽹络通信的每对进程需要使⽤⼀对套接字,即每个进程各有⼀个。

每个套接字由⼀个 IP 地址和⼀个端⼝号组成。

通常,套接字采⽤ CS 架构,服务器通过监听指定的端⼝,来等待特定服务。

服务器在收到请求后,接受来⾃客户端套接字的连接,从⽽完成连接。

2. 管道管道提供了⼀个相对简单的进程间的相互通信,普通管道允许⽗进程和⼦进程之间的通信,⽽命名管道允许不相关进程之间的通信。

知识延伸进程间通信有两种基本模型:共享内存和消息传递。

共享内存模型会建⽴起⼀块供协作进程共享的内存区域,进程通过向此共享区域读出或写⼊数据来交换信息。

消息传递模型通过在协作进程间交换信息来实现通信。

下图给出了两个模型的对⽐:很多系统同时实现了这两种模型。

消息传递对于交换较少数量的数据很有⽤,因为⽆需避免冲突。

对于分布式系统,消息传递也⽐共享内存更易实现。

共享内存可以快于消息传递,这是因为消息传递的实现经常采⽤系统调⽤,因此需要更多的时间以便内核介⼊。

与此相反,共享内存系统仅在建⽴共享内存区域时需要系统调⽤;⼀旦建⽴共享内存,所有访问都可作为常规内存访问,⽆需借助内核。

对具有多个处理核的系统上,消息传递的性能要优于共享内存。

共享内存会有⾼速缓存⼀致性问题,这是由共享数据在多个⾼速缓存之间迁移⽽引起的。

随着系统处理核的⽇益增加,可能导致消息传递作为 IPC 的⾸选机制。

共享内存系统采⽤共享内存的进程间通信,需要通信进程建⽴共享内存区域。

通常,这⼀⽚共享内存区域驻留在创建共享内存段的进程地址空间内。

其它希望使⽤这个共享内存段进⾏通信的进程应将其附加到⾃⼰的地址空间。

回忆⼀下,通常操作系统试图阻⽌⼀个进程访问另⼀个进程的内存。

共享内存需要两个或更多的进程同意取消这⼀限制;这样它们通过在共享区域内读出或写⼊来交换信息。

数据的类型或位置取决于这些进程,⽽不是受控于操作系统。

另外,进程负责确保,它们不向同⼀位置同时写⼊数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三进程间的通信
【实验类型】
综合性实验
【目的要求】
学习如何利用管道机制、消息缓冲队列、共享存储区机制进行进程间的通讯,并加深对上述通信机制的理解。

【内容提要】
1、了解系统调用pipe()、msgget()、msgsnd()、msgrcv ()、msgctl()、shmget()、shmat()、shmdt()、shmctl()的功能和实现过程。

2、编写一段程序,使其用管道来实现父子进程之间的进程通讯。

子进程向父进程发送自己的进程标识符,以及字符串“is sending a message to parent!”。

父进程则通过管道读出子进程发来的消息,将消息显示在屏幕上,然后终止。

3、编写一段程序,使用系统调用fork()来创建两个子进程CLIENT进程和SERVER进程,使其用消息缓冲队列来实现CLIENT进程和SERVER进程之间的通信。

SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。

当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER。

SERVER每接收到一条消息后显示一句“(server) received”。

CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。

最后的一个消息,即是SERVER端需要的结束信号。

CLIENT每发送一条消息后显示一句“(client) sent”。

父进程在SERVER和CLIENT均退出后结束。

4、编写一个与3具有类似功能的程序,使其用共享存储区来实现两个进程之间的通讯。

【主要仪器设备】
每人一台计算机,硬件要求:CPU PII以上,64M内存,1OOM硬盘空间即可;软件要求: Linux操作系统。

相关文档
最新文档