逐步回归分析
逐步回归分析

逐步回归分析引言逐步回归分析是一种回归分析的方法,它通过逐步加入和删除自变量,来选择最佳的自变量子集,以建立最佳的回归模型。
在统计学和数据分析中广泛应用,尤其在多变量分析中,逐步回归可以帮助我们确定对目标变量有较强预测能力的自变量。
逐步回归的基本原理在逐步回归中,我们首先选择一个自变量作为基础模型,并对其进行回归分析。
然后,我们逐步地加入剩余的自变量,并根据一定的准则来评估加入自变量后模型的性能。
如果加入自变量后模型的性能显著提升,那么就将该自变量加入模型中。
反之,如果加入自变量后模型的性能没有显著提升,那么就将该自变量排除在外。
这样反复进行,直到所有可能的自变量都被考虑过,得到最佳的回归模型。
逐步回归的基本原理可以用以下步骤总结:1.初始化一个基础模型,选定第一个自变量。
2.对基础模型进行回归分析并评估其性能。
3.遍历剩余的自变量,依次加入到基础模型中,并评估加入自变量后模型的性能。
4.根据一定准则(如F统计量、AIC、BIC等)来判断加入自变量后模型的性能是否显著提升。
5.如果加入自变量后模型的性能显著提升,那么将该自变量加入模型中。
6.反之,如果加入自变量后模型的性能没有显著提升,那么将该自变量排除在外。
7.重复步骤3-6,直到所有可能的自变量都被考虑过,得到最佳的回归模型。
逐步回归的优缺点逐步回归作为一种特定的变量选择方法,具有以下优点:•可以帮助我们快速确定对目标变量有较强预测能力的自变量,避免了将所有自变量都加入模型中的复杂性和冗余性。
•可以降低模型的复杂度,减少过拟合的可能性。
•可以提高模型的解释能力,筛选出与目标变量相关性高的自变量。
然而,逐步回归也存在一些缺点:•过于依赖于原始数据的初始情况,可能导致不同初始情况下得到不同的最终模型。
•不能保证得到全局最优解,只能得到局部最优解。
•在特征空间较大的情况下,计算复杂度较高。
逐步回归的应用场景逐步回归适用于以下情况:1.当自变量较多时,希望从中选出对目标变量有较强预测能力的子集。
逐步回归分析

逐步回归分析逐步回归分析1、逐步回归分析的主要思路在实际问题中, ⼈们总是希望从对因变量有影响的诸多变量中选择⼀些变量作为⾃变量, 应⽤多元回归分析的⽅法建⽴“最优”回归⽅程以便对因变量进⾏预报或控制。
所谓“最优”回归⽅程, 主要是指希望在回归⽅程中包含所有对因变量影响显著的⾃变量⽽不包含对影响不显著的⾃变量的回归⽅程。
逐步回归分析正是根据这种原则提出来的⼀种回归分析⽅法。
它的主要思路是在考虑的全部⾃变量中按其对的作⽤⼤⼩, 显著程度⼤⼩或者说贡献⼤⼩, 由⼤到⼩地逐个引⼊回归⽅程, ⽽对那些对作⽤不显著的变量可能始终不被引⼈回归⽅程。
另外, ⼰被引⼈回归⽅程的变量在引⼊新变量后也可能失去重要性, ⽽需要从回归⽅程中剔除出去。
引⼈⼀个变量或者从回归⽅程中剔除⼀个变量都称为逐步回归的⼀步, 每⼀步都要进⾏检验, 以保证在引⼈新变量前回归⽅程中只含有对影响显著的变量, ⽽不显著的变量已被剔除。
逐步回归分析的实施过程是每⼀步都要对已引⼊回归⽅程的变量计算其偏回归平⽅和(即贡献), 然后选⼀个偏回归平⽅和最⼩的变量, 在预先给定的⽔平下进⾏显著性检验, 如果显著则该变量不必从回归⽅程中剔除, 这时⽅程中其它的⼏个变量也都不需要剔除(因为其它的⼏个变量的偏回归平⽅和都⼤于最⼩的⼀个更不需要剔除)。
相反, 如果不显著, 则该变量要剔除, 然后按偏回归平⽅和由⼩到⼤地依次对⽅程中其它变量进⾏检验。
将对影响不显著的变量全部剔除, 保留的都是显著的。
接着再对未引⼈回归⽅程中的变量分别计算其偏回归平⽅和, 并选其中偏回归平⽅和最⼤的⼀个变量, 同样在给定⽔平下作显著性检验, 如果显著则将该变量引⼊回归⽅程, 这⼀过程⼀直继续下去, 直到在回归⽅程中的变量都不能剔除⽽⼜⽆新变量可以引⼊时为⽌, 这时逐步回归过程结束。
2、逐步回归分析的主要计算步骤(1) 确定检验值在进⾏逐步回归计算前要确定检验每个变量是否显若的检验⽔平, 以作为引⼈或剔除变量的标准。
实用统计学—11.逐步回归分析

从未解释变差 (残差平方和)角度考虑, 图中 ||e||2是中心化 数据 y 对所有自变量 (x2, ·, xk )回归的未解释变差(残差 · · 平方和), ||e*||2是中心化数据 y 对自变量x3, ·, xk (剔除了 · · x2 )回归的未解释变差 (残差平方和).由勾股定理, 得||e*||2 - ||e||2 = ||e(2) ||2. ||e(2) ||2就是未解释变差的增加部分, 也就 是变量 x2 的偏解释变差V2 .
2
( n k )V k / Q
与统计量 Fj = (n-k)Vj / Q 完全相同.
2、逐步回归法
逐步回归法的基本思想: 在考虑 Y 对已知的一群变量( X2, ·,Xk )回归时, 从变量X2, · · ·,Xk中, 逐步选出对已解释变差的贡献 (也就是偏解释变差) · · 最大的变量,进入回归方程. 而对已解释变差的贡献大小的判 别依据, 就是包含了偏解释变差的 F 统计量Fj. 统计量Fj 的 值 fj 最大的 xj , 先进入方程; 最后一个进入方程的自变量 xj , 也应当满足: 统计量的值 fj 的显著性概率 p 小于等于选定的 显著性水平 (即, 要求其系数 j 显著异于 0). 逐步回归法也可以按照反过来的顺序进行. 先把 Y 对所有 的自变量 X2, ·,Xk 回归, 然后逐步把 fj 最小的 xj 剔除出方程. · · 所有剔除出方程的 xj , 在剔除时, 其统计量的值 fj 的显著性概 率 p 大于选定的显著性水平 (即, 要求其系数j 与 0 没有显 著性差异).
从 2 (n-k)分布)相互独立.
ˆ2 若再记: V )Vj / Q 服从F ( 1, n-k) 分布.
把 Fj 的显著性概率 p 与置信度水平 比较, 就可以判断 一个变量 xj 是否应当成为自变量:
第一讲 逐步回归分析讲解

2 1 4 2
A(0)
1
1.5
3
4
4
3
10
5
0.5 0.5 2 1
A(1)
0.5
1
1 3
2
1 2 1
1.5-1×0.5=1 3-1×2=1 4-1×1=3
0.5-0.5×(-0.5)=0.75 2-0.5×1=1.5 1-0.5×3=2.5
SS
1b1
SP12 b2
SP13b3
SP1y
SP21b1 SS 2b2 SP23b3 SP2 y
SP31b1 SP32b2 SS 3b3 SP3y
2b1 1b2 4b3 2 1b1 1.5b2 3b3 4 4b1 3b2 10b3 5
x5
y,%
68.6
70.9
62.2
66.7
57.3
60.5
56.7
60.5
58.0
58.9
x
17.2
13.3
10.3
64.4
62.5
63.4
s
4.1
3.8
4.4
7.0
5.6
3.8
一、计算相关系数阵
1、计算各变量的平均数(为表1—1) 设自变量x1,x2,…,xm与依变量y存在线性关系,m元线性回归 方程为:
由x估测y的估计值 yˆ 的直线回归方程: yˆ =a+bx
第一节 逐步回归分析的基本方法
逐步回归分析的基本方法可以通过一个实例介绍其分析步骤。 例1 为考察舍内干球温度(x1)、湿球温度(x2)、露点温度(x3)、相对湿 度(x4)及舒适度指数(x5)对罗曼蛋鸡产蛋率(y)的影响。随机抽测12个位点 各64只鸡在56—67周令的平均周产蛋率如表1—1。
逐步回归分析

逐步回归分析在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。
在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。
逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每—个自变量进行假设检验。
当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某—个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的多元回归方程。
筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。
回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值的误差也愈小,模拟的效果愈好。
但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。
因此在多元回归模型中,选择适宜的变量数目尤为重要。
逐步回归在病虫预报中的应用实例:以陕西省长武地区1984~1995年的烟蚜传毒病情资料、相关虫情和气象资料为例(数据见DATA6.xls),建立蚜传病毒病情指数的逐步回归模型,说明逐步回归分析的具体步骤。
影响蚜传病毒病情指数的虫情因子和气象因子一共有21个,通过逐步回归,从中选出对病情指数影响显著的因子,从而建立相应的模型。
对1984~1995年的病情指数进行回检,然后对1996~1998年的病情进行预报,再检验预报的效果。
变量说明如下:y:历年病情指数x1:前年冬季油菜越冬时的蚜量(头/株)x11:5月份均温 x12:5月份降水量 x13:6月份均温 x14:6月份降水量x2:前年冬季极端气温 x3:5月份最高气温x4:5月份最低气温x5:3~5月份降水量x6:4~6月份降水量x7:3~5月份均温x8:4~6月份均温x9:4月份降水量x10:4月份均温x15:第一次蚜迁高峰期百株烟草有翅蚜量 x16:5月份油菜百株蚜量x17:7月份降水量x18:8月份降水量x19:7月份均温x20:8月份均温x21:元月均温1)准备分析数据在SPSS数据编辑窗口中,用“File→Open→Data”命令,打开“DATA6.xls”数据文件。
逐步回归分析

值都近似相等。
故为方便起见,可取一个定数F*作为F检验的标准。
2. 计算每个变量的均数 j、离均差平方和(l ii、l jj),每两个变量的离均差积和l ij,以及相关系数r ij,并以求得的rij为元素列出原始相关矩阵R(0)(阵中r ij(0)=r ij):以后每引入或剔除一个变量都计为一步运算。
设R(0)经L步所得的R(L)为对于每一步,R(L)均同样按式(2)变换成R(L+1)。
设引入或剔除的变量为Xg(g为该变量的下标),按式(2)作变换Lg,则R(L)成R(L+1)时,两矩阵中的各元素rij,有如下关系式:3. 选自变量。
(1) 引入未选量。
按式(3)计算各未选量的偏回归平方和V j(L+1),找出其中最大者,记作Va(L+1),就它所对应的自变量Xa按式(4)作F检验:式中m′为已引入变量的个数。
当F1>F*时引入变量X a,并对R(L)按式(2)作变换La,得R(L+1);当F1≤F*时挑选变量工作就此结束。
(2)剔除已选量。
引入新变量后,对原先引入的已选量分别计算其偏回归平方和Vj(L):找出V j(L)中最小者,记作Vb(L)。
就Vb(L)所对应的自变量X b按式(6)作F检验。
当F2≤F*时,剔除Xb,并对R(L)按式(2)作变换Lb得R(L+1);下一步对其余已选量再按式(5)、(6)求Vj并作F检验,直到已选量中没有可剔除时为止;当F2>F*时,已选量都不能被剔除,于是再考虑从未选量中能否引入新变量。
如此反复进行到第L步,若已选量都不能被剔除,未选量都不能引入时,逐步运算结束。
4. 求回归方程。
由相关矩阵R(L)求得的回归方程称为标准回归方程,式中b′j是标准偏回归系数,按式(7)求得。
b'j=rj.m+1(L)。
(7)实用中多元线性回归方程常用变量Xj的原单位,因此须再按式(8)求化成原单位后X j的偏回归系数b j,=l YY,即Y的离均差平方和,l jj为X j的离均差平方和。
逐步回归分析剖析

逐步回归分析剖析逐步回归分析通常包括两种方法:前向选择和后向淘汰。
前向选择从一个空模型开始,然后逐步添加自变量,直到达到指定的标准(如显著性水平或拟合优度)。
后向淘汰则从包含所有自变量的模型开始,然后逐步删除自变量,直到达到指定的标准。
这两种方法可以用于选择对因变量具有最大解释力的自变量。
1.假设空模型,不包含任何自变量。
2.对于前向选择,计算每一个单独的自变量与因变量之间的相关性,选择其中最显著的自变量,并添加到模型中。
对于后向淘汰,计算包含所有自变量的模型的拟合优度,并将最不显著的自变量删除。
3.对于前向选择,继续计算剩下自变量与因变量之间的相关性,选择其中最显著的自变量,并添加到模型中。
对于后向淘汰,重新计算删除自变量后的模型的拟合优度,并继续删除最不显著的自变量。
4.重复第3步,直到达到指定的标准,或没有更多的自变量可添加(对于前向选择),或没有更多的自变量可删除(对于后向淘汰)。
5.最终的模型是最后一次迭代中保留的自变量所构成的模型。
逐步回归分析的优点是可以帮助确定对因变量有最大解释力的自变量,并减少模型的复杂性。
它可以避免不显著的自变量对模型的影响,并提高模型的拟合优度。
此外,逐步回归分析还可以控制多重比较效应,并提供一种变量选择的标准。
然而,逐步回归分析也有一些限制。
首先,它是一种迭代过程,可能会受到初始模型的影响,而导致结果不稳定。
其次,逐步回归分析不考虑变量之间的交互作用,可能无法准确地解释模型中变量之间的复杂关系。
此外,当样本数据较小或存在离群值时,逐步回归分析可能不可靠。
总之,逐步回归分析是一种有用的统计学方法,用于确定对一个因变量的预测模型中应该包含哪些自变量。
通过逐步迭代添加或删除自变量,并评估模型的优度,可以选择最佳的预测模型。
然而,使用时需要注意其限制和假设,并进行充分的解释和验证。
逐步回归分析计算公式

逐步回归分析计算公式
1 什么是逐步回归分析
逐步回归分析是用于确定预测变量和因变量之间关系的一种统计
分析方法。
它是指在回归分析中,系统地添加或删除一组变量,然后
用残差(即预测可解释的差异)来衡量模型的拟合度。
它的优势在于,可以用一组解释变量构建解决模型,然后将预测乏味的变量剔除出去,从而减少不必要的参数,从而帮助我们构建更有用的模型。
2 逐步回归分析的步骤
逐步回归分析的步骤包括:
(1)选择变量:首先,将解释变量划分为完全回归和分步回归,
然后在完全回归变量上开展分析;
(2)运行完全回归:依据变量组合,在完全回归模型中运行变量,以检验哪些变量对预测因变量有显著影响;
(3)添加其他变量:根据完全回归模型,仔细检查模型中有哪些
变量,以便加入更多变量;
(4)删除不必要的变量:从有效的模型中移除不必要的变量,以
避免多重共线性;
(5)重复步骤2:重复步骤2并继续检验其中解释变量的有效性,测试将每个新变量添加到回归模型中是否可以改进拟合度。
3 逐步回归分析的优缺点
逐步回归分析的优点是,它有助于减少多重共线性的可能性;它也提高了模型的准确性和可解释性;它可以检查变量对主题的对照作用,以进一步框定研究的范围。
然而,它也有相应的缺点,如它的拟合评估可能不准确,主要由于它忽略了随机游走现象,因此受多重共线性和附加变量影响较大。
因此,利用逐步回归分析时,需要仔细考虑变量之间的关系,并严格观察模型的拟合度,以确保模型的准确性和可解释性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逐步回归分析
1、逐步回归分析的主要思路
在实际问题中, 人们总是希望从对因变量有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析的方法建立“最优”回归方程以便对因变量进行预报或控制。
所谓“最优”回归方程, 主要是指希望在回归方程中包含所有对因变量影响显著的自变量而不包含对影响不显著的自变量的回归方程。
逐步回归分析正是根据这种原则提出来的一种回归分析方法。
它的主要思路是在考虑的全部自变量中按其对的作用大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那些对作用不显著的变量可能始终不被引人回归方程。
另外, 己被引人回归方程的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。
引人一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要进行检验, 以保证在引人新变量前回归方程中只含有对影响显著的变量, 而不显著的变量
已被剔除。
逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其偏回归平方和(即贡献), 然后选一个偏回归平方和最小的变量, 在预先给定的水平下进行显著性检验, 如果显著则该变量不必从回
归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方和都大于
最小的一个更不需要剔除)。
相反, 如果不显著, 则该变量要剔除, 然后按偏回归平方和由小到大地依次对方程中其它变量进行检验。
将对影响不显著的变量全部剔除, 保留的都是显著的。
接着再对未引人回归方程中的变量分别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定水平
下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继续下去, 直到在回归方程中的变量都不能剔除而又无新变量可以引入时为止, 这时逐步回归过程结束。
2、逐步回归分析的主要计算步骤
(1) 确定检验值
在进行逐步回归计算前要确定检验每个变量是否显若的检验水平, 以作为引人或剔除变量的标准。
检验水平要根据具体问题的实际情况来定。
一般地, 为使最终的回归方程中包含较多的变量, 水平不宜取得过高, 即显著水平α不宜太小。
水平还与自由度有关, 因为在逐步回归过程中, 回归方程中所含的变量的个数不断在变化, 因此方差分析中的剩余自由度也总在变化, 为方便起见常按计算自由度。
为原始数据观测组数, 为估计可能选人回归方程的变量个数。
例如, 估计可能有2~3个变量选入回归方程, 因此取自由度为15-3-1=11, 查分布表, 当α=0.1, 自由度, 时, 临界值, 并且在引入变量时, 自由度取, , 检验的临界值记, 在剔除
变量时自由度取, , 检验的临界值记, 并要求, 实际应用中常取。
(2) 逐步计算
如果已计算步(包含=0), 且回归方程中已引入个变量, 则第步的计算为:
()计算全部自变量的贡献(偏回归平方和)。
()在已引入的自变量中, 检查是否有需要剔除的不显著变量。
这就要在已引入的变量中选取具有最小
值的一个并计算其值, 如果, 表示该变量不显著, 应将其从回归方程中剔除, 计算转至()。
如则不需要剔除变量, 这时则考虑从未引入的变量中选出具有最大值的一个并计算值, 如果
, 则表示该变量显著, 应将其引人回归方程, 计算转至()。
如果, 表示已无变量可选入方程, 则逐步计算阶段结束, 计算转人(3)。
()剔除或引人一个变量后, 相关系数矩阵进行消去变换, 第步计算结束。
其后重复()~()再进行下步计算。
由上所述, 逐步计算的每一步总是先考虑剔除变量, 仅当无剔除时才考虑引入变量。
实际计算时, 开头几步可能都是引人变量, 其后的某几步也可能相继地剔除几个变量。
当方程中已无变量可剔除, 且又无变量可引入方程时, 第二阶段逐步计算即告结束, 这时转入第三阶段。
(3) 其他计算, 主要是计算回归方程入选变量的系数、复相关系数及残差等统计量。
逐步回归选取变量是逐渐增加的。
选取第个变量时仅要求与前面己选的-1个变量配合起来有最小的残差平方和, 因此最终选出的个重要变量有时可能不是使残差平方和最小的个, 但大量实际问题计算结果表明, 这个变量常常就是所有个变量的组合中具有最小残差平方和的那一个组合, 特别当不太大时更是如此, 这表明逐步回归是比较有效的方法。
引人回归方程的变量的个数与各变量贡献的显著性检验中所规定的检验的临界值与的取值大小有关。
如果希望多选一些变量进人回归方程, 则应适当增大检验水平α值, 即减小的值, 特别地, 当时, 则全部变量都将被选入, 这时逐步回归就变为一般的多元线性回归。
相反, 如果α取得比较小, 即与取得比较大时, 则入选的变量个数就要减少。
此外, 还要注意, 在实际问题中, 当观测数据样本容量较小时, 入选变量个数不宜选得过大, 否则被确定的系数的精度将较差。
相关分析研究的是现象之间是
否相关、相关的方向和密切程度,
一般不区别自变量或因变量。
而回
归分析则要分析现象之间相关的具
体形式,确定其因果关系,并用数
学模型来表现其具体关系。
比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。
回歸分析法是定量預測方法之一。
它依據事物內部因素變化的因果關系來預測事物未來的發展趨勢。
由于它依據的是事物內部的發展規律,因此這種方法比較精確。
測報工作中常用的是一元線性回歸和多元線性回歸模型。
一元線性回歸是指事物發展的自變量與因變量之間是單因素間的簡單線性關系,它的模型可以表示為:
y=a+bx
其中y是因變量,x是自變量,a是常數,b是回歸系數。
多元線性回歸是指一個因變量與多個自變量之間的線性關系。
模型的一般型式為︰
y=a+b1x1+b2x2+…+bnxn
其中,y是因變量,x1、x2、…xn是自變量,a是常數,b1、b2、…bn是回歸系數。
什么是回归分析?释义
回归分析一个统计预测模型,用以描述和评估应变量与一个或多个自变量之间的关系。
回归分析的应用。
优点
基于一个给定的商业指标(应变量)与其相关商业驱动因素(说明变量)交互作用关系,回归分析能够对该指标结果进行预测。
例如,回归分析能够预测根据你的广告花费以及你雇用的销售人数预测出你的销售量。
当然,真实地回归分析模型要比这个例子复杂得多,需要更多的变量。
没有人能够真正看到未来是什么模样,但是,得益于现代统计学、经济计量学理论模型以及Business Intelligence[商业智能]软件的帮助,我们确实可以对未来发生的事情进行预测和评估。
Regression Analysis[回归分析]模型用于帮助我们通过价值可以被预先决定的一个或更多其他可变物预言一未知的可变物的价值。
回归分析的步骤。
流程
第一步是确定要进行预测的应变量。
然后,集中于说明变量,进行多元回归分析。
多元回归分析将给出应变量与说明变量之间的关系。
这一关系最后以公式(模型)形式给出,通过它预测应变量的未来值。