人教版九年级上册 第22章 二次函数全章教案
人教版九年级数学上册第二十二章二次函数大单元教学设计

(1)完成课本第22章练习题1、2、3,要求学生熟练掌握二次函数的定义、图像性质、顶点式与标准式的转换。
(2)利用图形计算器或计算机软件,绘制几个典型二次函数的图像,观察并分析开口方向、顶点、对称轴、最值等性质。
2.实际问题应用:
(3)结合生活实际,编写一道关于二次函数的应用题,要求学生将实际问题抽象为二次函数模型,并求解。
人教版九年级数学上册第二十二章二次函数大单元教学设计
一、教学目标
(一)知识与技能
1.让学生掌握二次函数的定义,能够准确地识别和描述二次函数的一般形式,即f(x) = ax^2 + bx + c(a≠0)。
2.使学生理解二次函数图像的基本性质,包括开口方向、对称轴、顶点、最小(大)值等,并能够利用这些性质解决相关问题。
2.教学方法:采用情境导入法,通过生活实例激发学生的兴趣,引导学生从实际问题中发现数学规律。
3.教学步骤:
a.展示生活中抛物线运动的图片或视频,让学生观察并描述其运动轨迹。
b.学生分享观察到的运动轨迹特点,教师引导总结出抛物线的一般形式。
c.提问:“这些运动轨迹都可以用一个数学模型来描述,你们知道是什么吗?”由此引出二次函数的定义。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们认识到数学在现实生活中的广泛应用和价值。
2.通过二次函数的学习,让学生感受到数学的对称美和秩序美,培养他们的审美情趣。
3.引导学生树立正确的价值观,认识到数学知识的学习不仅是为了应对考试,更重要的是为了解决实际问题,为我国的社会发展做出贡献。
3.教学步骤:
a.将学生分成若干小组,每组分配一个讨论题目,如二次函数的性质、图像特点等。
人教版九年级数学上册第22章《二次函数》教案

第二十二章二次函数1.通过对实际问题的分析,确定二次函数的解析式,并体会二次函数的意义.2.会用描点法画抛物线,通过图象理解二次函数的性质.3.会用配方法将二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出函数图象的对称轴,并能解决一些简单的实际问题.4.会用待定系数法求二次函数的解析式.5.会利用二次函数的图象求一元二次方程的近似解.6.掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题.1.从实际问题情境中经历探索两个变量之间的关系的过程,使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.2.通过二次函数的图象探究二次函数的性质,使学生进一步体会数形结合思想在数学中的应用,经历知识的形成过程,了解从特殊到一般的认识过程.3.运用二次函数的知识解决实际问题,体会数学知识的现实意义,提高学生分析问题、解决问题的能力,培养学生应用数学的意识.4.经历探索具体问题中的数量关系和变化规律的过程,体会建立函数模型的思想.1.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,从而提高学生应用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等思想方法,养成既能自主探索又能合作探究的良好学习习惯.3.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,获得运用数学解决实际问题的经验,感受数学模型、数学思想在实际问题中的应用价值.二次函数是初中阶段所学的有关函数知识的重点内容之一,学生在学习了正比例函数、一次函数之后,又学习了二次函数,这是对函数及其应用知识学习的深化和提高,也是学习其他初等函数的基础.二次函数是描述现实世界变量之间的关系的重要数学模型,二次函数的图象也是人们最为熟悉的曲线之一,如喷泉水流、抛掷的铅球划过的轨迹等,同时,二次函数的相关性质也是解决有关问题的理论基础,它常与一元二次方程、三角形等知识综合在一起,它综合了初中所学的函数知识,它在中学数学中起着承上启下的作用.二次函数作为重要的数学模型,在解决有关实际问题中发挥着重要作用,通过学习可以培养和提高学生用函数模型解决实际问题的能力. 本章从实际问题情境入手引出基本概念,引导学生进一步体会函数的模型思想,重点内容是对二次函数的图象和性质的理解和掌握,二次函数的图象和性质是从函数y=ax 2出发逐步深入探究的,在探究过程中体现了从特殊到一般、类比、数形结合思想,其中类比思想多处体现,如类比一次函数研究二次函数,而数形结合思想贯穿探究二次函数的图象和性质的始终.对于某些实际问题,力图加强二次函数与实际问题的联系,让学生体会数学与生活息息相关,提高学生应用数学的意识.【重点】1.通过对实际问题情境的分析,确定二次函数的解析式.2.会用描点法画二次函数图象,并从图象中了解二次函数的性质.3.会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题.4.会利用二次函数的图象求一元二次方程的近似解.5.能运用二次函数知识解决实际问题.【难点】1.能够正确运用二次函数的图象及性质解决实际问题.2.理解二次函数与一元二次方程的关系.1.注意对实际问题情境的创设,帮助学生形成模型思想.在教学中要创设丰富的实际问题的情境,使学生理解二次函数的意义,并能够用二次函数的知识解决实际问题.2.鼓励学生采用多种方法了解二次函数的性质.二次函数图象的平移问题是二次函数的教学难点,所以可以让学生将自己的想法表达出来,互相学习和借鉴.3.注重知识之间的联系,帮助学生建立二次函数与其他学过的函数之间的联系.22.3实际问题与二次函数 2课时22.1 二次函数的图象和性质1.通过对实际问题的分析,确定二次函数的解析式,并体会二次函数的意义.2.会用描点法画抛物线,通过图象了解二次函数的性质.3.会用配方法将二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出函数图象的对称轴,并能解决一些简单的实际问题.4.会用待定系数法求二次函数的解析式.1.从实际问题情境中经历探索两个变量之间的关系的过程,使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.2.通过函数的图象探究二次函数的性质,使学生进一步体会数形结合思想在数学中的应用,经历知识的形成过程,了解从特殊到一般的认识过程.1.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,从而提高学生应用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习方法,养成既能自主探索又能合作探究的良好学习习惯.【重点】1.二次函数图象及其性质.2.运用二次函数的知识解决实际问题.【难点】不同形式的二次函数图象之间的位置关系.22.1.1二次函数1.理解并掌握二次函数的定义.2.能判断一个给定的函数是否为二次函数.3.能根据实际问题中的条件确定二次函数的解析式及自变量的取值范围.1.让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系的过程.2.使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.3.经历探索具体问题中的数量关系和变化规律的过程,体会建立函数模型的思想.1.通过对一些实际问题的探究,发展学生合理的猜想、推理能力,增强他们学习数学的兴趣.2.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,提高学生应用数学的意识.【重点】1.理解并掌握二次函数的定义.2.能根据实际问题中的条件确定二次函数的解析式及自变量的取值范围.【难点】用二次函数表示变量之间的关系.【教师准备】多媒体课件(1~3)【学生准备】预习教材P28~29.导入一:出示喷泉图片:图片中喷头喷出的水珠在空中走过一条曲线,这些曲线是否能用函数关系式来表示?它们的形状是怎样画出来的?这些都将在新的一章中学习.导入二:请同学们阅读章前问题,并回答下列问题:如果改变正方体的棱长x,那么正方体的表面积y会随之改变,y与x之间有什么数量关系?学生思考回答:y=6x2.【问题】y是x的函数吗?这个函数是不是我们以前学过的函数?【师生活动】复习函数、正比例函数、一次函数的概念.导入三:当你走在大街上时,会发现有好多车在奔跑,但你是否想到小汽车的行驶是要限速的?假设小汽车刹车距离s(m)与速度v(km/h )之间的函数关系式为s=v2,一辆汽车的速度为100 km/h.在前方80 m处停放着一辆故障车,你能判断此时是否有危险吗?[设计意图]通过欣赏图片、感受生活中的数量关系式,让学生感受生活中处处有数学,激发学生学习本章的兴趣.同时让学生体会二次函数是刻画某些实际问题的模型,通过复习一次函数的知识,让学生用类比的方法从已有的知识体系中自然地构建出新知识.问题1【课件1】(教材问题1)n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?思路一教师引导学生思考并回答下列问题.n个球队中,每个队要与其他个球队各比赛一场,全部比赛共有场.分析题意,题目中的等量关系为,所列等式为.【师生活动】学生独立思考后回答问题,教师点评并分析如何建立函数的数学模型.解:n个球队中,每个队要与其他(n-1)个球队各比赛一场,所以比赛的场次数m=n(n-1) ,即m=n2-n.思路二小组活动,共同探究,思考下列问题.(1)明确题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)如何根据题中的等量关系建立函数解析式?【师生活动】小组讨论,教师在巡视过程中及时解决疑难问题,学生小组讨论后发表讨论结果,教师及时补充.解:n个球队中,每个队要与其他(n-1)个球队各比赛一场,所以比赛的场次数m=n(n-1) ,即m=n2-n.问题2【课件2】(教材问题2)某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x 的值而确定,y与x之间的关系应怎样表示?思路一教师引导学生思考并回答下列问题.这种产品现在的年产量是20 t,一年后的产量是t,再经过一年后的产量是t.分析题意,题目中的等量关系为,所列等式为.【师生活动】学生独立思考后回答问题,教师点评并分析如何建立函数的模型.解:这种产品现在的年产量是20 t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x)·(1+x)t,即y=20(1+x)2.思路二小组活动,共同交流,思考下列问题.(1)明确题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)根据等量关系你能写出函数解析式吗?【师生活动】学生通过交流讨论列出函数解析式,教师在巡视过程中及时解决疑难问题.解:这种产品现在的年产量是20 t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x)·(1+x)t,即y=20(1+x)2.[设计意图]通过师生共同探讨,找到实际问题中的等量关系,列出函数关系式,为引出二次函数的概念做铺垫,同时可提高学生利用方程思想解决实际问题的能力.二、二次函数的概念观察教师板书上的三个函数关系式:(1)y=6x2; (2)m=n2-n; (3)y=20(1+x)2.【思考】(1)这三个函数是我们学过的函数吗?(2)这些函数的自变量x的最高次数是多少?(3)你能说出它们的共同特征吗?(4)通过观察,你能归纳出这种函数的一般形式吗?【师生活动】学生独立思考,小组交流,逐一回答所提问题,教师适时启发学生,共同归纳总结.【课件3】一般地,形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数,叫做二次函数.其中,x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.【思考】(1)你身边哪些量之间存在着二次函数关系?(2)二次项系数a能不能为0?b,c能不能为0?为什么?(3)如何判断一个函数是不是二次函数?(4)二次函数与一元二次方程的一般形式有什么关系?【师生活动】学生独立思考回答问题,教师和学生共同归纳二次函数的特征:①函数关系式必须是整式.②自变量的最高次数是2.③二次项系数不为0.④函数y=ax2+bx+c(a,b,c是常数)中,当a≠0时,y=ax2+bx+c是二次函数;当a=0时,y=bx+c,若b≠0,则它是一次函数,若b=0,则y=c是一个常数函数.[设计意图]学生观察讨论,通过老师设计的问题串类比已学函数,抽象出二次函数的特征,归纳总结出二次函数的一般形式,学生经历了探索二次函数概念的形成过程,[过渡语]我们通过实例归纳总结出了二次函数的概念,试试能不能解决下列问题.子:①y=6x2;②y=-3x2+5;③y=200x2+400x+200;④y=x3-2x;⑤y=x2-+3;⑥y=(x+1)2-x2.其中二次函数有.(只填序号)〔解析〕根据二次函数的概念可得①②③符合二次函数的概念;④中自变量的最高次数是3,⑤中函数右边不是整式形式,⑥中函数化简后不含二次项,均不符合二次函数的概念.故填①②③.若y=(m+1)--是二次函数,则m的值为.〔解析〕二次函数的自变量x的最高次数是 ,∴m2-6m-5=2,解得m=7或m=-1.由二次项系数不为0,得m+1≠ ,∴m=7.故填7.在如图所示的一张长、宽分别为 50 cm 和 30 cm的矩形铁皮的四个角上,各剪去一个大小相同的小正方形,用剩余的部分制作一个无盖的长方体箱子,小正方形的边长为x cm,长方体铁皮箱的底面积为y cm2.(1)求y与x之间的关系式;(2)写出自变量x的取值范围;(3)当x=5时,长方体铁皮箱的底面积是多少?解:(1)由题意得长方体的底面的长为(50-2x)cm,宽为(30-2x)cm,题目中的等量关系为长方体的底面积=长×宽,所以可得函数解析式为y=(50-2x)(30-2x)=4x2-160x+1500.(2)根据实际意义,小正方形的边长为正数,且两个小正方形的边长和不能大于矩形的宽,所以2x<30,即x<15,且x>0,所以自变量x的取值范围是0<x<15.(3)把x=5代入上述函数解析式,得y=800,所以长方体铁皮箱的底面积是800 cm2.[设计意图]通过例题加深对二次函数概念的理解和掌握,在探索中发现新知,在交流中巩固新知,同时体验在实际问题中建立函数模型,为后边的学习做铺垫,让学生体会数学来源于生活又应用于生活.[知识拓展]1.根据实际问题列二次函数关系式时应注意:(1)正确判别自变量与因变量;(2)确保找到正确的等量关系;(3)将列出的关系式整理成y=ax2+bx+c(a≠0)的形式;(4)确保自变量有意义.2.在二次函数y=ax2+bx+c中,必须注意限制条件a≠0.3.任何一个二次函数都可以化成y=ax2+bx+c(a,b,c为常数,且a≠0)的形式,因此把y=ax2+bx+c(a,b,c为常数,且a≠0)叫做二次函数的一般式.4.在二次函数y=ax2+bx+c(a≠0)中,x的取值范围是全体实数.5.二次函数y=ax2+bx+c(a≠0)与一元二次方程有着密切联系,如果将变量y换成一个常数,那么这个二次函数就是一元二次方程了.1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数,叫做二次函数.2.二次函数满足的条件:①先化简再判断;②等式右边是整式形式;③自变量的最高次数是2;④二次项系数不为0.3.二次函数的自变量的取值范围:自变量的取值在实际问题中要有实际意义.4.根据实际问题写出函数解析式:认真分析题意,找到题目中的等量关系,根据等量关系列出函数解析式.1.下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-解析:A,B中自变量x的次数是1,是一次函数;D中,等式右边不是整式形式.故选C.2.二次函数y=2x2+2x-4的二次项系数与常数项的和为()A.1B.-2C.7D.-6解析:二次函数y=2x2+2x-4中,二次项系数为2,常数项为-4,2+(-4)=-2.故选B.3.y=(m+1)2--3x+1是二次函数,则m的值为.解析:根据二次函数的概念可得m2-m=2,且m+1≠0,解得m=2.故填2.4.若物体运动的路程s(m)与时间t(s)之间的关系为s=5t2+2t,则当t=4 s时,该物体所经过的路程为.解析:把t=4代入函数解析式,得s=5×16+2×4=88.故填88 m.5.一个矩形的长是4 cm,宽是3 cm,若将这个矩形的长增加x cm,宽增加2x cm,则它的面积增加到y cm2,试写出y与x的关系式,并求出自变量x的取值范围.解:根据矩形的面积公式得y=(4+x)(3+2x)=2x2+11x+12.自变量x的取值范围是x>0.22.1.1二次函数一、感知二次函数问题1问题2二、二次函数的概念一、教材作业【必做题】教材第29页练习的1,2题.【选做题】教材第41页习题22.1的1题.二、课后作业【基础巩固】1.下列不属于二次函数的是()A.y=(x-1)(x+2)B.y=(x+1)2C.y=1-x2D.y=2(x+3)2-2x22.若y=mx2+nx-p(m,n,p是常数)为二次函数,则()A.m,n,p均不为0B.m≠0,且n≠0C.m≠0D.m≠0,且p≠03.已知二次函数y=3(x-2)2+1,当x=3时,y的值是()A.4B.-4C.3D.-34.若二次函数y=4x2+1的函数值为5,则对应的自变量x的值为()A.1B.-1C.±1D.5.二次函数y=2x(x-1)的二次项系数是,一次项系数是,常数项是.6.如果函数y=(a-1)x2-ax+6是关于x的二次函数,那么a的取值范围是.7.菱形的两条对角线的和为26 cm,则菱形的面积S(cm2)与一条对角线长x(cm)之间的函数关系式为.8.若函数y=(m+1)-2x+3是关于x的二次函数,试确定m的值或其取值范围.9.写出下列各函数关系式,并判断它们是什么类型的函数.(1)正方体的表面积S与棱长a之间的函数关系;(2)圆的面积y与它的周长x之间的函数关系;(3)某产品年产量为30台,计划今后每年比上一年的产量增长x%,两年后该产品的产量y(台)与x之间的函数关系.【能力提升】10.下列函数关系中,可以看作是二次函数y=ax2+bx+c(a≠0)的模型的是 ()A.在一定距离内,汽车行驶的速度与行驶的时间之间的关系B.我国现年人口自然增长率为1%,我国总人口数随年份变化的关系C.一个矩形的周长一定时,矩形面积和矩形一边长之间的关系D.圆的周长与其对应的半径之间的关系11.某商场以每件30元的价格购进一种商品,试销中发现这种商品的日销售量m(件)与每件商品的销售价x(元)满足一次函数m=162-3x,试写出商场销售这种商品的日销售利润y(元)与每件商品的销售价x(元)之间的函数关系式,y是x的二次函数吗?【拓展探究】12.如图所示,用同样规格的正方形白色和黑色瓷砖铺设矩形地面,请观察下列图形并解答问题.(1)在第n个图形中,每一横行有块瓷砖,每一竖列有块瓷砖,黑色瓷砖共有块;(均用含n的代数式表示)(2)在(1)的条件下,设铺设地面所用瓷砖的总块数为y,请写出y与n之间的函数关系式;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求n的值.【答案与解析】1.D(解析:化简后D中不含有自变量x的二次项,所以D选项不属于二次函数.故选D.)2.C(解析:根据二次函数的概念,即形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数是二次函数,所以只要满足二次项系数不为0即可.故选C.)3.A(解析:把x=3代入函数解析式,可得y=4.故选A.)4.C(解析:把y=5代入函数解析式,得4x2+1=5,解得x=±1.故选C.)5.2-20(解析:将原式整理得y=2x2-2x,所以二次项系数为2,一次项系数为-2,常数项为0.)6.a≠1(解析:二次函数中二次项系数不为0,所以a-1≠0,即a≠1.故填a≠1.)7.S=-x2+13x(解析:根据题意可得菱形的另一条对角线长为(26-x)cm,由菱形的面积公式可得S=x(26-x)=-x2+13x.故填S=-x2+13x.)8.解:∵函数y=(m+1)-2x+3是关于x的二次函数,∴m2+1=2,且m+1≠0,解得m=1.9.解:(1)S=6a2,是二次函数. (2)y=ππ=π,是二次函数. (3)y=30(1+x%)2,是二次函数.10.C(解析:设一个矩形的周长为a,矩形的一边长为x,则另一边长为-x,则矩形的面积S=x-=-x2+x,是二次函数.故选C.)11.解:由题意可知该商品每件的利润为(x-30)元,则y=(162-3x)(x-30),即y=-3x2+252x-4860,所以y是x的二次函数.12.解:(1)由图形规律可以得出:每一横行有(n+3)块瓷砖,每一竖列有(n+2)块瓷砖,黑色瓷砖数=(n+3)(n+2)-n(n+1)=4n+6.故答案为:(n+3),(n+2),(4n+6).(2)y=(n+3)(n+2),即y=n2+5n+6. (3)由题意得(n+3)(n+2)=506,解得n1=-25(舍去),n2= ,∴n的值为20.本节课由实际问题导入新知识,呈现了“问题情境——建立数学模型——归纳总结——知识拓展”的过程,在探究过程中,给学生提供探索和交流的空间,在小组交流、合作中获取知识,把要探究的知识设计成问题形式,降低了难度,让学生体验成功的快乐,激发学习兴趣.学生在课堂上学会了与他人交流,学会了探索,提升了分析问题和解决问题的能力.此外,教学中实际问题的解决贯穿整节课,让学生体会建模思想是解决数学问题的重要途径,培养了学生应用数学的意识.由于这节课内容较少,在学习了一次函数和一元二次方程后,学习这节课应该是很简单的,所以误认为学生会通过自学掌握所有知识,教学时对于概念的形成过程有点过于急躁,造成学生对概念的细节问题掌握不牢固,在后边的练习中出错较多,缺乏学习数学知识的严谨性,所以在课堂上要重视探究知识的过程.二次函数是一种常见的函数,应用非常广泛,许多实际问题往往可以归结为二次函数问题加以研究.在教学中要重视二次函数概念的形成和构建,在对二次函数的概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体会用函数思想去描述、研究变量之间的变化规律的意义.练习(教材第29页)1.解:S= πr·r+ πr2= πr2.2.解:y=(30+x)(20+x)=x2+50x+600.1.本节课主要学习二次函数的概念,通过具体实例中变量之间关系的特征,感受二次函数的特征和意义,从而形成对二次函数的初步认识,本节课的重点是强调具体问题的分析、抽象,渗透数学建模思想.教师引导学生分析问题,并用关系式表示这一关系的过程,引出二次函数的概念,获得二次函数表示变量关系的体验,学生在教师的引导下,通过自主探索与合作交流,理解并掌握本节课的重点,学生通过主动探索,获取知识,丰富数学活动的经验,逐步达到学会学习的目的.2.对于九年级的学生来说,之前已经学过常量与变量、一次函数和正比例函数,对于函数是刻画变量之间关系的数学模型也有了一定的认识,所以在此基础上可以用类比的方法继续深入学习二次函数.而且学生的逻辑思维、概括归纳能力也有了一定的提高,本节课根据教材实例引导学生自主探究,分析题意,得到相应的函数关系式,分析所得到的三个关系式的共同特征,由学生概括归纳,得到二次函数的概念和一般式,这样很自然地就突破了本节课的难点.学生通过经历知识的形成过程培养了分析问题和解决问题的能力,提高了数学的应用意识.已知函数y=(a2-4)x2+(a+2)x+3.(1)当a为何值时,该函数是二次函数?(2)当a为何值时,该函数是一次函数?〔解析〕由二次函数的定义知a2-4≠0,据此可以求得a的值;由一次函数的定义知a2-4=0,且a+2≠0,据此可以求得a的值.解:( )∵该函数是二次函数,∴二次项系数不为0,即a2-4≠0,解得a≠±2,∴当a≠±2时,该函数是二次函数.( )∵该函数是一次函数,∴a2-4=0,且a+2≠0,解得a=±2,且a≠- ,∴a=2.22.1.2二次函数y=ax2的图象和性质1.能用描点法画出二次函数y=ax2的图象.2.能根据对二次函数y=ax2的图象的理解,掌握二次函数y=ax2的性质.3.初步建立二次函数表达式与其图象之间的关系.1.经历探索和发现二次函数的图象的特点和性质的过程,获得研究函数性质的经验.2.通过二次函数的图象探究其性质,进一步体会数形结合思想的应用.1.经历观察、推理、交流等过程,获得研究问题和合作交流的方法和经验,体验数学活动中的探索性和创造性.2.在数学学习活动中,体会数学和实际生活的联系,感受数学的实际意义,激发学生学习数学的乐趣.【重点】用描点法画出二次函数y=ax2的图象,掌握二次函数y=ax2的性质.【难点】探究二次函数y=ax2的图象特点和性质的过程.【教师准备】教材图22.1—3,图22.1—4,图22.1—5.【学生准备】复习二次函数的概念.导入一:图中的拱桥是什么曲线?这条曲线有什么特点?通过对本节课的学习,相信大家一定会回答这个问题.导入二:复习提问:1.正比例函数、一次函数的图象分别是什么?(一条直线.)2.画函数图象的基本步骤是什么?(列表、描点、连线.)3.一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质.)4.我们能否类比研究一次函数的性质的方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数的性质的方法来研究二次函数的性质,应先研究二次函数的图象.)导入三:如图所示,一名篮球运动员手中的球在离篮筐中心水平距离4 m处投篮,当球运行的水平距离为2.5 m时,球达到最大高度3.5 m,然后准确落入篮筐内,已知篮筐距离地面的高度为3.05 m.。
人教版九年级数学22章二次函数全章教案

第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
(二)本章课时安排本章教学时间约需15课时 ,具体安排如下:22.1节 二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动 小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。
第22章 人教版数学九年级上册教案1 二次函数

22.1 二次函数的图象和性质22.1.1 二次函数课题22.1.1 二次函数授课人知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,让学生归纳二次函数的概念并能够根据函数特征识别二次函数.数学思考学生能对具体情境中的数学信息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.问题解决通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来于生活,又服务于生活的辩证观点.教学目标情感态度通过观察、操作、交流、归纳等数学活动,加深对二次函数概念的理解,发展学生的数学思维,增强学生学好数学的愿望与信心.教学重点对二次函数的理解.教学难点由实际问题确定函数解析式和确定自变量的取值范围.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.我们学习过哪些函数呢?试着举例说明一下.2.下列函数是什么函数?有不认识的吗?能说说你所认识的函数的图象和性质吗?(1)y=2x+1;(2)y=-4x;(3)y=3x2+1.3.学习函数应从哪几个方面进行探究呢?师生活动:教师提出以上问题,引导学生回答,师生共同回顾、交流,适时做好总结.问题解析:1.学习过的函数有一次函数,正比例函数是其特殊形式.2.(2)是正比例函数;(1)(2)是一次函数.3.学习函数一般是从函数的定义、函数的一般形式、函数的图象及其性质、函数的实际应用等方面进行学习.由回顾旧知识入手,通过回顾已经学习过的函数的相关知识对要学习的新知识有明确的方向,通过类比进行延伸,符合学生的认知规律.活动一:创设情境导入新课【课堂引入】图22-1-5问题:如图22-1-5,正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y,则y与x以学生熟悉、感兴趣的问题作为课题引入,激发学生学习新知识的兴趣,同时为引入新课奠定基础.之间的函数解析式是什么?它是一次函数吗?有什么特点?学生思考后回答,教师点拨:这是我们今天需要学习和研究的“二次函数”数学模型.活动二:实践探究交流新知1.探究新知(1)n个球队参加比赛,每两个队之间都要进行一场比赛,场数m与球队数n之间有什么关系?每个队要与几个队各比赛一场?(2)某产品今年的年产量是20 t,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将由计划所定的x的值而确定,y与x之间的关系应怎样表示?教师提问:(1)以上问题中有哪些变量?其中哪些是自变量?列出问题中的函数解析式;(2)观察上面的函数解析式,分析解析式有什么特点.让学生独立思考完成解答,教师适当地引导与点拨,共同得到问题的结论.教师板书:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.2.解析新知教师指导学生观察二次函数的定义,交流、讨论二次由现实中的实际问题入手,给学生创设熟悉的问题情境,通过问题的解决为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲,学生通过分析、交流探究二次函数的概念,加深对概念的理解,为解决问题打下基础.函数的特征,并进行总结:①等式左边是函数y,右边是关于自变量的整式;②a,b,c都是常数,a≠0;③等式右边自变量的最高次数为2,一次项和常数项可以为0,但是必须保留二次项;④自变量x的取值范围是任意实数.教师做好归纳:二次函数的一般形式:y=ax2+bx+c(a,b,c是常数,a≠0),ax2叫做二次项,a叫做二次项系数,bx 叫做一次项,b叫做一次项系数,c是常数项.活动三:开放训练体现应用【应用举例】例1 下列函数中,属于二次函数的是( C )A.y=2x-3B.y=(x+1)2-x2C.y=2x2-7xD.y=-x例2 关于函数y=(500-10x)(40+x),下列说法不正确的是( C )A.y是x的二次函数B.二次项系数是-10C.一次项是100D.常数项是20000例3 若y=(m+1)xm2-6m-5是二次函数,则m的值为 7 .师生活动:学生自主进行解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,应用举例有利于学生对二次函数概念的理解,能起到及时巩固的作用.共同得到正确的结论,并获得解题的经验.【拓展提升】例4 李师傅要在一张长、宽分别为50 cm和30 cm 的矩形铁皮的四个角上,各剪去一个大小相同的小正方形,用剩余的部分制作一个无盖的长方体箱子,小正方形的边长为x cm,长方体箱子的底面积为ycm2.求:(1)y与x之间的函数解析式;(2)自变量x的取值范围;(3)当x=5 cm时,长方体箱子的底面积.教师重点关注:学生对已解问题与未解问题的对比分析能力;给予学生一定的时间去思考、充分讨论,争取让学生自己得到解答方法,并对学习有困难的学生适当引导、点拨.例4中的三个问题层层递进,在复习旧知识的同时获得解决新问题的经验,进一步内化新知、突破难点.活动四:课堂总结反思【达标测评】1.下列函数中是二次函数的是( B )A.y=x+12 B.y=3(x-1)2C.y=(x+1)2-x2D.y=3x-12.若函数y=(a-1)x2+2x+a2-1是关于x的二次函数,则( C )A.a=1B.a=±1C.a≠1D.a≠-13.已知关于x的函数y=(m2-1)xm2-m是二次函数,求m的值.从简单的应用开始,及时巩固新知,让学生获得对二次函数深层次的理解,从多个角度进行检测,达到学有所成的目的.4.已知二次函数y=2x2+x-3.(1)当x=1时,求它所对应的函数值y;(2)当y=0时,求它所对应的自变量x的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?请同学们说一说.教师进行总结:二次函数的定义及各部分名称;根据实际问题列二次函数解析式及求函数值.2.布置作业:(1)教材第29页练习第1,2题.(2)教材第41页习题22.1第1,2题.学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在复习回顾环节中,教师引导学生复习一次函数和一反思教学过程和教师表现,进一步优化操作流程和提升自身素质.元二次方程的知识,为学习二次函数做好铺垫;在探究新知过程中,通过类比学习使知识简单化,思路清晰化,学习效果较好;在课堂训练环节中,选用例题典型且有思维深度,学生能够运用所学新知进行解答,能够圆满完成教学任务.②[讲授效果反思]对于二次函数的认识,强调几点:(1)一般形式中各项的名称;(2)二次项系数不能为0;(3)二次函数解析式的多种形式.③[师生互动反思]从课堂氛围和课堂效果分析,学生能够积极投入新知学习中,能够集中精力完成学习任务.④[习题反思]好题题号 错题题号 典案二导学设计学习目标:1、通过观察发现二次函数的特点,得出二次函数的定义,能区分二次函数;2、能够根据实际问题,熟练地列出二次函数关系式;3、通过解决实际问题的过程总结建立数学模型的方法,培养与他人交流的意识和提取合理见解的能力。
2022年人教版九年级数学上册第二十二章二次函数教案 二次函数与一元二次方程

22.2 二次函数与一元二次方程一、教学目标【知识与技能】了解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式进行判别,了解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度与价值观】进一步增强学生的数形结合思想方法,增强学生的综合解题能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课出示课件2:以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m )与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地要用多少时间?(二)探索新知探究一二次函数与一元二次方程的关系出示课件5:⑴小球的飞行高度能否达到15m?如果能,需要多少飞行时间?学生板演:解:15=20t-5t2,t2-4t+3=0,解得t1=1,t2=3.∴当球飞行1s或3s时,它的高度为15m.教师问:你能结合图形,指出为什么在两个时间求的高度为15m吗?学生独立思考.出示课件6:(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?学生板演:解:20=20t-5t2,t2-4t+4=0,解得t1=t2=2.故当球飞行2秒时,它的高度为20米.教师问:你能结合图形,指出为什么只在一个时间球的高度为20m?学生独立思考.出示课件7:(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?学生板演:解:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.教师问:你能结合图形指出为什么球不能达到20.5m的高度?学生独立思考.出示课件8:(4)球从飞出到落地要用多少时间?学生板演:解:小球飞出时和落地时的高度均为0m,0=20t-5t2,t2-4t=0,解得t1=0,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.教师问:从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?(出示课件9)学生答:一般地,当y取定值且a≠0时,二次函数为一元二次方程.教师举例说明:二次函数与一元二次方程关系.(出示课件10)例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3 的值为0,求自变量x的值.出示课件12:例已知二次函数:y=2x2-3x-4的函数值为1,求自变量x的值,可以看作解一元二次方程.反之,解一元二次方程2x2-3x-5=0,又可以看作已知二次函数的函数值为0时自变量x的值.学生答:2x2-3x-4=1;y=2x2-3x-5解之得:x1=-1,x2=2.5出示课件13:练一练:1.二次函数y=x2-3x+2,当x=1时,y= ;当y=0时,x= .2.抛物线y=4x2-1与y轴的交点坐标为;与x轴的交点坐标为.学生自主思考后口答:1.0;1或22.(0,-1);(0.5,0)和(-0.5,0)探究二:利用二次函数与x轴的交点讨论一元二次方程的根的情况教师问:观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(出示课件14)(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.学生自主思考后,教师加以指导:先画出函数图象---图象与x轴交点横坐标是多少--对应一元二次方程的根是多少.(出示课件15)教师问:由上述问题,你可以得到什么结论呢?(出示课件16)学生思考后,师生共同总结:方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x 轴公共点的横坐标.当抛物线与x轴没有公共点时,对应的方程无实数根.反过来,由一元二次方程的根的情况,也可以确定相应的二次函数的图象与x轴的位置关系.出示课件19:观察图象,完成下表:生观察后,独立完成表格.答案:0个;无;x2-x+1=0无解1个;3;x2-6x+9=0,x1=x2=32个;-2,1;x2+x-2=0,x1=-2,x2=1师生共同总结:二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系(出示课件20)出示课件21:例1 已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.师生共同解决如下:解:(1)证明:∵m≠0,∴Δ=[-(m+2)]2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,因此抛物线与x轴总有两个交点;(2)令y=0,则(x-1)(mx-2)=0,即x-1=0或mx-2=0,解得x1=1,x2=2.当mm为正整数1或2时,x2的值为整数,因为当m为2时,Δ=0,抛物线与x轴只有一个交点,所以正整数m的值为1.出示课件22:已知抛物线y=kx2+2x-1与x轴有两个交点,则k的取值范围是.学生自主解决.221=0kx x +-函数与轴有两个交点,即有两个不相等的实数根x20024(101)00.k k k k k ∴∆>≠-⨯->≠>-≠且,即且则且,出示课件23-26:例2 如图,丁丁在扔铅球时,铅球沿抛物线268-10105x y x =++运行,其中x 是铅球离初始位置的水平距离,y 是铅球离地面的高度.(1)当铅球离地面的高度为2.1m 时,它离初始位置的水平距离是多少? (2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少? (3)铅球离地面的高度能否达到3m ?为什么?学生自主思考后,师生共同解决.解:⑴由抛物线的表达式得2682.1-,10105x x =++即2650.x x -+= 解得12=1=5.x x ,即当铅球离地面的高度为2.1m 时,它离初始位置的水平距离是1m 或5m.⑵由抛物线的表达式得2682.5-,10105x x =++即2690x x -+=. 解得x 1=x 2=3.即当铅球离地面的高度为2.5m 时,它离初始位置的水平距离是3m.⑶由抛物线的表达式得2683-,10105x x =++即26140.x x -+=因为2=-6-41140∆⨯⨯<(),所以方程无实根.所以铅球离地面的高度不能达到3m.出示课件28:如图设水管AB 的高出地面2.5m,在B 处有一自动旋转的喷水头,喷出的水呈抛物线状,可用二次函数y=-0.5x 2+2x+2.5描述,在所示的直角坐标系中,求水流的落地点D 到A 的距离是多少?教师分析:根据图象可知,水流的落地点D 的纵坐标为0,横坐标即为落地点D 到A 的距离.即y=0 .学生独立解答:根据题意得 -0.5x 2+2x+2.5=0, 解得x 1=5,x 2=-1(不合题意舍去). 答:水流的落地点D 到A 的距离是5m. 探究三:利用二次函数求一元二次方程的近似解出示课件29:求一元二次方程的根的近似值(精确到0.1).教师分析:一元二次方程x ²-2x-1=0 的根就是抛物线 y=x ²-2x-1 与x 轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x 轴的交点的横坐标,这种解一元二次方程的方法叫做图象法.师生共同解答.0122=--x x出示课件30,31:解:画出函数y=x²-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.教师总结归纳:一元二次方程的图象解法(出示课件32)利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数y=2x2+x-15的图象与x轴的交点的横坐标,由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.出示课件33:根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26学生口答:C(三)课堂练习(出示课件34-41)1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0 B.2a+b<0C.3a+c<0 D.ax2+bx+c﹣3=0有两个不相等的实数根2.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c =0的近似根为( )A.x1≈-2.1,x2≈0.1 B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9 D.x1≈-3,x2≈13.若二次函数y=-x 2+2x+k 的部分图象如图所示,且关于x 的一元二次方程-x 2+2x+k=0的一个解x 1=3,则另一个解x 2= .4.一元二次方程3x 2+x -10=0的两个根是x 1=-2,x 2=53,那么二次函数 y= 3x 2+x -10与x 轴的交点坐标是 .5.若一元二次方程20x mx n -+=无实根,则抛物线2y x mx n =-+图象位于( )A.x 轴上方B.第一、二、三象限C.x 轴下方D.第二、三、四象限6.二次函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k<3B .k<3且k ≠0C .k ≤3D .k ≤3且k ≠07.已知函数y =(k -3)x ²+2x +1的图象与x 轴有交点,求k 的取值范围.8.某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?参考答案:1.C2.B3.-14.(-2,0)(5,0)35.A6.D7.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0. ∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.综上所述,k的取值范围是k≤4.8.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,20),B(4,4),C(7,3),其中B是抛物线的顶点.9(x 设二次函数关系式为y=a(x﹣h)2+k,将点A、B的坐标代入,可得y=﹣19﹣4)2+4.(7﹣4)2+4=3,左边=右边,即点将点C的坐标代入上式,得左边=3,右边=﹣19C在抛物线上.所以此球一定能投中.⑵将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.(四)课堂小结1.抛物线y=ax2+bx+c与一元二次方程ax2+bx+c=0有何关联?你能不画出抛物线y=ax2+bx+c而了解此抛物线与x轴的交点情况吗?你是怎样做的?2.你能利用抛物线来确定相应的方程的根的近似值吗?从中你有哪些体会?(五)课前预习预习下节课(22.3第1课时)的相关内容.七、课后作业1.教材习题22.2第1、2、3、4、6题.2.配套练习册内容八、板书设计:九、教学反思:本课时教学首先通过具体情况让学生感受用方程思想方法来解决函数问题的思路,然后通过图象来探究一元二次方程的根和二次函数与x轴交点之间的关联.这样整个教学过程充分利用了学生已形成的方程、函数间的关系来类比引导挖掘、探索二次函数与一元二次方程的关系.此外,通过观察图象直观理解、解答练习以及实际观察分析都是必经的途径与方法,重在让学生自主体会.。
初中九年级数学上册《第二十二章 二次函数》大单元整体课时教学设计

初中九年级数学上册《第二十二章二次函数》大单元跨学科教学课时教学设计[2022课标]一、教学目标1.会用数学的眼光观察现实世界:通过本章《第二十二章二次函数》的学习,学生能够运用二次函数的知识观察体育与物理现象中的运动轨迹和变化规律,如铅球投掷的抛物线轨迹、竖直上抛运动中小球的高度变化等,从而发现数学与现实生活及学科的紧密联系。
2.会用数学的思维思考现实世界:学生能够运用二次函数的性质(如开口方向、顶点坐标、对称轴等)和解析式,分析体育和物理问题中的量化关系,如通过调整参数来优化运动效果或模拟实验现象,培养逻辑思维和问题解决能力。
3.会用数学的语言表达现实世界:学生能够将体育和物理中的问题抽象成二次函数模型,建立相应的数学表达式,并通过计算、推导和论证,用准确的数学语言描述和解释这些现象,最终得出科学结论。
二、教学内容分析本章主要探讨二次函数的定义、图象、性质以及应用,是初中数学知识体系中的重要组成部分。
从学科内部来看,二次函数的学习是在一次函数基础上的深化和拓展,通过本章的学习,学生能够理解并掌握二次函数的基本概念、图象特征以及增减性,为后续学习一元二次方程、二次不等式等内容打下坚实基础。
从跨学科角度来看,二次函数在体育、物理等领域有着广泛的应用。
在体育项目中,如投掷、跳跃等,运动员的运动轨迹往往可以抽象为二次函数图象,通过二次函数的解析式可以精确描述运动员的运动状态,为训练提供科学依据。
在物理学中,二次函数模型被广泛应用于描述抛体运动、振动等自然现象,有助于学生理解自然界中复杂运动的本质规律。
在本章的教学过程中,教师应注重引导学生将二次函数知识与实际问题相结合,通过跨学科的教学活动,激发学生的学习兴趣,培养学生的应用意识和实践能力。
结合体育、物理等学科的实例,让学生深刻体会到数学知识在解决实际问题中的重要作用,提升数学学习的价值和意义。
三、教学重点1.理解并掌握二次函数的定义、图像及基本性质。
人教版数学九年级上册教案22.1.1《二次函数》

人教版数学九年级上册教案22.1.1《二次函数》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习。
二次函数是中学数学中的重要内容,也是高考中的热点之一。
本章内容主要包括二次函数的定义、图象与性质,以及二次函数的应用。
在学习本章之前,学生已经掌握了函数、方程等基础知识,为本章的学习打下了基础。
二. 学情分析九年级的学生已具备一定的逻辑思维能力和抽象思维能力,但对于二次函数这一复杂的概念,仍需要通过具体实例和实际操作来理解和掌握。
在学习过程中,学生可能对二次函数的图象与性质产生困惑,需要教师进行引导和解释。
三. 教学目标1.了解二次函数的定义和一般形式;2.掌握二次函数的图象与性质,并能运用其解决实际问题;3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.二次函数的定义和一般形式;2.二次函数的图象与性质;3.二次函数的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的知识;2.使用多媒体辅助教学,展示二次函数的图象与性质;3.学生进行小组讨论和合作交流,提高学生的动手能力和团队协作能力。
六. 教学准备1.多媒体教学设备;2.教学PPT;3.练习题和测试题;4.教学课件。
七. 教学过程导入(5分钟)教师通过一个实际问题引入二次函数的概念,如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。
引导学生思考:这个二次函数是什么样子?它的图象是什么样的?呈现(10分钟)教师通过PPT展示二次函数的一般形式和图象,解释二次函数的定义和性质。
同时,教师可以通过举例来说明二次函数的应用,如:抛物线、顶点坐标的计算等。
操练(10分钟)教师布置一些练习题,让学生动手计算和绘制二次函数的图象。
教师可以学生进行小组讨论,共同解决问题。
巩固(10分钟)教师通过一些实际问题,让学生运用二次函数的知识来解决问题。
教师可以引导学生进行思考和讨论,帮助学生巩固所学知识。
拓展(10分钟)教师可以引导学生思考:二次函数的图象和性质与其他函数有什么不同?如何判断一个函数是否为二次函数?教师可以学生进行小组讨论,引导学生进行拓展思考。
初中数学人教版九年级上册:第22章《二次函数》全章教案

初中数学人教版九年级上册实用资料第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120 m,室内通道的尺寸如图,设一条边长为x (m),种植面积为y(m2).(一)教师组织合作学习活动:1.先个体探求,尝试写出y与x之间的函数解析式.2.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.(1)y=πx2(2)y=20000(1+x)2=20000x2+40000x+20000(3)y=(60-x-4)(x-2)=-x2+58x-112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法.教师归纳总结:上述三个函数解析式经化简后都具有y=ax2+bx+c(a,b,c是常数,a≠0)的形式.板书:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项.请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项.三、做一做1.下列函数中,哪些是二次函数?(1)y=x2(2)y=-1x2(3)y=2x2-x-1(4)y=x(1-x)(5)y=(x-1)2-(x+1)(x-1)2.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)y=x2+1(2)y=3x2+7x-12(3)y=2x(1-x)3.若函数y=(m2-1)xm2-m为二次函数,则m的值为________.四、课堂小结反思提高,本节课你有什么收获?五、作业布置教材第41页第1,2题.22.1.2二次函数y=ax2的图象和性质通过画图,了解二次函数y=ax2(a≠0)的图象是一条抛物线,理解其顶点为何是原点,对称轴为何是y轴,开口方向为何向上(或向下),掌握其顶点、对称轴、开口方向、最值和增减性与解析式的内在关系,能运用相关性质解决有关问题.重点从“数”(解析式)和“形”(图象)的角度理解二次函数y=ax2的性质,掌握二次函数解析式y=ax2与函数图象的内在关系.难点画二次函数y=ax2的图象.一、引入新课1.下列哪些函数是二次函数?哪些是一次函数?(1)y=3x-1(2)y=2x2+7(3)y=x-2(4)y=3(x-1)2+12.一次函数的图象,正比例函数的图象各是怎样的呢?它们各有什么特点,又有哪些性质呢?3.上节课我们学习了二次函数的概念,掌握了它的一般形式,这节课我们先来探究二次函数中最简单的y=ax2的图象和性质.二、教学活动活动1:画函数y=-x2的图象.(1)多媒体展示画法(列表,描点,连线).(2)提出问题:它的形状类似于什么?(3)引出一般概念:抛物线,抛物线的对称轴、顶点.活动2:在坐标纸上画函数y=-0.5x2,y=-2x2的图象.(1)教师巡视,展示学生的作品并进行点拨;教师再用多媒体课件展示正确的画图过程.(2)引导学生观察二次函数y=-0.5x2,y=-2x2与函数y=-x2的图象,提出问题:它们有什么共同点和不同点?(3)归纳总结:共同点:①它们都是抛物线;②除顶点外都处于x轴的下方;③开口向下;④对称轴是y轴;⑤顶点都是原点(0,0).不同点:开口大小不同.(4)教师强调指出:这三个特殊的二次函数y=ax2是当a<0时的情况.系数a越大,抛物线开口越大.活动3:在同一个直角坐标系中画函数y=x2,y=0.5x2,y=2x2的图象.类似活动2:让学生归纳总结出这些图象的共同点和不同点,再进一步提炼出二次函数y=ax2(a≠0)的图象和性质.二次函数y=ax2(a≠0)的图象和性质图象(草图) 开口方向顶点对称轴最高或最低点最值a>0当x=____时,y有最____值,是________.a<0当x=____时,y有最____值,是________.活动4:达标检测(1)函数y=-8x2的图象开口向________,顶点是________,对称轴是________,当x________时,y随x的增大而减小.(2)二次函数y=(2k-5)x2的图象如图所示,则k的取值范围为________.(3)如图,①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接________.答案:(1)下,(0,0),x=0,>0;(2)k>2.5;(3)a>b>d>c.三、课堂小结与作业布置课堂小结1.二次函数的图象都是抛物线.2.二次函数y=ax2的图象性质:(1)抛物线y=ax2的对称轴是y轴,顶点是原点.(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;|a|越大,抛物线的开口越小.作业布置教材第32页练习.22.1.3二次函数y=a(x-h)2+k的图象和性质1.经历二次函数图象平移的过程;理解函数图象平移的意义.2.了解y=ax2,y=a(x-h)2,y=a(x-h)2+k三类二次函数图象之间的关系.3.会从图象的平移变换的角度认识y=a(x-h)2+k型二次函数的图象特征.重点从图象的平移变换的角度认识y=a(x-h)2+k型二次函数的图象特征.难点对于平移变换的理解和确定,学生较难理解.一、复习引入二次函数y=ax2的图象和特征:1.名称________;2.顶点坐标________;3.对称轴________;4.当a>0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x轴的________(除顶点外);当a<0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x轴的________(除顶点外).二、合作学习在同一坐标系中画出函数y=12x2,y=12(x+2)2,y=12(x-2)2的图象.(1)请比较这三个函数图象有什么共同特征?(2)顶点和对称轴有什么关系?(3)图象之间的位置能否通过适当的变换得到?(4)由此,你发现了什么?三、探究二次函数y =ax 2和y =a(x -h)2图象之间的关系1.结合学生所画图象,引导学生观察y =12(x +2)2与y =12x 2的图象位置关系,直观得出y =12x 2的图象――→向左平移两个单位y =12(x +2)2的图象.教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系,如: (0,0)――→向左平移两个单位(-2,0); (2,2)――→向左平移两个单位(0,2); (-2,2)――→向左平移两个单位(-4,2).②也可以把这些对应点在图象上用彩色粉笔标出,并用带箭头的线段表示平移过程. 2.用同样的方法得出y =12x 2的图象――→向右平移两个单位y =12(x -2)2的图象.3.请你总结二次函数y =a(x -h)2的图象和性质.y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象. 函数y =a(x -h)2的图象的顶点坐标是(h ,0),对称轴是直线x =h.4.做一做 (1)(2)填空:①抛物线y =2x 2向________平移________个单位可得到y =2(x +1)2;②函数y =-5(x -4)2的图象可以由抛物线________向________平移________个单位而得到.四、探究二次函数y =a(x -h)2+k 和y =ax 2图象之间的关系1.在上面的平面直角坐标系中画出二次函数y =12(x +2)2+3的图象.首先引导学生观察比较y =12(x +2)2与y =12(x +2)2+3的图象关系,直观得出:y =12(x+2)2的图象――→向上平移3个单位y =12(x +2)2+3的图象.(结合多媒体演示) 再引导学生观察刚才得到的y =12x 2的图象与y =12(x +2)2的图象之间的位置关系,由此得出:只要把抛物线y =12x 2先向左平移2个单位,在向上平移3个单位,就可得到函数y=12(x +2)2+3的图象. 2.做一做:请填写下表:函数解析式 图象的对称轴图象的顶点坐标y =12x 2 y =12(x +2)2 y =12(x +2)2+33.总结y =a(x -h)2+k 的图象和y =ax 2图象的关系y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象――→当k >0时,向上平移k 个单位当k <0时,向下平移|k|个单位y =a(x -h)2+k 的图象.y =a(x -h)2+k 的图象的对称轴是直线x =h ,顶点坐标是(h ,k). 口诀:(h ,k)正负左右上下移(h 左加右减,k 上加下减)从二次函数y =a(x -h)2+k 的图象可以看出:如果a >0,当x <h 时,y 随x 的增大而减小,当x >h 时,y 随x 的增大而增大;如果a <0,当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小.4.练习:课本第37页 练习五、课堂小结1.函数y =a(x -h)2+k 的图象和函数y =ax 2图象之间的关系.2.函数y =a(x -h)2+k 的图象在开口方向、顶点坐标和对称轴等方面的性质. 六、作业布置教材第41页 第5题22.1.4 二次函数y =ax 2+bx +c 的图象和性质(2课时)第1课时 二次函数y =ax 2+bx +c 的图象和性质1.掌握用描点法画出二次函数y =ax 2+bx +c 的图象.2.掌握用图象或通过配方确定抛物线y =ax 2+bx +c 的开口方向、对称轴和顶点坐标. 3.经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及配方的过程,理解二次函数y =ax 2+bx +c 的性质.重点通过图象和配方描述二次函数y =ax 2+bx +c 的性质. 难点理解二次函数一般形式y =ax 2+bx +c(a ≠0)的配方过程,发现并总结y =ax 2+bx +c 与y =a(x -h)2+k 的内在关系.一、导入新课1.二次函数y=a(x-h)2+k的图象,可以由函数y=ax2的图象先向________平移________个单位,再向________平移________个单位得到.2.二次函数y=a(x-h)2+k的图象的开口方向________,对称轴是________,顶点坐标是________.3.二次函数y=12x2-6x+21,你能很容易地说出它的图象的开口方向、对称轴和顶点坐标,并画出图象吗?二、教学活动活动1:通过配方,确定抛物线y=12x2-6x+21的开口方向、对称轴和顶点坐标,再描点画图.(1)多媒体展示画法(列表,描点,连线);(2)提出问题:它的开口方向、对称轴和顶点坐标分别是什么?(3)引导学生合作、讨论观察图象:在对称轴的左右两侧,抛物线从左往右的变化趋势.活动2:1.不画出图象,你能直接说出函数y=-x2+2x-3的图象的开口方向、对称轴和顶点坐标吗?2.你能画出函数y=-x2+2x-3的图象,并说明这个函数具有哪些性质吗?(1)在学生画函数图象的同时,教师巡视、指导;(2)抽一位或两位同学板演,学生自纠,老师点评;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?活动3:对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?(1)组织学生分组讨论,教师巡视;(2)各组选派代表发言,全班交流,达成共识,抽学生板演配方过程;教师课件展示二次函数y=ax2+bx+c(a>0)和y=ax2+bx+c(a<0)的图象.(3)引导学生观察二次函数y=ax2+bx+c(a≠0)的图象,在对称轴的左右两侧,y随x 的增大有什么变化规律?(4)引导学生归纳总结二次函数y=ax2+bx+c(a≠0)的图象和性质.活动4:已知抛物线y=x2-2ax+9的顶点在坐标轴上,求a的值.活动5:检测反馈1.填空:(1)抛物线y=x2-2x+2的顶点坐标是________;(2)抛物线y=2x2-2x-1的开口________,对称轴是________;(3)二次函数y=ax2+4x+a的最大值是3,则a=________.2.写出下列抛物线的开口方向、对称轴和顶点坐标.(1)y=3x2+2x;(2)y=-2x2+8x-8.3.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该图象具有哪些性质.4.抛物线y=ax2+2x+c的顶点是(-1,2),则a,c的值分别是多少?答案:1.(1)(1,1);(2)向上,x=12;(3)-1;2.(1)开口向上,x=-13,(-13,-13);(2)开口向下,x=2,(2,0);3.对称轴x=-1,当m>0时,开口向上,顶点坐标是(-1,3-m);4.a=1,c=3.三、课堂小结与作业布置课堂小结二次函数y=ax2+bx+c(a≠0)的图象与性质.作业布置教材第41页第6题.第2课时用待定系数法求二次函数的解析式1.掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式.2.能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,对称轴,最值和增减性.3.能根据二次函数的解析式画出函数的图象,并能从图象上观察出函数的一些性质.重点二次函数的解析式和利用函数的图象观察性质.难点利用图象观察性质.一、复习引入1.抛物线y=-2(x+4)2-5的顶点坐标是________,对称轴是________,在________________侧,即x________-4时,y随着x的增大而增大;在________________侧,即x________-4时,y随着x的增大而减小;当x=________时,函数y最________值是________.2.抛物线y=2(x-3)2+6的顶点坐标是________,对称轴是________,在________________侧,即x________3时,y随着x的增大而增大;在________________侧,即x________3时,y随着x的增大而减小;当x=________时,函数y最________值是________.二、例题讲解例1根据下列条件求二次函数的解析式:(1)函数图象经过点A(-3,0),B(1,0),C(0,-2);(2)函数图象的顶点坐标是(2,4),且经过点(0,1);(3)函数图象的对称轴是直线x=3,且图象经过点(1,0)和(5,0).说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件.一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷.例2已知函数y=x2-2x-3,(1)把它写成y=a(x-h)2+k的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图象交x轴于A,B两点,交y轴于P点,求△APB的面积;(6)根据图象草图,说出x取哪些值时,①y=0;②y<0;③y>0?说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用函数图象判定函数值何时为正,何时为负,同样也要充分利用图象,要使y<0,其对应的图象应在x轴的下方,自变量x就有相应的取值范围.例3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:a________0;b________0;c________0;b2-4ac________0.说明:二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的符号的关系:系数的符号图象特征a的符号a>0 抛物线开口向____a<0 抛物线开口向____的符号-b2a-b2a>0 抛物线对称轴在y轴的____侧b=0 抛物线对称轴是____轴-b2a<0 抛物线对称轴在y轴的____侧c的符号c>0 抛物线与y轴交于____c=0 抛物线与y轴交于____c<0 抛物线与y轴交于____三、课堂小结本节课你学到了什么?四、作业布置教材第40页练习1,2.22.2二次函数与一元二次方程1.总结出二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根,两个相等的实根和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.3.会用计算方法估计一元二次方程的根.重点方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系.一、复习引入1.二次函数:y=ax2+bx+c(a≠0)的图象是一条抛物线,它的开口由什么决定呢?补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.2.二次函数y=ax2+bx+c(a≠0)的图象和性质:(1)顶点坐标与对称轴;(2)位置与开口方向;(3)增减性与最值.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当x=-b2a时,函数y有最小值4ac-b24a.当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小;当x=-b2a时,函数y有最大值4ac-b24a.二、新课教学探索二次函数与一元二次方程:二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x +2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳:二次函数y=ax2+bx+c的图象和x轴交点有三种情况:①有两个交点,②有一个交点,③没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac>0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac<0时,抛物线与x 轴没有交点.举例:求二次函数图象y =x 2-3x +2与x 轴的交点A ,B 的坐标.结论:方程x 2-3x +2=0的解就是抛物线y =x 2-3x +2与x 轴的两个交点的横坐标.因此,抛物线与一元二次方程是有密切联系的.即:若一元二次方程ax 2+bx +c =0的两个根是x 1,x 2,则抛物线y =ax 2+bx +c 与x 轴的两个交点坐标分别是A(x 1,0),B(x 2,0).例1 已知函数y =-12x 2-7x +152,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与y 轴的交点关于图象对称轴的对称点,然后画出函数图象的草图;(2)自变量x 在什么范围内时,y 随着x 的增大而增大?何时y 随着x 的增大而减少;并求出函数的最大值或最小值.三、巩固练习请完成课本练习:第47页1,2四、课堂小结二次函数与一元二次方程根的情况的关系. 五、作业布置教材第47页 第3,4,5,6题.22.3 实际问题与二次函数(2课时)第1课时 用二次函数解决利润等代数问题能够理解生活中文字表达与数学语言之间的关系,建立数学模型.利用二次函数y =ax 2+bx +c(a ≠0)图象的性质解决简单的实际问题,能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题.重点把实际生活中的最值问题转化为二次函数的最值问题. 难点1.读懂题意,找出相关量的数量关系,正确构建数学模型. 2.理解与应用函数图象顶点、端点与最值的关系.一、复习旧知,引入新课1.二次函数常见的形式有哪几种?二次函数y =ax 2+bx +c(a ≠0)的图象的顶点坐标是________,对称轴是________;二次函数的图象是一条________,当a >0时,图象开口向________,当a <0时,图象开口向________.2.二次函数知识能帮助我们解决哪些实际问题呢?二、教学活动活动1:问题:从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?活动2:问题:某商场的一批衬衣现在的售价是60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为每件40元,如何定价才能使利润最大?1.问题中的定价可能在现在售价的基础上涨价或降价,获取的利润会一样吗?2.如果你是老板,你会怎样定价?3.以下问题提示,意在降低题目梯度,提示考虑x的取值范围.(1)若设每件衬衣涨价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期少卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?(2)若设每件衬衣降价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期多卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?根据两种定价可能,让学生自愿分成两组,分别计算各自的最大利润;老师巡视,及时发现学生在解答过程中的不足,加以辅导;最后展示学生的解答过程,教师与学生共同评析.活动3:达标检测某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润w与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?答案:(1)y=-x+180;(2)w=(x-100)y=-(x-140)2+1 600,当售价定为140元,w 最大为1 600元.三、课堂小结与作业布置课堂小结通过本节课的学习,大家有什么新的收获和体会?尤其是数形结合方面你有什么新的体会?作业布置教材第51~52页习题第1~3题,第8题.第2课时二次函数与几何综合运用能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.重点应用二次函数解决几何图形中有关的最值问题.难点函数特征与几何特征的相互转化以及讨论最值在何处取得.一、引入新课上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用. 二、教学过程问题1:教材第49页探究1.用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 为多少米时,场地的面积S 最大?分析:提问1:矩形面积公式是什么? 提问2:如何用l 表示另一边?提问3:面积S 的函数关系式是什么?问题2:如图,用一段长为60 m 的篱笆围成一个一边靠墙的矩形菜园,墙长32 m ,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?分析:提问1:问题2与问题1有什么不同?提问2:我们可以设面积为S ,如何设自变量?提问3:面积S 的函数关系式是什么?答案:设垂直于墙的边长为x 米,S =x(60-2x)=-2x 2+60x.提问4:如何求解自变量x 的取值范围?墙长32 m 对此题有什么作用? 答案:0<60-2x ≤32,即14≤x <30.提问5:如何求最值?答案:x =-b 2a =-602×(-2)=15时,S max =450.问题3:将问题2中“墙长为32 m ”改为“墙长为18 m ”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?提问1:问题3与问题2有什么异同?提问2:可否模仿问题2设未知数、列函数关系式?提问3:可否试设与墙平行的一边为x 米?则如何表示另一边?答案:设矩形面积为S m 2,与墙平行的一边为x 米,则S =60-x 2·x =-x 22+30x.提问4:当x =30时,S 取最大值.此结论是否正确?提问5:如何求自变量的取值范围?答案:0<x ≤18.提问6:如何求最值?答案:由于30>18,因此只能利用函数的增减性求其最值.当x =18时,S max =378. 小结:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.三、回归教材阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?四、基础练习1.教材第51页的探究3,教材第57页第7题.2.阅读教材第52~54页.五、课堂小结与作业布置课堂小结1.利用求二次函数的最值问题可以解决实际几何问题.2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.作业布置教材第52页习题第4~7题,第9题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、y=ax2向左平移h个单位得到函数_____y=ax2向右平移h个单位得到函数________
三、教学指导:
探索y=a(x-h)2的图像性质
y=a(x-h)2
开口
对称轴
顶点坐标
函数y的最值
a>0
a<0
3.抛物线y=-3x2向左平移1个单位长度,再向下平移2个单位长度后,他的解析式是什么?指出它的开口方向,顶点坐标,对称轴,极值情况?
三、教学指导:
探索y=a(x-h)2+k的图像性质
抛物线
开口
对称轴
顶点
y=a x2
a>0向上
a<0向下
Y轴
(0,0)
y=ax2+k
同上
Y轴
(0,k)
y=a(x-h)2
当a<O时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点是抛物线上位置最高的点。反映了当a<O时,函数y=ax2的性质:当x<0时,函数值y随x的增大而增大; 与x>O时,函数值y随x的增大而减小,当x= 0时,函数值y=ax2取得最大值,最大值是y=0。
C、m,n是常数,且m≠n D、m,n为任何实数
(二)中标题
5.一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为Xm,菜园的面积为ym2,求y与x之间的函数关系式,并说出自变量的取值范围。当x=12m时,计算菜园的面积。
(三)爬坡题
6.y=(m+3)xm2-7
(1)m取什么值时,此函数是正比例函数?
3.二次项系数为-2,顶点坐标为(3,7)的二次函数解析式为_出函数的图象,指出它的开口方向、对称轴、及顶
点。抛物线经过怎样的变化可以得到抛物线
(三)爬坡题
5、一次函数y=ax+b与y=ax2-b在同一坐标系中的大致图象是()
五、教学反思:
二次函数y=ax2+bx+c的图像和性质
当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外)
(2)抛物线在x轴的方(除顶点外),在对称轴的左侧,y随x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x0时,y<0.
三、教学指导:
当a>0时,抛物线y=ax2开 口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
从图像的平移变换的角度认识y=a(x-h)2+k型二次函数的图像特征
教学难点:
从图像的平移变换的角度认识y=a(x-h)2+k型二次函数的图像特征
课时安排:3课时
教学步骤:
一、自学指导:
认真阅读课本第35页例题3
1、从开口方向、对称轴、顶点坐增减性等几个方面归纳y=a(x+h)2+k的图象和性质.
二、自学检测:
3.函数y=ax2+bx+c(其中a,b,c是常数)当a,b,c满足什么条件时
(1)它是二次函数
(2)它是一次函数
(3)它是正比例函数
三、教学指导:
定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数。其中x是自变量,a为二次项系数,ax2叫做二次项,b为一次项系数,bx叫做一次项,c为常数项。
的图像。
2.说出函数y=ax2+k(a、k是常数,a≠0)的图象的开口方向、对称轴和顶点坐标,并填写下表.
四、当堂训练:
(一)基础题
1.把抛物线向下平移2个单位,可以得到抛物线,再向上平移5个单位,可以得到抛物线;
2.函数y=-2x2+4的图象开口向____,对称轴是_____,顶点坐标是_______,当x=____时,函数有最____值为____;当x<0时,y随x的增大而_______,当x>0时,y随x的增大而_______。
3.函数y=3x2+5与y=3x2的图象的不同之处是( )
A.对称轴B.开口方向C.顶点D.形状
4.已知抛物线y=2x2-1上有两点(x1,y1) ,(x2,y2)且x1<x2<0,则
y1y2(填“<”或“>”)
(二)中标题
5.把抛物线y= 2x2向上平移5个单位,会得到哪条抛物线?向下平移3,4个单位呢?
设计人:宋旺平
教学目标:
1、能通过配方求二次函数y=ax2+bx+c的顶点坐标。
2、把y=ax2+bx+c化成y=a(x-h)2+k的形式,从而确定开口方向与对称轴
教学重点:会画二次函数的图像,并能指出图像的开口方向、对称轴和顶点坐标等性质
教学难点:确定形如y=ax2+bx+c的顶点坐标和对称轴
课时安排:1课时
y = 2(x+3)2
y = -3(x-1)2
y = -4(x-3)2
(二)中标题
1、y=0.5(x+2)2的开口______,对称轴_______,顶点______,函数y有最_____值,是______
2、函数y =-2(x+1)2的图象开口向____,对称轴是_______,顶点坐标是________,当x=____时,函数有最____值为____;当x_____时,y随x的增大而增大,当x_____时,y随x的增大而减小。
1)当a>0时,开口向上,在对称轴的左侧y随x的增大而_______;在对称轴的右侧y随x的增大而________。
(2)当a<0时,开口向下,在对称轴的左侧y随x的增大而_________对称轴的右侧y随x的增大而___________
四、当堂训练:
(一)基础题
1、填表
抛物线
开口方向
对称轴
顶点坐标
(1)了解怎样画二次函数y=ax2的图象。
(2)初步从开口方向、对称轴、顶点坐标、增减性等几个方面归纳y=ax2的图象和性质。
二、自学检测:
1.画出下列函数的图(1)y=2x2(2)
2.根据1已画好的函数图象填空:
(1)抛物线y=2x2的顶点坐标是,对称轴是,
在侧,y随着x的增大而增大
在侧,y随着x的增大而减小,
1.二次函数y=(x-2)2的图象是由y=x2的图象向___平移____个单位长度的到的。它的开口方向向____,对称轴______,顶点坐标______.当x=____时,y有最____值是______.
2.二次函数y=2(x+m)2的图象的对称轴是x=5,则此二次函数的解析式是_________.
同上
X=h
(h,0)
y=a(x-h)2+k
同上
X=h
(h,k)
四、当堂训练:
(一)基础题
1、函数y=2(x+4)2-1的图象,顶点坐标是______,对称轴是_____,开口方向_____,当x=____时,y有最___值,其值是_____.当x____时,y随x的增大而减小。
2、函数y=3(x-5)2+2的图象是由函数y=3x2的图象怎样平移得到的?
3.会从图像平移变换的角度认y=ax2+k型二次函数图像特征
教学重点:
从图像的平移变换的角度认识y=ax2+k型二次函数的图像特征
教学难点:
对于平移变换的理解和确定。
课时安排:3课时
教学步骤:
一、自学指导:
认真阅读课本第32页例题2.
1.从开口方向、对称轴、顶点坐标、增减性等几个方面归纳y=ax2+k
(三)爬坡题
6.已知一个二次函数图像的顶点在y轴上,并且离原点1个单位,图像经过点(–1,0),求该二次函数解析式。
五、教学反思:
二次函数y=a(x-h)2+k的图像和性质(第2课时)
设计人:宋旺平
教学目标:
1.经历二次函数图像平移的过程;理解函数图像平移的意义。
2.了解二次函数y=ax2,y=ax2+k与y=a(x-h)2图像之间的关系
(2)m取什么值时,此函数是二次函数?
五、教学反思:
二次函数y=ax2的图像和性质
设计人:宋旺平
教学目标:
掌握二次函数y=ax²的图像与性质。
教学重点:
二次函数y=ax²的图像与性质
教学难点:
二次函数y=ax²的图像与性质
课时安排:1课时
教学步骤:
一、自学指导:
请看课本P29页-P32页的内容,要求:
二次函数
教学目标:
了解什么是二次函数
教学重点:
二次函数的有关概念
教学难点:
二次函数的有关概念的应用
课时安排:1课时
教学步骤:
一、自学指导:
1.自学课本P28—P29页的内容(5分钟)。
2.观察函数①、②、③有什么特点?
3.知道二次函数的形式,弄清各项及其系数。
4.会判断一个函数是不是二次函数.
二、自学检测:
(1)求此抛物线的函数解析式;
(2)判断点B(-1,- 4)是否在此抛物线上。
(3)求出此抛物线上纵坐标为-6的点的坐标。
五、教学反思:
二次函数y=a(x-h)2+k的图像和性质(第1课时)
设计人:宋旺平
教学目标:
1.经历二次函数图像平移的过程;理解函数图像平移的意义。
2.了解二次函数y=ax2与y=ax2+k图像之间的关系
2.从开口方向、对称轴、顶点坐标。增减性等几个方面归纳函数的图象和性质.
3.会从图像的平移变换的角度认识上面两种类型与二次函数的图像关系。