凉山州会理县2020-2021学年新人教版七年级下期末数学试卷含答案解析(A卷全套)

合集下载

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米解:0.0000152=1.52×10﹣5.故选:B.2.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+1 x )C.(x+2)(x﹣2)=x2﹣4D.x2﹣6x+9=(x﹣3)2解:A、没把一个多项式转化成几个整式乘积的形式,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、整式的乘法,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.3.(3分)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠4解:A、∠B的内错角是∠1,故此选项符合题意;B、∠B与∠2是同旁内角,故此选项不合题意;C、∠B与∠3是同位角,故此选项不合题意;D、∠B与∠4是不是内错角,故此选项不合题意;故选:A.4.(3分)不等式﹣2x+6<0的解集在数轴上表示,正确的是()A .B .C .D .解:﹣2x <﹣6, x >3, 故选:A .5.(3分)下列运算正确的是( ) A .(a 2)5=a 7 B .(x ﹣1)2=x 2﹣1 C .3a 2b ﹣3ab 2=3D .a 2•a 4=a 6解:A 、(a 2)5=a 10,故原题计算错误; B 、(x ﹣1)2=x 2﹣2x +1,故原题计算错误;C 、3a 2b 和3ab 2不是同类项,不能合并,故原题计算错误;D 、a 2•a 4=a 6,故原题计算正确; 故选:D .6.(3分)若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5 B .3a >3bC .2+a <2+bD .a3<b3解:∵a >b , ∴a ﹣5>b ﹣5, ∴选项A 不正确; ∵a >b , ∴3a >3b , ∴选项B 正确; ∵a >b , ∴2+a >2+b , ∴选项C 不正确; ∵a >b ,∴a 3>b3,∴选项D 不正确. 故选:B .7.(3分)下列命题中,假命题的是( ) A .三角形中至少有两个锐角B .如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C .直角三角形一定是轴对称图形D .三角形的一个外角一定大于和它不相邻的任何一个内角 解:A 、三角形中至少有两个锐角,正确,是真命题;B 、如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形,正确,是真命题;C 、等腰直角三角形一定是轴对称图形,错误,是假命题;D 、三角形的一个外角大于和它不相邻的任何一个内角,故正确,是真命题, 故选:C .8.(3分)如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A 、B 两架轰炸机对应点的坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么轰炸机C 对应点的坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1),故选:A.9.(3分)已知点M(a,3)在第二象限,则a的取值范围是()A.a>0B.a<0C.a<3D.a>3解:∵点M(a,3)在第二象限,∴a<0,故选:B.10.(3分)在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20,若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6解:∵D(1,2)、E(﹣2,1)、F(0,t),∴“水平底”a=1﹣(﹣2)=3.“铅垂高“h=1或|2﹣t|或|1﹣t|①当h=1时,三点的“矩面积”S=1×3=3≠15,不合题意;②当h=|2﹣t|时,三点的“矩面积”S=3×|2﹣t|=15,解得:t=﹣3或t=7(舍去);③当h=|1﹣t|时,三点的“矩面积”S=3×|1﹣t|=15,解得:t=﹣4(舍去)或t=6;综上:t=﹣3或6.故选:D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)一个长方形的面积为a 3﹣4a ,宽为a ﹣2,则长为 a (a +2) .解:根据题意得:(a 3﹣4a )÷(a ﹣2)=a (a +2)(a ﹣2)÷(a ﹣2)=a (a +2), 故答案为:a (a +2)12.(2分)√−273+(−12)﹣1+(3.14﹣π)0= ﹣4 .解:原式=﹣3﹣2+1 =﹣4. 故答案为:﹣4.13.(2分)如图所示,∠BAC =90°,AD ⊥BC ,则下列结论中,正确的为 ①② (填序号).①点A 到BC 的距离是线段AD 的长度; ②线段AB 的长度是点B 到AC 的距离; ③点C 到AB 的垂线段是线段AB .解:∵AD ⊥BC ,∴点A 到BC 的距离是线段AD 的长度,①正确; ∵∠BAC =90°, ∴AB ⊥AC ,∴线段AB 的长度是点B 到AC 的距离,②正确 ∵AB ⊥AC ,∴C 到AB 的垂线段是线段AC ,③不正确. 其中正确的为①②, 故答案是:①②.14.(2分)如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 同位角相等,两直线平行 .解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.15.(2分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF =34°,则∠BOD的大小为22°.解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.16.(2分)当前,“低头族”已成为热门话题之一,为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是D;A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查并说出你的理由样本具有代表性.解:为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是对在路边行走的路人随机发放问卷进行调查, 理由是抽取的样本具有代表性, 故答案为:D ;样本具有代表性.17.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a ﹣3b .如:1⊕5=2×1﹣3×5=﹣13,则不等式x ⊕4<2的解集为 x <7 . 解:根据题中的新定义化简得:2x ﹣12<2, 移项合并得:2x <14, 解得:x <7. 故答案为:x <7.18.(2分)已知△ABC 中,AB =AC ,求证:∠B <90°,若用反证法证这个结论,应首先假设 ∠B ≥90° .解:用反证法证明:第一步是:假设∠B ≥90°. 故答案是:∠B ≥90°.三.解答题(共9小题,满分54分,每小题6分) 19.(6分)解不等式组,并写出该不等式组的所有整数解. {5x +2≥3(x −1)1−x−26>12x解:解不等式5x +2≥3(x ﹣1),得:x ≥−52, 解不等式1−x−26>12x ,得:x <2, ∴不等式组的解集为−52≤x <2, 则不等式组的整数解为﹣2,﹣1,0,1. 20.(6分)化简求值.(1)[(x +y )(x ﹣y )﹣(x ﹣y )2+2y (x ﹣y )]÷(﹣2y ),其中x =−12,y =2. (2)已知x 2﹣2x ﹣2=0,求(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1)的值. 解:(1)原式=(x ﹣y )[(x +y )﹣(x ﹣y )+2y ]÷(﹣2y ) =2y ﹣2x ,当 x =−12,y =2时,原式=2×2﹣2×(−12)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.21.(6分)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)解:(1)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2;(2)m2(a﹣b)+n2(b﹣a),=m2(a﹣b)﹣n2(a﹣b),=(a﹣b)(m2﹣n2),=(a﹣b)(m+n)(m﹣n).22.(5分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF ∥AB ;(2)∵EF ∥AB ,CD ∥AB , ∴EF ∥CD , ∵∠CEF =70°, ∴∠ECD =110°, ∵∠DCB =70°,∴∠ACB =∠ECD ﹣∠DCB , ∴∠ACB =40°.23.(6分)如图,在平面直角坐标系中:A (0,1),B (2,0),将点B 向上平移1.5个单位得到点C .(1)求△ABC 的面积.(2)如果在第二象限内有一点P (a ,1),使得四边形ABOP 的面积与△ABC 的面积相等?求出P 点的坐标.解:(1)∵将点B 向上平移1.5个单位得到点C , ∴点C 的坐标为(2,1.5), ∴△ABC 的面积=12×1.5×2=1.5; (2)∵四边形ABOP 的面积与△ABC 的面积相等, ∴12×2×1+12×1×|a|=12×2×1.5,解得:a =±1,∵在第二象限内有一点P (a ,1), ∴a =﹣1,所以点P 的坐标(﹣1,1).24.(7分)在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理.(1)请完成下面频数分布统计表;组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)在上图中请画出频数分布直方图;(3)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.解:(1)补全频数分布表如下:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)频数分布直方图如下:(3)根据题意得:200×2+4+1020=160(人),则估计一天行走的步数少于8500步的人数约为160人.25.(5分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.26.(7分)根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=70°,则∠1+∠2+∠4+∠6+∠8=160度.解:(1)∵CD平分∠ECB,FG∥CD,∵∠ECD=∠DCF=∠GFB=12(180°﹣∠ECA),∵∠ECA=α,∴∠GFB=12(180°﹣a)=90°−12a,答:∠GFB的度数为90°−12α.(2)如图,过点B作BM∥AE,则BM∥AE∥CD,∴∠1+∠CBM=180°,∠MBA+∠BAE=180°,∵AB⊥AE,∴∠BAE=MBA=90°,∴∠1+∠2+∠BAE=180°×2,∴∠1+∠2=360°﹣∠BAE=360°﹣90°=270°,答:∠1+∠2的度数为270°.(3)分别以各个角的顶点,作∠2的长边的平行线,根据平行线的性质,两直线平行,内错角相等,可得,∠3+∠5+∠7=∠2+∠4+∠6+∠1+∠8=40°+50°+70°=160°.故答案为:160.27.(6分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“关联方程”.如:方程x ﹣1=0就是不等式组{x +1>0x −2<0的“关联方程”. (1)试判断方程①3x +2=0,②x ﹣(3x ﹣1)=﹣4是否是不等式组{2x −7<04x −3>0的关联方程,并说明理由;(2)若关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程,求整数k 的值;(3)若方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程,求m 的取值范围.解:(1)解方程3x +2=0得:x =−23,解方程x ﹣(3x ﹣1)=﹣4得:x =52,解不等式组{2x −7<04x −3>0得:34<x <72, 所以不等式组{2x −7<04x −3>0的关联方程是②; (2)解方程2x +k =1(k 为整数)得:x =1−k 2解不等式组{x −1<12x −2≥−3x −1得:14≤x <32,∵关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程, ∴14≤1−k 2<32, 解得﹣2<k <12∴整数k =﹣1,0;(3)解方程9﹣x =2x 得:x =3,解方程9+x =2(x +52)得:x =4,解不等式组{x +m <2x x −m ≤2得:m <x ≤2+m , ∵方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程, ∴2≤m <3,即m 的取值范围是2≤m <3.。

最新人教版数学七年级下学期《期末测试卷》附答案解析

最新人教版数学七年级下学期《期末测试卷》附答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、相信自己的选择。

(每小题只有一个正确的选项,每小题3分,共计30分) 1. 下列运算正确的是( )A . 448a a a +=B . 6424a a a ⨯=C . 01a a a -÷=D . 440a a a -= 2. 下列乘法中,不能运用平方差公式进行运算的是( )A . (x+1)(x-1)B . (A +B )(-A -B )C . (-x-2)(x-2)D . (B +A )(A -B ) 3. 如图,下列条件中,不能判定AD BC ∥的是( )A . ∠1=∠2B . ∠3=∠4C . ∠AD C +∠D C B =180° D . ∠B A D +∠A D C =180°4. 某种感冒病毒直径约为120nm ,91nm 10m -=,则这种感冒病毒的直径用科学记数法表示() A . 912010m -⨯B . 61210m -⨯.C . 71210m -⨯.D . 8110m -⨯ 5. 如图,已知点A 、D 、C 、F 在同一条直线上,A B =D E,B C =EF,要使△A B C ≌△D EF,还需要添加一个条件( )A . ∠BC A =∠F;B . ∠B =∠E;C . B C ∥EF ;D . ∠A =∠E DF 6. 已知3,5a b x x ==,则32a b x -=( )A . 2725B .910C .35D . 527. 如图,A B ∥C D , ∠B ED =110°,B F平分∠A B E,D F平分∠C D E,则∠B FD = ( )A .110°B . 115°C . 125°D . 130°8. 下列交通标志图案是轴对称图形的是()A . B .C .D .9. 下列图形中,不是正方体的展开图的是()A .B .C .D .10. 甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地其中符合图象描述的说法有()A . 2个B . 3个C . 4个D . 5个二、细心填一填(每小题3分,共计18分)11. 小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是__________.12. 已知(x-2)x+3=1,则x 的值为_____13. 当x 2+2(k-3)x+25是一个完全平方式,则k 的值是__14. 两边都平行的两个角,其中一个角的度数是另一个角的3倍少20︒,这两个角的度数分别是______. 15. 一个三角形的一边是10,另一边是6,则第三边上中线x 的取值范围是:______________16. 在下列条件中①∠A ∶∠B ∶∠C =1∶1∶2,②∠A +∠B =∠C ,③∠B =90°-∠A ,④∠A =∠B =12∠C ,⑤1123A B C ∠=∠=∠中,能确定△A B C 是直角三角形的条件有_________ 三、精心算一算(17题16分,17题5分,共计21分)17. 计算(1)10298⨯(利用整式乘法公式计算)(2)(2A +B )(2A -B )(3)2(1)(4)(4)x x x --+-(4)()32226611222xy x y x y ⎛⎫⎛⎫--÷ ⎪ ⎪⎝⎭⎝⎭18. 先化简,再求值:()()()222b +a+b a b a b ---,其中A =﹣3,B =12. 四、认真画一画((1)题4分,(2)题4分,共计8分)19. (1)小河的同旁有甲、乙两个村庄(左图),现计划在河岸A B 上建一个水泵站,向两村供水,用以解决村民生活用水问题。

2020—2021年人教版七年级数学下册期末考试(及参考答案)

2020—2021年人教版七年级数学下册期末考试(及参考答案)

2020—2021年人教版七年级数学下册期末考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)1.解方程组34(2)521x x yx y-+=⎧⎨+=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.6.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)17、31 xy=⎧⎨=-⎩18、0.19、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;20、20°22、(1)8;(2)答案见解析:(3)200000立方厘米。

最新人教版数学七年级下册《期末测试卷》附答案解析

最新人教版数学七年级下册《期末测试卷》附答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题10小题,每小题3分,共30分)1. 9的算术平方根为()A . 3-B . 3C . 3±D . 812. 下列图形中,1∠与2∠互为对顶角的是( )A .B .C .D .3. 下列各数中是无理数的是()C . 38D . 3.14 A . 3 B . 124. 如图,点E在A B 的延长线上,下列条件中可以判断A B //C D 的是()A .∠A =∠CB E B . ∠A +∠C B A =180° C . ∠A =∠CD . ∠C =∠C BE 5. 下列语句中,不是命题的是()A . 如果A +B =0,那么A 、B 互为相反数 B . 内错角相等C . 已知A 2=4,A 的值是多少? D . 负数大于正数6. 方程组38413x y x y+=⎧⎨-=⎩的解是()A . 13x y=-⎧⎨=⎩ B . 31x y=⎧⎨=-⎩ C . 31x y=-⎧⎨=-⎩ D . 13x y=-⎧⎨=-⎩7. 下列调查,你认为最合适采用普查方式是()A . 检测一批日光灯灯管的使用寿命B . 旅客上飞机前的安检C . 了解珠海市居民日平均用水量D . 2019年央视春节联欢晚会收视率8. 如果A >B ,那么下列结论一定正确的是( ) A . A -3<B -3B . 3-A >3-BC . 33a b --< D . -3A >-3B9. 把一堆练习本分给学生,如果每名学生分4本,那么多4本;如果每名学生分5本,那么最后1名学生只有3本.设有x 名学生,y 本书,根据题意,可列方程组为:() A . 4453x yx y+=⎧⎨+=⎩B . 4453x yx y-=⎧⎨-=⎩C . 445(1)3x yx y+=⎧⎨-+=⎩D . 445(1)3x yx y -=⎧⎨-+=⎩10. 在平面直角坐标系中,将点A (m ,n ) 先向右平移2个单位,再向上平移3个单位,得到点A ′,若点A ′位于第二象限,则m 、n 的取值范围分别是( ) A . m <2,n >3B . m <2,n >﹣3C . m <﹣2,n <﹣3D . m <﹣2,n >﹣3二、填空题(本大题7小题,每小题4分,共28分)11. 在平面直角坐标系中,点P(2,﹣3)在__________象限. 12. 在实数﹣5,﹣3,0,π,3中,最大的一个数是_____.13. 把方程310x y +-=写成用含x 的代数式表示y 的形式,则y =__________.14. 某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,如图所示的扇形图表示上述分布情况,则AOB ∠=______.15. 已知方程组32231x y kx y k +=⎧⎨+=+⎩满足3x y +=,则k 的值为___________. 16. 把一副直角三角尺如图摆放,点C 与点E 重合,B C 边与EF 边都在直线l 上,将△A B C 向右平移得△A 'B 'C ',当边A 'C '经过点D 时,∠ED C '=_____°.17. 如图,在平面直角坐标系中,已知正方形A B C D 的边长为8,与y轴交于点M(0,5),顶点C (6,﹣3),将一条长为2020个单位长度且没有弹性的细绳一端固定在点M处,从点M出发将细绳紧绕在正方形A B C D 的边上,则细绳的另一端到达的位置点N的坐标为_____.三.解答题共(62分)18. 化简:327413-+-.19. 解不等式组:240113xx+≥⎧⎪+⎨<⎪⎩.20. 如图,已知在平面直角坐标系中,四边形各顶点的坐标分别为A (0,0),B (9,0),C (7,4),D (2,8),求四边形A B C D 的面积.21. 某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(千米),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图.组别单次营运里程“x”(千米) 频数第一组0<x≤572第二组5<x≤10 A第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据以上信息,解答下列问题:(1)表中A = ,样本中“单次营运里程”不超过15千米的频率为;(2)请把频数分布直方图补充完整;(3)估计该公司5000个“单次营运里程”超过20千米的次数.(写出解答过程)22. 如图,A F的延长线与B C 的延长线交于点E,A D //B E,∠1=∠2=30°,∠3=∠4=80°.(1)求∠C A E的度数;(2)求证:A B //D C .23. 为保障学生在学校期间保持清洁卫生,学校准备购买甲、乙两种洗手液,已知购买2瓶甲洗手液和3瓶乙洗手液共需140元,购买1瓶乙洗手液比购买2瓶甲洗手液少用20元.(1)求购买甲、乙两种洗手液每瓶各需多少元?(2)若要购买甲、乙两种洗手液共20瓶,且总费用不超过546元,求至少要购进甲种洗手液多少瓶?24. 已知,直线A B //C D ,∠EFG=90°.(1)如图1,点F在A B 上,FG与C D 交于点N,若∠EFB =65°,则∠FNC =°;(2)如图2,点F在A B 与C D 之间,EF与A B 交于点M,FG与C D 交于点N.∠A MF的平分线MH与∠C NF的平分线NH交于点H.①若∠EMB =α,求∠FNC (用含α的式子表示);②求∠MHN的度数.25. 如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形A B C D (点D 与点O重合)和边长为4的正方形EFGH的边C O和GH都在x轴上,且点H坐标为(7,0).正方形A B C D 以3个单位长度/秒的速度沿着x轴向右运动,记正方形A B C D 和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形A B C D 向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E 运动.连接A P,A E.①求t为何值时,A P所在直线垂直于x轴;②求t何值时,S=S△A PE.参考答案一、选择题(本大题10小题,每小题3分,共30分)1. 9的算术平方根为()A . 3-B . 3C . 3±D . 81【答案】B【解析】【分析】根据算术平方根的定义解答即可.【详解】解:9的算术平方根为3.故选:B .【点睛】本题考查了算术平方根的定义,属于应知应会题型,熟知算术平方根的概念是关键.2. 下列图形中,1∠与2∠互为对顶角的是( )A .B .C .D .【答案】D【解析】【分析】根据对顶角定义来判断,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:根据对顶角的定义可知:D 中∠1、∠2属于对顶角,故选D .【点睛】本题考查对顶角的定义,是需要熟记的内容.3. 下列各数中是无理数的是()3 B . 1238 D . 3.14【答案】A【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:3B . 12是分数,属于有理数;C .382,是整数,属于有理数;D .3.14是有限小数,属于有理数.故选:A .【点睛】本题考查了无理数的定义,解题的关键是熟记定义进行判断.4. 如图,点E在A B 的延长线上,下列条件中可以判断A B //C D 的是()A . ∠A =∠CB E B . ∠A +∠C B A =180° C . ∠A =∠C D. ∠C =∠C B E【答案】D【解析】【分析】根据平行线的判定方法分别进行判断.【详解】解:A 、∠A =∠C B E可以判定A D //B C ,故此选项不合题意;B 、∠A +∠C B A =180°可以判定AD //B C ,故此选项不合题意;C 、∠A =∠C 不可以判定A B //CD ,故此选项不符合题意;D 、∠C =∠C B E可以判定直线A B //C D ,故此选项符合题意.故选:D .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5. 下列语句中,不是命题的是()A . 如果A +B =0,那么A 、B 互为相反数 B . 内错角相等C . 已知A 2=4,A 的值是多少?D . 负数大于正数【答案】C【解析】【分析】根据命题的定义分别进行判断.【详解】根据命题的定义知道A 、B 、D 选项均对事情做出了判断,是命题;C 选项是一个疑问句,不是命题, 故选:C .【点睛】本题考查命题,是基础考点,难度较易,掌握相关知识是解题关键. 6. 方程组38413x y x y +=⎧⎨-=⎩的解是( )A . 13x y =-⎧⎨=⎩B . 31x y =⎧⎨=-⎩C . 31x y =-⎧⎨=-⎩D . 13x y =-⎧⎨=-⎩【答案】B 【解析】【分析】通过观察可以看出y 的系数互为相反数,故(1) +(2) 可以消去y ,解得x 的值,再把x 的值代入(1) 或(2) ,即可求出y 的值. 【详解】解:原方程组为:()()3814132x y x y ⎧+=⎪⎨-=⎪⎩, (1) +(2) 得:7x =21, ∴x =3,把x =3代入(1) 得:3×3+y =8, ∴y =﹣1,∴方程组的解为:31x y =⎧⎨=-⎩.故选:B .【点睛】本题考查二元一次方程组的求解,熟练掌握二元一次方程组的解法是解题关键. 7. 下列调查,你认为最合适采用普查方式的是( ) A . 检测一批日光灯灯管的使用寿命 B . 旅客上飞机前的安检C . 了解珠海市居民日平均用水量D . 2019年央视春节联欢晚会收视率 【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此进行判断即可.【详解】解:A 、检测一批日光灯灯管的使用寿命,适宜采用抽样调查; B 、旅客上飞机前的安检,适宜普查;C 、了解珠海市居民日平均用水量,适宜采用抽样调查;D 、2019年央视春节联欢晚会收视率,适宜采用抽样调查. 故选:B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 8. 如果A >B ,那么下列结论一定正确的是( ) A . A -3<B -3 B . 3-A >3-BC . 33ab --< D . -3A >-3B【答案】C 【解析】【分析】根据不等式的性质逐项分析即可.【详解】A 、不等式两边加(或减) 同一个数(或式子) ,不等号的方向不变,故本选项错误; B 、不等式两边乘(或除以) 同一个负数,不等号的方向改变,不等式两边加(或减) 同一个数(或式子) ,不等号的方向不变,故本选项错误;C 、不等式两边乘(或除以) 同一个负数,不等号的方向改变,故本选项正确;D 、不等式两边乘(或除以) 同一个负数,不等号方向改变.故本选项错误. 故选C .【点睛】本题主要考查不等式的性质:(1) 不等式两边加(或减) 同一个数(或式子) ,不等号的方向不变; (2) 不等式两边乘(或除以) 同一个正数,不等号的方向不变; (3) 不等式两边乘(或除以) 同一个负数,不等号的方向改变.9. 把一堆练习本分给学生,如果每名学生分4本,那么多4本;如果每名学生分5本,那么最后1名学生只有3本.设有x 名学生,y 本书,根据题意,可列方程组为:()A . 4453x y x y +=⎧⎨+=⎩B . 4453x yx y -=⎧⎨-=⎩C . 445(1)3x yx y +=⎧⎨-+=⎩D . 445(1)3x yx y -=⎧⎨-+=⎩【答案】C 【解析】【分析】根据“每名学生分4本,那么多4本;如果每名学生分5本,那么最后1名学生只有3本” ,列出二元一次方程组即可. 【详解】解:由题意可得445(1)3x yx y+=⎧⎨-+=⎩故选C .【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键. 10. 在平面直角坐标系中,将点A (m ,n ) 先向右平移2个单位,再向上平移3个单位,得到点A ′,若点A ′位于第二象限,则m 、n 的取值范围分别是( ) A . m <2,n >3 B . m <2,n >﹣3C . m <﹣2,n <﹣3D . m <﹣2,n >﹣3【答案】D 【解析】【分析】根据点平移规律可得向右平移2个单位,再向上平移2个单位得到(2,3)m n ++,再根据第二象限内点的坐标符号可得.【详解】将点(,)A m n 先向右平移2个单位,再向上平移3个单位,得到点'(2,3)A m n ++ ∵点'A 位于第二象限2030m n +<⎧∴⎨+>⎩解得:2,3m n <->- 故选:D .【点睛】本题考查了点的平移规律、平面直角坐标系的象限特点,依据题意求出点'A 的坐标是解题关键.二、填空题(本大题7小题,每小题4分,共28分)11. 在平面直角坐标系中,点P(2,﹣3)在__________象限. 【答案】四 【解析】【分析】根据各象限内点的坐标特征解答.【详解】点P (2,-3) 在第四象限.故答案为四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+) ;第二象限(-,+) ;第三象限(-,-) ;第四象限(+,-) . 12. 在实数﹣5,﹣3,0,π,3中,最大的一个数是_____.【答案】π【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵﹣5<﹣3<0<3<π,∴在实数﹣5,﹣3,0,π,3中,最大的一个数是π.故答案为:π.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.13. 把方程310x y +-=写成用含x 的代数式表示y 的形式,则y =__________.【答案】13x -【解析】【分析】把x 看做已知数,根据等式的性质变形即可.【详解】∵310x y +-=,∴y=13x -.故答案为13x -.【点睛】本题考查了二元一次方程的解法,熟练掌握等式的性质是解答本题的关键.14. 某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,如图所示的扇形图表示上述分布情况,则AOB ∠=______.【答案】60°【解析】【详解】解:∠A OB=360°×2273++=60°.故答案为60°. 15. 已知方程组32231x y k x y k +=⎧⎨+=+⎩满足3x y +=,则k 的值为___________. 【答案】7【解析】【分析】利用整体思想,将两个方程相加,再整体代入3x y +=解题即可.【详解】32231x y k x y k +=⎧⎨+=+⎩①② ①+②,552+1x y k +=3x y +=5515x y ∴+=即2115k +=∴k=7故答案为:7.【点睛】本题考查二元一次方程组,是重要考点,难度较易,掌握相关知识是解题关键.16. 把一副直角三角尺如图摆放,点C 与点E 重合,B C 边与EF 边都在直线l 上,将△A B C 向右平移得△A 'B 'C ',当边A 'C '经过点D 时,∠ED C '=_____°.【答案】75【解析】【分析】利用平移的性质可得'''60A C B ∠=︒,然后利用三角形内角和定理进行计算即可.【详解】解:由题意得:'''60'45A C B DEC ∠=︒∠=︒,,∴'180456075EDC ∠=︒-︒-︒=︒,故答案为:75.【点睛】本题考查了平移的性质、三角形内角和定理以及对一副三角板的认识,学生需具备一定的数学常识,同时充分挖掘题中隐含条件,再结合相关结论即可进行求解.17. 如图,在平面直角坐标系中,已知正方形A B C D 的边长为8,与y 轴交于点M (0,5) ,顶点C (6,﹣3) ,将一条长为2020个单位长度且没有弹性的细绳一端固定在点M 处,从点M 出发将细绳紧绕在正方形A B C D 的边上,则细绳的另一端到达的位置点N 的坐标为_____.【答案】(﹣2,3) 或(4,5)【解析】【分析】根据题意求出各点的坐标和正方形A B C D 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵正方形A B C D 的边长为8,∴C D =D A =B C =A B =8,∵M (0,5) ,C (6,﹣3) ,∴A (﹣2,5) ,B (6,5) ,D (﹣2,﹣3) ,∴A M =2,B M =6,∴绕正方形A B C D 一周的细线长度为8×4=32,∵2020÷32=63…4,∴细线另一端在绕正方形第63圈的第4个单位长度的位置,即在A B 边或在A D 边上,∴点N 的坐标为(﹣2,3) 或(4,5) .故答案为:(﹣2,3) 或(4,5) .【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标和正方形A B C D 一周的长度,从而确定2020个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.三.解答题共(62分)18. 化简:327413-+-.【答案】3.【解析】【分析】首先计算开方和去绝对值,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:原式=3﹣2+3﹣1=3.【点睛】本题综合考查了立方根、算术平方根和绝对值的运算,解决本题的关键是牢牢记住公式和法则,按规定的顺序计算即可.19. 解不等式组:240113xx+≥⎧⎪+⎨<⎪⎩.【答案】﹣2≤x<2.【解析】【分析】首先计算出两个不等式的解集,然后再根据解集的规律确定不等式组的解集即可.详解】解:240?11?3xx+≥⎧⎪⎨+<⎪⎩①②,解①得x≥﹣2,解②得x<2,∴原不等式组的解集为﹣2≤x<2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20. 如图,已知在平面直角坐标系中,四边形各顶点的坐标分别为A (0,0),B (9,0),C (7,4),D (2,8),求四边形A B C D 的面积.【答案】四边形A B C D 的面积为42.【解析】【分析】利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积.【详解】解:过D ,C 分别作D E,C F垂直于A B ,E、F分别为垂足,则有:∴S=S△OED +S四边形EFC D +S△C FB=12×A E×D E+12×(C F+D E)×EF+12×FC ×FB .=12×2×8+12×(8+4)×5+12×2×4=42.故四边形A B C D 的面积为42.【点睛】此题主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式和图形有机结合起来的解题方法.21. 某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(千米),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图.组别单次营运里程“x”(千米) 频数第一组0<x≤572第二组 5<x≤10 A 第三组10<x≤15 26 第四组15<x≤20 24 第五组 20<x≤25 30根据以上信息,解答下列问题:(1)表中A = ,样本中“单次营运里程”不超过15千米的频率为 ;(2)请把频数分布直方图补充完整;(3)估计该公司5000个“单次营运里程”超过20千米的次数.(写出解答过程)【答案】(1)48,0.73;(2)见解析;(3)750次.【解析】【分析】(1) ①由各组频数之和等于数据总数200可得出A 的值;用第一、二、三组的频数和除以200可得;(2) 根据频数分布表中的数据可把频数分布直方图补充完整;(3) 用5000乘以样本中“单次营运里程”超过20公里的次数所占比例即可得.【详解】(1)A =200-(72+26+24+30)=48;样本中“单次营运里程”不超过15公里的频率为724826200++=0.73. 故答案为48,0.73;(2)补全图形如下:(3)5000×30200=750(次). 答:该公司这5000个“单次营运里程”超过20公里的次数约为750次.【点睛】本题考查读频数分布直方图的能力和利用统计表获取信息的能力;利用统计表获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.22. 如图,A F的延长线与B C 的延长线交于点E,A D //B E,∠1=∠2=30°,∠3=∠4=80°.(1)求∠C A E的度数;(2)求证:A B //D C .【答案】(1)∠C A E=50°;(2)见解析.【解析】【分析】(1)根据平行线的性质定理即可得到结论;(2)根据平行线判定定理即可得到结论.【详解】解:(1)∵A D //B E,∴∠C A D =∠3,∵∠2+∠C A E=∠C A D ,∠3=80°,∴∠2+∠C A E=80°,∵∠2=30°,∴∠C A E=50°;(2)证明:∵∠2+∠C A E=∠C A D =∠3,∠1=∠2,∠3=∠4,∴∠1+∠C A E=∠4,即∠B A E=∠4,∴A B //D C .【点睛】本题考查了平行线的判定和性质定理,熟练掌握平行线的判定和性质定理是解题的关键.23. 为保障学生在学校期间保持清洁卫生,学校准备购买甲、乙两种洗手液,已知购买2瓶甲洗手液和3瓶乙洗手液共需140元,购买1瓶乙洗手液比购买2瓶甲洗手液少用20元.(1)求购买甲、乙两种洗手液每瓶各需多少元?(2)若要购买甲、乙两种洗手液共20瓶,且总费用不超过546元,求至少要购进甲种洗手液多少瓶?【答案】(1)购买甲、乙两种洗手液每瓶各需25元,30元;(2)至少要购进甲种洗手液11瓶.【解析】【分析】(1)设求购买甲、乙两种洗手液每瓶各需x元,y元,根据“2瓶甲洗手液和3瓶乙洗手液共需140元,1瓶乙洗手液比2瓶甲洗手液少用20元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设至少要购进甲种洗手液m瓶,则乙种洗手液(20﹣m)种,根据总费用不超过546元列不等式求得即可.【详解】解:(1)设求购买甲、乙两种洗手液每瓶各需x元,y元,根据题意得:23140220x yy x+=⎧⎨=-⎩,解得:2530 xy=⎧⎨=⎩,答:求购买甲、乙两种洗手液每瓶各需25元,30元;(2)设至少要购进甲种洗手液m瓶,则乙种洗手液(20﹣m)种,根据题意得:25m+30(20﹣m)≤546,解得:m≥10.8,∵m是正整数,∴m≥11,答:至少要购进甲种洗手液11瓶.【点睛】本题考查了二元一次方程的应用,解题的关键是找准等量关系,正确列出二元一次方程组.24. 已知,直线A B //C D ,∠EFG=90°.(1)如图1,点F在A B 上,FG与C D 交于点N,若∠EFB =65°,则∠FNC =°;(2)如图2,点F在A B 与C D 之间,EF与A B 交于点M,FG与C D 交于点N.∠A MF的平分线MH与∠C NF的平分线NH交于点H.①若∠EMB =α,求∠FNC (用含α的式子表示);②求∠MHN的度数.【答案】(1)25;(2)①∠FNC =90°﹣α;②45°.【解析】【分析】(1)根据平行线的性质和互余解答即可;(2)①过F作FP//A B ,根据平行线的性质解答即可;②过F作FQ//A B ,根据平行线的性质解答即可.【详解】(1)∵∠EFG=90°,∠EFB =65°,∴∠B FD =90°﹣65°=25°,∵A B //C D ,∴∠FNC =∠B FD =25°,故答案为:25;(2)①如图,过F作FP//A B ,连接EG,∵A B //C D ,∴A B //C D //FP,∴∠MFP=∠EMB =α,又∵∠EFG=90°,∴∠PFN=90°﹣α,∵FP//C D ,∴∠FNC =∠PFN=90°﹣α;②如图,过F作FQ//A B ,∵A B //C D ,∴A B //C D //FQ,∴∠MFQ=∠A MF,∠QFN=∠C NF,∴∠A MF+∠C NF=∠MFQ+∠QFN=∠EFG=90°,过H作HR//A B ,∵A B //C D ,∴A B //C D //HR,∴∠A MH=∠MHR,∠HNC =∠NHR,又∵MH平分∠A MF,NH平分∠C NF,∴∠A MH=12∠A MF,∠HNC =12∠C NF,∴∠MHN=∠MHR+∠NHR=∠A MH+∠HNC =12(∠A MF+∠C NF)=12×90°=45°.【点睛】本题考查平行线的性质、角平分线的性质、角的和差等知识,是重要考点,难度较易,掌握相关知识是解题关键.25. 如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形A B C D (点D 与点O重合)和边长为4的正方形EFGH的边C O和GH都在x轴上,且点H坐标为(7,0).正方形A B C D 以3个单位长度/秒的速度沿着x轴向右运动,记正方形A B C D 和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形A B C D 向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E 运动.连接A P,A E.①求t为何值时,A P所在直线垂直于x轴;②求t为何值时,S=S△A PE.【答案】(1)(3,4);(2)①t=32时,A P所在直线垂直于x轴;②当t为107或145时,S=S△A PE.【解析】【分析】(1)根据直角坐标系得出点F的坐标即可;(2)①根据A P所在直线垂直于x轴,得出关于t的方程,解答即可;②分713t≤≤和71033t≤≤两种情况,利用面积公式列出方程即可求解.21【详解】(1) 由直角坐标系可得:F 坐标为:(3,4) ;故答案为:(3,4) ;(2) ①要使A P 所在直线垂直于x 轴.如图1,只需要P x =A x ,则 t +3=3t , 解得:32t =, 所以即32t =时,A P 所在直线垂直于x 轴; ②由题意知,OH =7,所以当73t =时,点D 与点H 重合,所以要分以下两种情况讨论: 情况一:当713t ≤≤时, GD =3t ﹣3,PF =t ,PE =4﹣t ,∵S =S △A PE ,∴B C ×GD =()12y y PE E A ⨯-, 即:2×(3t ﹣3) =()1422t -⨯, 解得:107t =; 情况二:当71033t ≤≤时,如图2,HD =3t ﹣7,PF =t ,PE =4﹣t ,22 ∵S =S △A PE ,∴B C ×C H =()12y y PE E A ⨯-, 即:2×[2﹣(3t ﹣7) ]=()1422t -⨯, 解得:145t =, 综上所述,当t 为107或145时,S =S △A PE . 【点睛】本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.。

最新人教版数学七年级下学期《期末考试题》含答案解析

最新人教版数学七年级下学期《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b --B . 22a b --C . 22a bD . 22a b ++ 2. 在实数4、3、13、0.3、π、2.1234567891011121314…(自然数依次排列)、38-中,无理数有( ) A . 2个 B . 3个 C . 4个 D . 5个3. 下列命题中,属于真命题的是 ( )A . 两个锐角的和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 4. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3) 5. 如图,直线A B ,C D 被直线EF 所截,交点分别为点E,F ,若A B ∥C D ,下列结论正确的是( )A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°6. 下列说法正确是( )A . 周长相等的锐角三角形都全等B . 周长相等的直角三角形都全等C . 周长相等钝角三角形都全等D . 周长相等的等边三角形都全等7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)1020 30 40 户数 2 15 10 3则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,208. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <9. 不等式组42103x x >⎧⎪⎨-+≥⎪⎩的整数解为( ) A . 0,1,2,3 B . 1,2,3C . 2,3D . 3 10. 要反映某市某一周每天的最高气温的变化趋势,宜采用( )A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可二、填空题(本共 18 分,每小题 3 分)11. 分解因式:﹣m 2+4m ﹣4═_____.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y 轴,且A B =3,则点B 的坐标是___13. 小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.14. 如图,A D 是△A B C 的中线,E 是A D 的中点,如果S △A B D =12,那么S △C D E =__. 15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P (m+2,2m ﹣1)在第四象限,则m 的值为_____.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.三、解答题17. 计算:3827﹣(π﹣1)0﹣(12)﹣1.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是 .25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0). (1)△A B C 的形状是 等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y 轴上找一点P ,如果△PA B 是等腰三角形,请直接写出点P 的坐标.答案与解析一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b -- B . 22a b -- C . 22a b D . 22a b ++【答案】B【解析】【分析】根据不等式的性质即可得出答案.在不等式的左右两边同时加上或减去一个数,不等式成立;在不等式的左右两边同时乘以或除以一个正数,不等式成立;在不等式的左右两边同时乘以或除以一个负数,不等符号需要改变.【详解】根据不等式的性质可知:-2A >-2B ,故选B .【点睛】本题主要考查的是不等式的基本性质,属于基础题型.记住不等式的性质是解决这个问题的关键.2.、13、0.3、π、2.1234567891011121314…(自然数依次排列),无理数有( ) A . 2个B . 3个C . 4个D . 5个 【答案】B【解析】π,2.1234567891011121314…(自然数依次排列),共3个,故选B .3. 下列命题中,属于真命题的是 ( )A . 两个锐角和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 【答案】D【解析】【分析】【详解】试题解析:A . 两个锐角的和是锐角,错误;B . 同一平面内,如果A ⊥B ,B ⊥C ,则A ∥C ,错误; C . 同位角相等,错误;D . 在同一平面内,如果A //B ,B //C ,则A //C ,正确.故选D .4. 点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3)【答案】C【解析】【分析】【详解】由点且到x轴的距离为3、到y轴的距离为4,得|y|=3,|x|=4.由P是第二象限的点,得x=-4,y=3.即点P的坐标是(-4,3),故选C .5. 如图,直线A B ,C D 被直线EF所截,交点分别为点E,F,若A B ∥C D ,下列结论正确的是()A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°【答案】D【解析】试题解析:∵A B ∥C D ,∴∠3+∠A EF=180°.所以D 选项正确,故选D .6. 下列说法正确的是()A . 周长相等的锐角三角形都全等B . 周长相等直角三角形都全等C . 周长相等的钝角三角形都全等D . 周长相等的等边三角形都全等【答案】D【解析】试题分析:根据全等三角形的判定方法依次分析各选项即可作出判断.A .周长相等的锐角三角形不一定全等,B .周长相等的直角三角形不一定全等,C .周长相等的钝角三角形不一定全等,故错误;D .周长相等的等腰直角三角形都全等,本选项正确.考点:全等三角形的判定点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,20【答案】A【解析】试题解析:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A .8. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <【答案】C【解析】【分析】分两种情况:①A 和B 构成一个直角三角形,且A 是斜边,B 是直角边,所以A >B ;②若B 是垂足时,A =B .【详解】如图,A 是斜边,B 是直角边,∴A >B ,若点A 、点B 所在直线垂直直线m,则A =B ,故选C .【点睛】本题考查了点到直线的距离,明确点到直线的距离是这点到直线的垂线段的长度,属于基础题.9. 不等式组42103xx>⎧⎪⎨-+≥⎪⎩的整数解为()A . 0,1,2,3B . 1,2,3C . 2,3D . 3 【答案】B【解析】试题分析:解不等式4x>2,可得x>12;解不等式103x-+≥,解得x≤3,因此不等式组的解集为12<x≤3,所以整数解为1,2,3.故选B .点睛:此题主要考查了不等式组的解法,根据不等式的解法分别解两个不等式,取其公共部分,然后确定其整数解即可.10. 要反映某市某一周每天的最高气温的变化趋势,宜采用()A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C .【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.二、填空题(本共18 分,每小题3 分)11. 分解因式:﹣m2+4m﹣4═_____.【答案】﹣(m﹣2)2【解析】试题解析:原式=-(m2-4m+4)=-(m-2)2.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y轴,且A B =3,则点B 的坐标是___【答案】(﹣2,2)或(﹣2,﹣4)【解析】试题解析:∵A (-2,-1),A B ∥y轴,∴点B 的横坐标为-2,∵A B =3,∴点B 的纵坐标为-1+3=2或-1-3=-4,∴B 点的坐标为(-2,2)或(-2,-4).13. 小华将直角坐标系中猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.【答案】(-1,3)、(1,3)【解析】【分析】利用坐标系中的移动法则右加左减,上加下减来确定向右平移后的各点的坐标即可【详解】∵向右平移三个单位长度,横坐标分别加3,纵坐标不变∴移动后猫眼的坐标为:(-1,3)、(1,3)【点睛】在坐标系中确定点的位置和平移是本题的考点,熟练掌握平移法则是解题的关键.14. 如图,A D 是△A B C 的中线,E是A D 的中点,如果S△A B D =12,那么S△C D E=__.【答案】6.【解析】试题解析:△A C D 的面积=△A B D 的面积=12,△C D E的面积=12△A C D 的面积=12×12=6.15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P(m+2,2m ﹣1)在第四象限,则m的值为_____.【答案】﹣1或0.【解析】试题分析:由点P(m+2,2m﹣1)在第四象限,可得m+2>0,2m-1<0,解得﹣2<m<12,又因点的横、纵坐标均为整数可得m是整数,所以m的值为﹣1或0.考点:点的坐标.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.【答案】17【解析】【分析】【详解】解∵等腰三角形的两条边长分别是3C m、7C m,∴当此三角形的腰长为3C m时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7C m,底边长为3C m,∴此等腰三角形的周长=7+7+3=17C m,故答案为:17.三、解答题17. 3827π﹣1)0﹣(12)﹣1.【答案】3. 【解析】试题分析:原式利用零指数幂、负整数指数幂法则,以及分数指数幂法则计算即可得到结果.试题解析:原式=3827﹣1﹣2=6﹣1﹣2=3.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.【答案】2.【解析】试题分析:原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.试题解析:原式=A 2﹣2A +1﹣4A B +4B 2+2A =(A ﹣2B )2+1,当A ﹣2B =﹣1时,原式=2.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【答案】(1)x(x+4)(x﹣4);(2)(x+2)2(x﹣3)2.【解析】试题分析:(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.试题解析:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【答案】x>3.【解析】试题分析:先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.试题解析:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .【答案】见解析.【解析】【分析】易证△A B D ≌△A C D ,则可得证.【详解】解:证明:∵∠1=∠2,∴B D =C D ,在△A B D 与△A C D 中,A B =A C ,B D =C D ,A D =A D ,∴△A B D ≌△A C D (SSS),∴∠B A D =∠C A D ,即A D 平分∠B A C .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .【答案】证明见解析.【解析】【分析】【详解】试题分析:先根据垂直的定义得出∠A PQ+∠2=90°,再由∠1+∠2=90°得出∠A PQ=∠1,进而可得出结论.试题解析:如图,∵PM ⊥PQ (已知),∴∠A PQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠A PQ=∠1(同角的余角相等),∴A B ∥C D (内错角相等,两直线平行).23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T 恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T 恤的数量分别是多少?【答案】生产帽子1900件,生产T 恤4100件.【解析】试题分析:设生产帽子x 件,生产T 恤y 件,根据“两种纪念品共生产6000件,且T 恤比帽子的2倍多300件”列方程组求解可得.试题解析::设生产帽子x 件,生产T 恤y 件.根据题意,得:6000{2300x y y x ++==, 解得:1900{4100x y == 答:生产帽子1900件,生产T 恤4100件.【点睛】此题主要考查了二元一次方程组的应用,弄清题意,找出合适的等量关系,据此列出方程组是解题关键.24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是.【答案】(1)详见解析;(2)100;(3)360.【解析】【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【详解】(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.【点睛】此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0).(1)△A B C 的形状是等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y轴上找一点P,如果△PA B 是等腰三角形,请直接写出点P的坐标.【答案】(1)等腰直角三角形,(2)22(3)P(0,﹣2)或P(0,2﹣22或P(0,2+22或P(0,0).【解析】【分析】(1)根据点的坐标判断出OA =OB =OC ,从而得出结论;(2)根据点的坐标求出求出B C ,OA ,再用三角形面积公式即可;(3)设出点P坐标,根据平面坐标系中,两点间的距离公式表示出B P,A P,再分三种情况计算即可.【详解】∵A (0,2)、B (﹣2,0)、C (2,0).∴OB =OC =OA ,∴△A B C 是等腰三角形,∵A O⊥B C ,∴△A B C 是等腰直角三角形.故答案为等腰直角三角形,(2)∵A (0,2)、B (﹣2,0)、C (2,0).∴B C =4,OA =2,∴S△A B C =12B C ×A O=12×4×2=4,∵A (0,2)、B (﹣2,0), ∴4+4=22(3)设点P(0,m),∵A (0,2)、B (﹣2,0),∴,A P=|m﹣2|,∵△PA B 是等腰三角形,∴①当A B =B P时,∴,∴m=±2,∴P(0,2)(与点A 重合,舍去)或P(0,﹣2),②当A B =A P时,∴﹣2|,∴m=2﹣∴P(0,2﹣P(0,③当A P=B P时,∴|m﹣,∴m=0,∴P(0,0),∴P(0,﹣2)或P(0,2﹣P(0,P(0,0).【点睛】此题是等腰三角形性质,主要考查了等腰三角形的判定,两点间的距离公式,方程的解法,解本题的关键是分类讨论计算即可.。

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米【解答】解:0.0000152=1.52×10﹣5.故选:B.2.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+1 x )C.(x+2)(x﹣2)=x2﹣4D.x2﹣6x+9=(x﹣3)2【解答】解:A、没把一个多项式转化成几个整式乘积的形式,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、整式的乘法,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.3.(3分)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠4【解答】解:A、∠B的内错角是∠1,故此选项符合题意;B、∠B与∠2是同旁内角,故此选项不合题意;C、∠B与∠3是同位角,故此选项不合题意;D、∠B与∠4是不是内错角,故此选项不合题意;故选:A.4.(3分)不等式﹣2x+6<0的解集在数轴上表示,正确的是()A .B .C .D .【解答】解:﹣2x <﹣6, x >3, 故选:A .5.(3分)下列运算正确的是( ) A .(a 2)5=a 7 B .(x ﹣1)2=x 2﹣1 C .3a 2b ﹣3ab 2=3D .a 2•a 4=a 6【解答】解:A 、(a 2)5=a 10,故原题计算错误; B 、(x ﹣1)2=x 2﹣2x +1,故原题计算错误;C 、3a 2b 和3ab 2不是同类项,不能合并,故原题计算错误;D 、a 2•a 4=a 6,故原题计算正确; 故选:D .6.(3分)若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5B .3a >3bC .2+a <2+bD .a3<b3【解答】解:∵a >b , ∴a ﹣5>b ﹣5, ∴选项A 不正确; ∵a >b , ∴3a >3b , ∴选项B 正确; ∵a >b , ∴2+a >2+b , ∴选项C 不正确; ∵a >b ,∴a 3>b3,∴选项D 不正确. 故选:B .7.(3分)下列命题中,假命题的是( ) A .三角形中至少有两个锐角B .如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C .直角三角形一定是轴对称图形D .三角形的一个外角一定大于和它不相邻的任何一个内角 【解答】解:A 、三角形中至少有两个锐角,正确,是真命题;B 、如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形,正确,是真命题;C 、等腰直角三角形一定是轴对称图形,错误,是假命题;D 、三角形的一个外角大于和它不相邻的任何一个内角,故正确,是真命题, 故选:C .8.(3分)如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A 、B 两架轰炸机对应点的坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么轰炸机C 对应点的坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)【解答】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1),故选:A.9.(3分)已知点M(a,3)在第二象限,则a的取值范围是()A.a>0B.a<0C.a<3D.a>3【解答】解:∵点M(a,3)在第二象限,∴a<0,故选:B.10.(3分)在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20,若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6【解答】解:∵D(1,2)、E(﹣2,1)、F(0,t),∴“水平底”a=1﹣(﹣2)=3.“铅垂高“h=1或|2﹣t|或|1﹣t|①当h=1时,三点的“矩面积”S=1×3=3≠15,不合题意;②当h=|2﹣t|时,三点的“矩面积”S=3×|2﹣t|=15,解得:t=﹣3或t=7(舍去);③当h=|1﹣t|时,三点的“矩面积”S=3×|1﹣t|=15,解得:t=﹣4(舍去)或t=6;综上:t=﹣3或6.故选:D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)一个长方形的面积为a 3﹣4a ,宽为a ﹣2,则长为 a (a +2) .【解答】解:根据题意得:(a 3﹣4a )÷(a ﹣2)=a (a +2)(a ﹣2)÷(a ﹣2)=a (a +2), 故答案为:a (a +2)12.(2分)√−273+(−12)﹣1+(3.14﹣π)0= ﹣4 .【解答】解:原式=﹣3﹣2+1 =﹣4. 故答案为:﹣4.13.(2分)如图所示,∠BAC =90°,AD ⊥BC ,则下列结论中,正确的为 ①② (填序号).①点A 到BC 的距离是线段AD 的长度; ②线段AB 的长度是点B 到AC 的距离; ③点C 到AB 的垂线段是线段AB .【解答】解:∵AD ⊥BC ,∴点A 到BC 的距离是线段AD 的长度,①正确; ∵∠BAC =90°, ∴AB ⊥AC ,∴线段AB 的长度是点B 到AC 的距离,②正确 ∵AB ⊥AC ,∴C 到AB 的垂线段是线段AC ,③不正确. 其中正确的为①②, 故答案是:①②.14.(2分)如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 同位角相等,两直线平行 .【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.15.(2分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF =34°,则∠BOD的大小为22°.【解答】解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.16.(2分)当前,“低头族”已成为热门话题之一,为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是D;A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查并说出你的理由样本具有代表性.【解答】解:为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是对在路边行走的路人随机发放问卷进行调查, 理由是抽取的样本具有代表性, 故答案为:D ;样本具有代表性.17.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a ﹣3b .如:1⊕5=2×1﹣3×5=﹣13,则不等式x ⊕4<2的解集为 x <7 . 【解答】解:根据题中的新定义化简得:2x ﹣12<2, 移项合并得:2x <14, 解得:x <7. 故答案为:x <7.18.(2分)已知△ABC 中,AB =AC ,求证:∠B <90°,若用反证法证这个结论,应首先假设 ∠B ≥90° .【解答】解:用反证法证明:第一步是:假设∠B ≥90°. 故答案是:∠B ≥90°.三.解答题(共9小题,满分54分,每小题6分) 19.(6分)解不等式组,并写出该不等式组的所有整数解. {5x +2≥3(x −1)1−x−26>12x【解答】解:解不等式5x +2≥3(x ﹣1),得:x ≥−52, 解不等式1−x−26>12x ,得:x <2, ∴不等式组的解集为−52≤x <2, 则不等式组的整数解为﹣2,﹣1,0,1. 20.(6分)化简求值.(1)[(x +y )(x ﹣y )﹣(x ﹣y )2+2y (x ﹣y )]÷(﹣2y ),其中x =−12,y =2. (2)已知x 2﹣2x ﹣2=0,求(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1)的值. 【解答】解:(1)原式=(x ﹣y )[(x +y )﹣(x ﹣y )+2y ]÷(﹣2y ) =2y ﹣2x ,当 x =−12,y =2时,原式=2×2﹣2×(−12)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.21.(6分)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)【解答】解:(1)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2;(2)m2(a﹣b)+n2(b﹣a),=m2(a﹣b)﹣n2(a﹣b),=(a﹣b)(m2﹣n2),=(a﹣b)(m+n)(m﹣n).22.(5分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.【解答】解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF ∥AB ;(2)∵EF ∥AB ,CD ∥AB , ∴EF ∥CD , ∵∠CEF =70°, ∴∠ECD =110°, ∵∠DCB =70°,∴∠ACB =∠ECD ﹣∠DCB , ∴∠ACB =40°.23.(6分)如图,在平面直角坐标系中:A (0,1),B (2,0),将点B 向上平移1.5个单位得到点C .(1)求△ABC 的面积.(2)如果在第二象限内有一点P (a ,1),使得四边形ABOP 的面积与△ABC 的面积相等?求出P 点的坐标.【解答】解:(1)∵将点B 向上平移1.5个单位得到点C , ∴点C 的坐标为(2,1.5), ∴△ABC 的面积=12×1.5×2=1.5; (2)∵四边形ABOP 的面积与△ABC 的面积相等, ∴12×2×1+12×1×|a|=12×2×1.5,解得:a =±1,∵在第二象限内有一点P (a ,1), ∴a =﹣1,所以点P 的坐标(﹣1,1).24.(7分)在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理.(1)请完成下面频数分布统计表;组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)在上图中请画出频数分布直方图;(3)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.【解答】解:(1)补全频数分布表如下:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)频数分布直方图如下:(3)根据题意得:200×2+4+1020=160(人),则估计一天行走的步数少于8500步的人数约为160人.25.(5分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?【解答】解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.26.(7分)根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=70°,则∠1+∠2+∠4+∠6+∠8=160度.【解答】解:(1)∵CD平分∠ECB,FG∥CD,∵∠ECD=∠DCF=∠GFB=12(180°﹣∠ECA),∵∠ECA=α,∴∠GFB=12(180°﹣a)=90°−12a,答:∠GFB的度数为90°−12α.(2)如图,过点B作BM∥AE,则BM∥AE∥CD,∴∠1+∠CBM=180°,∠MBA+∠BAE=180°,∵AB⊥AE,∴∠BAE=MBA=90°,∴∠1+∠2+∠BAE=180°×2,∴∠1+∠2=360°﹣∠BAE=360°﹣90°=270°,答:∠1+∠2的度数为270°.(3)分别以各个角的顶点,作∠2的长边的平行线,根据平行线的性质,两直线平行,内错角相等,可得,∠3+∠5+∠7=∠2+∠4+∠6+∠1+∠8=40°+50°+70°=160°.故答案为:160.27.(6分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“关联方程”.如:方程x ﹣1=0就是不等式组{x +1>0x −2<0的“关联方程”. (1)试判断方程①3x +2=0,②x ﹣(3x ﹣1)=﹣4是否是不等式组{2x −7<04x −3>0的关联方程,并说明理由;(2)若关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程,求整数k 的值;(3)若方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程,求m 的取值范围.【解答】解:(1)解方程3x +2=0得:x =−23,解方程x ﹣(3x ﹣1)=﹣4得:x =52,解不等式组{2x −7<04x −3>0得:34<x <72, 所以不等式组{2x −7<04x −3>0的关联方程是②; (2)解方程2x +k =1(k 为整数)得:x =1−k 2解不等式组{x −1<12x −2≥−3x −1得:14≤x <32,∵关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程, ∴14≤1−k 2<32, 解得﹣2<k <12∴整数k =﹣1,0;(3)解方程9﹣x =2x 得:x =3,解方程9+x =2(x +52)得:x =4,解不等式组{x +m <2x x −m ≤2得:m <x ≤2+m , ∵方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程, ∴2≤m <3,即m 的取值范围是2≤m <3.。

【人教版】数学七年级下册《期末考试题》含答案解析

【人教版】数学七年级下册《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、精心选一选,相信自己的判断力!(每小题3分.共36分)1. 二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是()A .1xy=⎧⎨=⎩B .1xy=⎧⎨=⎩C .11xy=⎧⎨=⎩D .11xy=⎧⎨=-⎩2. 下列各数中无理数有().3.141,227-,327-, π,0,2.3 ,0.101001000……A . 2个B . 3 个C . 4个D . 5个3. 如图,直线A B 与直线C D 相交于点O,OE⊥A B ,垂足为O,∠EOD =30°,则∠B OC =()A . 150°B . 140°C . 130°D . 120°4. 下列条件不能判定A B //C D 的是( )A . ∠3=∠4B . ∠1=∠5C . ∠1+∠2=180°D . ∠3=∠55. 下列A 、B 、C 、D ;四幅图案中,能通过平移左图案得到的是()A .B .C .D .6. 如果点M(A +3,A +1)在直角坐标系的x轴上,那么点M的坐标为( ) A . (0,-2) B . (2,0) C . (4,0) D . (0,-4)7. 把不等式组{x10x10+≥-<的解集表示在数轴上正确的是()A .B .C .D .8. 为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析;在这个问题中,总体是指( )A . 400B . 被抽取的50名学生C . 初二年级400名学生的体重D . 被抽取50名学生的体重9. 下列说法正确的是( )A . 4的平方根是2B . ﹣4的平方根是﹣2C . (﹣2)2没有平方根D . 2是4的一个平方根10. 已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是( )A . 7B . ﹣8C . ﹣10D . 911. 点P(1,-2)( )A .第一象限B . 第二象限C . 第三象限D . 第四象限12. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( ) A . 301216400x y x y+=⎧⎨+=⎩ B . 301612400x y x y+=⎧⎨+=⎩ C . 121630400x y x y+=⎧⎨+=⎩ D . 161230400x y x y+=⎧⎨+=⎩二、认真填一填,试试自己的身手!填空题(每小题3分,共24分)13. 不等式2x+1>3x-2的非负整数解是______.14. 算术平方根等于本身的实数是__________. 15. 若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是_____.16. 实a、b在数轴上的位置如图所示,则化简()2a b b a++-=___________.17. 点()2,1M-关于y轴的对称点的坐标为______.18. 如图,已知A B ∥C D ,∠A =60°,∠C =25°,则∠E=_____度.19. 某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐的学生共有_________人.20. 一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一分,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.三、计算题(每小题4分,共20分)21. 239(6)27--22. 解方程组:(1)1235 y xx y=-⎧⎨+=⎩(2)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩23. 解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来. 24. 已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值.四、解答题(共40 分)25. 已知△A B C 在平面直角坐标系中的位置如图所示.将△A B C 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积26. 如图,△A B C 中,D 在B C延长线上,过D 作D E ⊥A B 于E ,交A C 于F .∠A =30°,∠FC D =80°,求∠D .27. 一支部队第一天行军4h ,第二天行军5h ,两天共行军98KM ,且第一天比第二天少走2KM ,第一天和第二天行军的平均速度各是多少?28. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.每台电脑机箱、液晶显示器的进价各是多少元?29. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?30. 为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?参考答案一、精心选一选,相信自己的判断力!( 每小题3分.共36分)1. 二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是( )A . 01x y =⎧⎨=⎩B . 10x y =⎧⎨=⎩C . 11x y =⎧⎨=⎩D . 11x y =⎧⎨=-⎩【答案】B【解析】【分析】 将各项中x 与y 的值代入方程检验即可得到结果.【详解】A 、x=0、y=1时,x-2y=0-2=-2≠1,不符合题意;B 、x=1、y=0时,x-2y=1,符合题意;C 、x=1、y=1时,x-2y=1-2=-1≠1,不符合题意;D 、x=1、y=-1时,x-2y=1+2=3≠1,不符合题意;故选B .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 2. 下列各数中无理数有( ).3.141, 227-, , π ,0,2.3 ,0.101001000…… A . 2个B . 3 个C . 4个D . 5个【答案】A【解析】【分析】根据无理数的定义求解即可.【详解】解:π,0.1010010001…是无理数,故选A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.3. 如图,直线A B 与直线C D 相交于点O ,OE ⊥A B ,垂足为O ,∠EOD =30°,则∠B OC =( )A . 150°B . 140°C . 130°D . 120°【答案】D【解析】【分析】运用垂线,邻补角的定义计算.【详解】∵OE⊥A B ,∴∠EOB =90°,∵∠EOD =30°,∴∠D OB =90°-30°=60°,∴∠B OC =180°-∠D OB =180°-60°=120°,故选D【点睛】本题主要考查了垂线,邻补角,灵活运用垂线,邻补角的定义计算是解题的关键.4. 下列条件不能判定A B //C D 的是( )A . ∠3=∠4B . ∠1=∠5C . ∠1+∠2=180°D . ∠3=∠5 【答案】D【解析】【分析】根据平行线的判定逐个判断即可.【详解】A .∵∠3=∠4,∴A B ∥C D ,故本选项不符合题意;B .∵∠1=∠5,∴A B ∥CD ,故本选项不符合题意;C .∵∠1+∠2=180°,∠1+∠3=180°,∴∠3=∠2,∴A B ∥CD ,故本选项不符合题意;D .根据∠3=∠5,不能推出A B ∥C D ,故本选项符合题意.故选D .【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解答此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.5. 下列A 、B 、C 、D ;四幅图案中,能通过平移左图案得到的是()A .B .C .D .【答案】A【解析】试题分析:依题意知,平移的概念是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,不改变图像大小与形状.故A 图笑脸为原图以一定方向平移所得,不改变形状与大小.选A .考点:平移点评:本题难度较低,主要考查学生对平移知识点的掌握.根据平移的性质判定即可.6. 如果点M(A +3,A +1)在直角坐标系的x轴上,那么点M的坐标为( )A . (0,-2)B . (2,0)C . (4,0)D . (0,-4)【答案】B【解析】∵点M(A +3,A +1)在直角坐标系的x轴上,∴A +1=0,解得A =−1,所以,A +3=−1+3=2,点M的坐标为(2,0).故选B .7. 把不等式组{x10x10+≥-<解集表示在数轴上正确的是()A .B .C .D .【答案】D【解析】【分析】先解不等式组,再把解集表示在数轴上.【详解】解:x+10x10≥⎧-<⎨⎩①②,解①得,x1≥-,解②得,x1<,把解集表示在数轴上,不等式组的解集为1x1-≤<.故选D .【点睛】本题考查了一元一次不等式组的解法以及在数轴上表示不等式的解集,是基础知识比较简单.8. 为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析;在这个问题中,总体是指( )A . 400B . 被抽取的50名学生C . 初二年级400名学生的体重D . 被抽取50名学生的体重【答案】C【解析】在这个问题中,总体是指400名学生的体重,故选C .9. 下列说法正确是( )A . 4的平方根是2B . ﹣4的平方根是﹣2C . (﹣2)2没有平方根D . 2是4的一个平方根【答案】D【解析】【分析】依据平方根的性质即可作出判断.【详解】A .4的平方根是±2,故A 错误;B .−4没有平方根,故B 错误;C .()224-=,有平方根,故C 错误;D .2是4的一个平方根,故D 正确.故选D .【点睛】此题主要考查平方根的相关知识,求一个数A 的平方根的运算,叫做开平方,其中A 叫做被开方数.A >0时,A 有两个平方根;A =0时,A 只有一个平方根;A <0时,没有平方根.10. 已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是( )A . 7B . ﹣8C . ﹣10D . 9【答案】D【解析】【分析】可以分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.【详解】解第一个方程得x=2435k-,第二个方程得x=-35,∴243355k-=-,解得k=9.故选D .【点睛】本题解决的关键是能够求解关于x的方程,正确理解方程解的含义.11. 点P(1,-2)在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】点P(1,-2)所在的象限是第四象限,故选D .12. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( )A . 301216400x y x y +=⎧⎨+=⎩B . 301612400x y x y +=⎧⎨+=⎩C . 121630400x y x y +=⎧⎨+=⎩D . 161230400x y x y +=⎧⎨+=⎩【答案】B【解析】【分析】 设购买甲种奖品x 件,乙种奖品y 件,根据“花了400元钱购买甲、乙两种奖品共30件”列方程即可.【详解】若设购买甲种奖品x 件,乙种奖品y 件,根据题意得:301612400x y x y +=⎧⎨+=⎩. 故选:B .【点睛】本题考查了根据实际问题抽象出方程组:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二、认真填一填,试试自己的身手!填空题(每小题3分,共24分)13. 不等式2x +1>3x -2的非负整数解是______.【答案】0,1,2【解析】【分析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x ,合并同类项得,3>x ,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义.14. 算术平方根等于本身的实数是__________.【答案】0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案. 解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.15. 若点(m ﹣4,1﹣2m )在第三象限内,则m 的取值范围是_____. 【答案】142m << 【解析】【分析】先根据第三象限的点的坐标的符号特征列出关于m 的不等式组,再求解即可.【详解】由题意得40120m m -<⎧⎨-<⎩,解得:142m <<. 【点睛】解题的关键是熟练掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16. 实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.【答案】2a -【解析】由数轴得,A +B <0,B -A >0,|A +B |+()2b a - A -B +B -A =-2A .故答案为-2A .点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时A 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.17. 点()2,1M -关于y 轴的对称点的坐标为______.【答案】()2,1【解析】【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.18. 如图,已知A B ∥C D ,∠A =60°,∠C =25°,则∠E=_____度.【答案】35【解析】【分析】设A E交C D 于点F,先根据平行线的性质求出∠D FE的度数,再由三角形外角的性质即可得出结论.【详解】设A E交C D 于点F,∵A B ∥ C D ,∠A =60°,∴∠D FE=∠A =60°,∵∠D FE是△C EF的外角,∴∠E=∠D FE-∠C =60°-25°=35°,故答案为35【点睛】本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:(1)两直线平行,同位角相等;(2)三角形的一个外角等于不相邻的两个内角和.19. 某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐学生共有_________人.【答案】190【解析】试题解析:根据扇形统计图的定义,各部分占总体的百分比之和为1,由图可知,爱好音乐的学生占总体的百分比为:1-32%-33%-16%=19%,所以爱好音乐的学生共有1000×19%=190人.故答案为190.20. 一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一分,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.【答案】24.【解析】试题分析:设小明答对了x题.故(30-x)×(-1)+4x≥90,解得:x≥24.考点:一元一次不等式的应用.三、计算题(每小题4分,共20分)21.【答案】0.【解析】【分析】根据算术平方根、立方根进行计算.【详解】原式33627=3630【点睛】本题考查的是算术平方根、立方根,需要注意开立方里面的负号要保留,出来后要变号.22. 解方程组:(1)1235 y xx y=-⎧⎨+=⎩(2)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩【答案】(1)23xy=-⎧⎨=⎩; (2)57xy=⎧⎨=⎩.【解析】【分析】(1)直接用代入法求解即可,(2)解题时需要先化简,再用代入法或加减消元法求解.【详解】(1) 原方程组标记为1235y x x y =-⎧⎨+=⎩①②, 将①代入②得2315x x ,解得2x =- ,把2x =-代入1y x =-,解得3y =∴方程组的解为23x y =-⎧⎨=⎩; (2) 原方程组可化为383520x y x y -⎧⎨--⎩=③=④,③-④得,4y=28,即y=7,把y=7代入3x-y=8得,3x-7=8,即x=5.∴方程组的解为57x y =⎧⎨=⎩. 【点睛】本题考查的是计算能力,解题时要注意观察,选择适当的解题方法会达到事半功倍的效果.23. 解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来. 【答案】x≤1,数轴详见解析.【解析】【分析】分别解两个不等式,再取两个解集的公共解集,并在数轴上表示出来.【详解】()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②, 解:由①得:x≤1,由②得:x <4,∴ 原不等式的解集为x≤1.24. 已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++的值.【答案】0.【解析】试题分析:利用已知倒数,相反数关系代入求值.试题解析:由题意得A b=1,C +D =0,所以31ab c d-+++=-1+1=0.故答案为0.四、解答题(共40 分)25. 已知△A B C 在平面直角坐标系中的位置如图所示.将△A B C 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积【答案】(1)详见解析;(2)A 1(4,−2), B 1(1,−4), C 1(2,−1);(3)7 2【解析】【分析】(1)直接利用平移的性质得出A ,B ,C 平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A 1B 1C 1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:A 1(4,−2), B 1 (1,−4), C 1(2,−1);(3) △A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则26. 如图,△A B C 中,D 在B C 的延长线上,过D 作D E⊥A B 于E,交A C 于F.∠A =30°,∠FC D =80°,求∠D .【答案】40°【解析】【分析】由三角形内角和定理,可将求∠D 转化为求∠C FD ,即∠A FE,再在△A EF中求解即可.【详解】∵D E⊥A B (已知),∴∠FEA =90°(垂直定义),∵△A EF中,∠FEA =90°,∠A =30°(已知),∴∠A FE=180°−∠FEA −∠A (三角形内角和是180)=180°−90°−30°=60°,又∵∠C FD =∠A FE(对顶角相等),∴∠C FD =60°,∴在△C D F中,∠C FD =60°,∠FC D =80°(已知),∴∠D =180°−∠C FD −∠FC D =180°−60°−80°=40°27. 一支部队第一天行军4h,第二天行军5h,两天共行军98KM,且第一天比第二天少走2KM,第一天和第二天行军的平均速度各是多少?【答案】第一天行军速度为12km/h,第二天行军速度为10km/h.【解析】【分析】设:第一天行军的平均速度为xkm/h ,第二天行军的平均速度为ykm/h ,根据两天共行军98km ,第一天比第二天少走2km ,列出方程组求解.【详解】设:第一天行军平均速度为xkm/h,第二天行军平均速度为ykm/h可得方程组4598542x y y x +=⎧⎨-=⎩ 解得1210x y =⎧⎨=⎩答:第一天行军的平均速度为12km/h ,第二天行军的平均速度为10km/h .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.28. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.每台电脑机箱、液晶显示器的进价各是多少元?【答案】每台电脑机箱的进价是60元,液晶显示器的进价是800元.【解析】 解:设每台电脑机箱的进价是元,液晶显示器的进价是元,得, 解得. 答:每台电脑机箱的进价是60元,液晶显示器的进价是800元. 29. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元. (1)符合公司要求的购买方案有几种?请说明理由; (2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【答案】(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金30. 为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?【答案】(1)50人;(2)见解析;(3)252人【解析】【分析】(1)由引体向上的次数为4次的人数除以所占的百分比即可求出抽测的男生数;(2)求出次数为5次的人数,补全统计图即可;(3)求出5次以上(含5次)人数占的百分比,乘以350即可得到结果【详解】(1)根据题意得:10÷20%=50(人),答:本次抽测的男生有50人;(2)5次的人数为50-(4+10+14+6)=16(人),补全条形统计图,如图所示:(3)根据题意得:16146350252()50人答:该校350名七年级男生中估计有252人体能达标.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.。

2020-2021学年七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列实数中是无理数的是( ) A .23B .√2C .3.1D .0解:A 、23是分数,属于有理数,故本选项不合题意; B 、√2是无理数,故本选项符合题意;C 、3.1是有限小数,属于有理数,故本选项不合题意;D 、0是整数,属于有理数,故本选项不合题意. 故选:B .2.(3分)如图,若AB ∥DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°解:过C 作CM ∥AB , ∵AB ∥DE , ∴AB ∥CM ∥DE ,∴∠1+∠B =180°,∠2=∠D =35°, ∵∠B =130°, ∴∠1=50°,∴∠BCD =∠1+∠2=85°, 故选:B .3.(3分)下列等式正确的是( )A .±√9=3B .√273=±3C .√(−3)33=−3D .√(−3)2=−3解:A 、原式=±3,故A 错误. B 、原式=3,故B 错误. C 、原式=﹣3,故C 正确. D 、原式=3,故D 错误. 故选:C .4.(3分)如图,直线AB ,CD 相交于点O ,OE ⊥CD ,垂足为点O .若∠BOE =40°,则∠AOC 的度数为( )A .40°B .50°C .60°D .140°解:∵OE ⊥CD , ∴∠EOD =90°, ∵∠BOE =40°,∴∠BOD =90°﹣40°=50°, ∴∠AOC =∠BOD =50°. 故选:B .5.(3分)已知a <b ,下列结论中成立的是( ) A .﹣a +1<﹣b +1 B .﹣3a <﹣3bC .−12a +2>−12b +2D .如果c <0,那么ac<bc解:A 、a <b 则﹣a +1>﹣b +1,故原题说法错误; B 、a <b 则﹣3a >﹣3b ,故原题说法错误; C 、a <b 则−12a +2>−12b +2,故原题说法正确; D 、如果c <0,那ac>bc ,故原题说法错误;故选:C .6.(3分)下列实数中,是无理数的是( )A .3.14159265B .√36C .√7D .227解:A 、3.1415926是有限小数是有理数,选项错误. B 、√36=6,是整数,是有理数,选项错误; C 、√7是无理数,选项正确; D 、227是分数,是有理数,选项错误;故选:C .7.(3分)不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .解:{2x −4≤0①x +2>0②,由①得x ≤2,由②得x >﹣2, 故此不等式组的解集为:故选:C .8.(3分)点P (t +3,t +2)在直角坐标系的x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(﹣2,0)C .(1,2)D .(1,0)解:∵点P (t +3,t +2)在直角坐标系的x 轴上, ∴t +2=0, 解得:t =﹣2, 故t +3=1,则P 点坐标为(1,0). 故选:D .9.(3分)老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有( ) A .4种B .3种C .2种D .1种解:设鸡有x 只,鸭有y 只, 依题意,得:100x +80y =660, ∴y =33−5x4.又∵x ,y 均为正整数, ∴{x =1y =7或{x =5y =2, ∴这背鸡鸭只数只有2种方案. 故选:C .10.(3分)在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(a ,b ),则点A 2020的坐标为( ) A .(a ,b )B .(﹣b +1,a +1)C .(﹣a ,﹣b +2)D .(b ﹣1,﹣a +1)解:观察发现:A 1(a ,b ),A 2(﹣b +1,a +1),A 3(﹣a ,﹣b +2),A 4(b ﹣1,﹣a +1),A 5(a ,b ),A 6(﹣b +1,a +1)…∴依此类推,每4个点为一个循环组依次循环, ∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1), 故选:D .二.填空题(共5小题,满分15分,每小题3分) 11.(3分)若√a 3=−7,则a = ﹣343 . 解:∵√a 3=−7, ∴a =(﹣7)3=﹣343. 故答案为:﹣343.12.(3分)新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是 普查 .(填“普查”或“抽样调查”)解:新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是普查. 故答案为:普查.13.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为 {4x +6y =28x =y +2 .解:由题意可得,{4x +6y =28x =y +2, 故答案为:{4x +6y =28x =y +2.14.(3分)已知关于x ,y 的方程组{4x +y =3mx −y =7m −5的解满足不等式2x +y >8,则m 的取值范围是 m <﹣6 .解:解方程组得x =2m ﹣1,y =4﹣5m , 将x =2m ﹣1,y =4﹣5m 代入不等式2x +y >8得 4m ﹣2+4﹣5m >8, ∴m <﹣6, 故答案为m <﹣6.15.(3分)如图,点A (1,0),B (2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为 (0,4)或(0,﹣4) .解:设△ABC 边AB 上的高为h , ∵A (1,0),B (2,0), ∴AB =2﹣1=1, ∴△ABC 的面积=12×1•h =2, 解得h =4,点C 在y 轴正半轴时,点C 为(0,4), 点C 在y 轴负半轴时,点C 为(0,﹣4), 所以,点C 的坐标为(0,4)或(0,﹣4). 故答案为:(0,4)或(0,﹣4). 三.解答题(共8小题,满分75分) 16.(10分)(1)解方程组{x +y =102x −y =11;(2)解不等式3x ﹣2(x ﹣1)≥10.解:(1){x +y =10①2x −y =11②,由①+②,得3x =21, 解得x =7,把x =7代入①,得y =3. ∴原方程组的解为:{x =7y =3.(2)3x ﹣2(x ﹣1)≥10. 去括号,得3x ﹣2x +2≥10, 移项,得3x ﹣2x ≥10﹣2, 合并同类项,得x ≥8.17.(5分)已知5a +2的立方根是3,3a +b ﹣1的算术平方根是4,c 是√11的整数部分. (1)求a ,b ,c 的值; (2)求3a ﹣b +c 的平方根.解:(1)∵5a +2的立方根是3,3a +b ﹣1的算术平方根是4, ∴5a +2=27,3a +b ﹣1=16, ∴a =5,b =2;∵3<√11<4,c 是√11的整数部分,∴c =3;(2)3a ﹣b +c =15﹣2+3=16,16的平方根是±4.18.(9分)如图,三角形ABC 三个顶点的坐标分别是A (﹣3,﹣2),B (0,﹣1),C (﹣1,1),将三角形ABC 进行平移,点A 的对应点为A '(1,0),点B 的对应点是B ',点C 的对应点是C '.(1)画出平移后的三角形A 'B 'C '并写出B ',C '的坐标; (2)写出由三角形ABC 平移得到三角形A 'B 'C '的过程;(3)分别连接BB ',CC ',则BB '和CC '有怎样的关系?(直接写出答案,不需证明)解:(1)如图所示,△A'B'C'即为所求:∴B'(4,1),C'(3,3);(2)△ABC先向右平移4个单位长度,再向上平移2个单位长度得到△A'B'C';(3)根据平移性质可得:BB'和CC'平行且相等.19.(10分)我区的数学爱好者申请了一项省级课题﹣﹣《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名? 解:(1)本次调查共抽取学生为:205%=400(名),∴不太了解的学生为:400﹣120﹣160﹣20=100(名), 补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120400×360°=108°;(3)8000×(40%+120400)=5600(名), 所以“理解”和“了解”的共有学生5600名. 20.(9分)完成推理填空如图,已知∠B =∠D ,∠BAE =∠E .将证明∠AFC +∠DAE =180°的过程填写完整. 证明:∵∠BAE =∠E ,∴ AB ∥ DE ( 内错角相等,两直线平行 ). ∴∠B =∠ BCE ( 两直线平行,内错角相等 ). 又∵∠B =∠D ,∴∠D =∠ BCE (等量代换).∴AD ∥BC ( 同位角相等,两直线平行 ).∴∠AFC +∠DAE =180°( 两直线平行,同旁内角互补 ).证明:∵∠BAE =∠E ,∴AB ∥DE (内错角相等,两直线平行). ∴∠B =∠BCE (两直线平行,内错角相等). 又∵∠B =∠D ,∴∠D =∠BCE (等量代换).∴AD ∥BC (同位角相等,两直线平行).∴∠AFC +∠DAE =180°(两直线平行,同旁内角互补).故答案为:AB ,DE ,内错角相等,两直线平行;BCE ,两直线平行,内错角相等;BCE ,同位角相等,两直线平行;两直线平行,同旁内角互补.21.(8分)甲、乙两人共同解方程组{ax +5y =15①4x =by −2②时,甲看错了方程①中的a ,解得{x =−3y =−1,乙看错了②中的b ,解得{x =5y =4,求a 2019+(−b 10)2020的值. 解:将{x =−3y =−1代入方程组中的4x =by ﹣2得:﹣12=﹣b ﹣2,即b =10;将x =5,y =4代入方程组中的ax +5y =15得:5a +20=15,即a =﹣1, 则a 2019+(−b 10)2020=(−1)2019+(−1010)2020=−1+1=0. 22.(11分)某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本? 解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元, 由题意可得:{15x +20y =25010x +25y =225,解得:{x =10y =5,答:购买一个甲种笔记本需10元,一个乙种笔记本需5元; (2)设需要购买a 个甲种笔记本, 由题意可得:10a +5(35﹣a )≤300, 解得:a ≤25,答:至多需要购买25个甲种笔记本.23.(13分)已知,点Q 、A 、D 均在直线l 1上,点B 、C 均在直线l 2上,且l 1∥l 2,点E 是BA延长上一点.(1)如图1,CD∥AB,CE与AD相交于点F,AC与BF相交于点O,∠1=∠2,求证∠3=∠4;(2)在(1)的条件下,若BF平分∠ABC,试直接写出∠CFB与∠ACF的数量关系为∠CFB+12∠ACF=90°;(3)如图2,点N是∠QAB角平分线上一点,点M在射线BC上,若∠NMC与∠ABC 满足2∠NMC﹣∠ABC=180°的数量关系,请判断直线MN与直线AN的位置关系,并说明理由.解:(1)证明:∵∠1=∠2,∴∠1+∠ACF=∠2+∠ACF即:∠BCE=∠ACD,∵AB‖CD,∴∠ACD=∠4,∴∠BCE=∠4,∵l1∥l2∴∠3=∠BCE∴∠3=∠4;(2)如图,设∠ABF=∠5,∠ACF=∠6,∠CFB=∠7,∵BF 平分∠ABC ,∴∠ABC =2∠5,∠CBF =∠5,∵l 1∥l 2,∴∠AFB =∠CBF =∠5,∴∠AFC +∠BCF =180°,即∠1+∠6+∠5+∠7=180°①, ∵AB ‖CD ,l 1∥l 2,∴∠ABC +∠BCD =180°,∠BCD +∠CDF =180°,∴∠CDF =2∠5,∴∠1+∠6+∠2+2∠5=180°,∵∠1=∠2,∴2∠1+∠6+2∠5=180°,∴∠1+12∠6+∠5=90°②,∴①﹣②得:12∠6+∠7=90°, ∴∠CFB 与∠ACF 的数量关系为∠CFB +12∠ACF =90°. 故答案为:∠CFB +12∠ACF =90°.(3)直线MN 与直线AN 的位置关系为:MN ⊥AN .理由如下: 过点N 作NR ∥l 1,∵l1∥l2,NR∥l2,∴∠ABC=∠QAB,∠QAN=∠ANR,∠RNM=∠NMB,∵NA平分∠QAB,∴∠QAB=2∠QAN,不妨设∠QAN=x°,∠NAM=∠NMB=y°,∴∠ABC=∠QAB=2x°,∴y+∠NMC=180°①,∵2∠NMC﹣∠ABC=180°,∴2∠NMC﹣2x=180°,∠NMC﹣x=90°②,①﹣②得:x+y=90°,∴∠ANM=90°,∴MN⊥AN.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省凉山州会理县2020-2021学年七年级(下)期末数学试卷
(解析版)
一、选择题:本大题共8小题,每小题3分,共24分
1.﹣2的相反数是()
A.2 B.﹣2 C.D.﹣
2.在实数,﹣,0.1,0,2π,中,无理数的个数是()
A.0个B.1个C.2个D.3个
3.南涧无量樱花谷的樱花在12月中旬左右盛开,花朵绚丽迷人,吸引了众多海内外游客,去年到樱花谷参观的游客约为150000人,将这个数据用科学记数法表示为()
A.1.5×103B.1.5×104C.0.15×105 D.1.5×105
4.下列各式运算正确的是()
A.2a+3b=5ab B.﹣2x2﹣x2=﹣3x4C.﹣1.5﹣2=﹣4 D.﹣32=(﹣3)2
5.不等式2x﹣3>1的解集是()
A.x<1 B.x>﹣1 C.x<2 D.x>2
6.如图,能判断AB∥CE的条件是()
A.∠A=∠ACE B.∠A=∠ECD C.∠B=∠BCA D.∠B=∠ACE
7.下列图形中,属于正方体平面展开图的是()
A.B.C.D.
8.下列说法中,不正确的是()
A.1的立方根是1 B.负数没有立方根
C.9的算术平方根是3 D.的平方根是±2
二、填空题:本大题共6小题,每小题3分,共18分
9.单项式的系数是______,它是______次单项式.
10.若式子3x﹣2与的值相等,则x的值为______.
11.如图所示,直线AB,CD被直线EF所截,若∠1=∠2,则∠AEF+∠CFE=______度.
12.若(m﹣1)2+=0,则(m+n)2021的值是______.
13.过点P(2,﹣3)且垂直于y轴的直线交y轴于点Q,那么Q点的坐标为______.14.用同样大小的笑脸按如图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需要笑脸______张.(用含n的代数式表示)
三、解答题:本大题共9小题,共58分
15.计算:|﹣1|﹣22×(﹣)+.
16.先化简,再求值:
2(ab﹣b2)﹣(ab﹣a2)+3(b2﹣a2),其中a=﹣1,b=.
17.解方程组:.
18.解不等式组:.
19.如图,∠ABC=50°,∠ACB=60°,∠ABC、∠ACB的角平分线BO、CO交于O点,过O点作DE∥BC,求出∠BOC的大小.
2021图,∠B=∠C,∠B+∠D=180°,那么BC平行DE吗?为什么?
21.如图每个小方格都是边长为1个单位的正方形,△ABC在平面直角坐标系的位置如图所示,先将△ABC向左平移4个单位,再向上平移2个单位,得到△A1B1C1
(1)画出△ABC平移后的△A1B1C1;
(3)写出A1、B1、C1的坐标.
22.某中学为了了解该校学生周末活动情况,学校决定围绕“看电视、玩手机、看书以及其他活动中,你最喜欢的活动种类是什么.”(只选一类)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后,绘制成两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:
(1)该校一共抽取了多少名学生进行问卷调查?
(2)补全条形统计图.
(3)在扇形统计图中,“其他”所在扇形圆心角的度数为______度;
(4)若全校有92021生,请你估计该校周末喜欢“看书”类的学生人数约为多少人?
23.小华的家乡正在进行新农村建设,他爸爸在南涧水泥厂购买了100吨水泥,经与水泥厂老板协商,计划租用该厂A、B两种型号的汽车共6辆,用这6辆汽车一次将水泥全部运走,其中每辆A型汽车最多能装该种水泥16吨,每辆B型汽车最多能装该种水泥18吨,已知租用1辆A型汽车和2辆B型汽车共需要费用2500元,租用2辆A型汽车和1辆B型汽车共需要费用2450元,且同一种型号汽车每辆租车费用相同.
(1)求租用一辆A型汽车、一辆B型汽车的费用分别为多少元?
(2)小华的爸爸计划此次租车费用不超过5000元,通过计算求出小华的爸爸有哪几种租车方案?
参考答案与试题解析
一、选择题:本大题共8小题,每小题3分,共24分
1.﹣2的相反数是()
A.2 B.﹣2 C.D.﹣
【考点】相反数.
【分析】根据相反数的意义,只有符号不同的数为相反数.
【解答】解:根据相反数的定义,﹣2的相反数是2.
故选:A.
【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.
2.在实数,﹣,0.1,0,2π,中,无理数的个数是()
A.0个B.1个C.2个D.3个
【考点】无理数.
【分析】无根据无理数的定义进行解答即可.理数就是无限不循环小数.
【解答】解:在实数,﹣,0.1,0,2π,中,无理数有﹣,2π,共有2个;
故选C.
【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
3.南涧无量樱花谷的樱花在12月中旬左右盛开,花朵绚丽迷人,吸引了众多海内外游客,去年到樱花谷参观的游客约为150000人,将这个数据用科学记数法表示为()
A.1.5×103B.1.5×104C.0.15×105 D.1.5×105
【考点】科学记数法—表示较大的数.
【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.
【解答】解:150000=1.5×105.
故选:D.
【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|
<10,确定a与n的值是解题的关键.
4.下列各式运算正确的是()
A.2a+3b=5ab B.﹣2x2﹣x2=﹣3x4C.﹣1.5﹣2=﹣4 D.﹣32=(﹣3)2
【考点】合并同类项;有理数的乘方.
【分析】A、原式不能合并,错误;
B、原式合并得到结果,即可作出判断;
C、原式计算得到结果,即可作出判断;
D、原式利用乘方的意义计算得到结果,即可作出判断.
【解答】解:A、原式不能合并,错误;
B、原式=﹣3x2,错误;
C、原式=﹣4,正确;
D、﹣32=﹣9,(﹣3)2=9,错误,
故选C
【点评】此题考查了合并同类项,以及有理数的乘方,熟练掌握运算法则是解本题的关键.
5.不等式2x﹣3>1的解集是()
A.x<1 B.x>﹣1 C.x<2 D.x>2
【考点】解一元一次不等式.
【分析】根据一元一次不等式的解法解答.
【解答】解:移项,得2x>1+3,
合并同类项,得2x>4,
系数化为1,得x>2.
故选D.
【点评】本题考查了解一元一次不等式,理解不等式的性质是解题的关键.
6.如图,能判断AB∥CE的条件是()。

相关文档
最新文档