高考数学一轮复习 直线方程(1)教案

合集下载

高考数学新课 直线和圆的方程 教案 (1)

高考数学新课  直线和圆的方程  教案 (1)

第七章直线和圆的方程教材分析本章的最主要的内容是直线方程、圆的方程以及线性规划的初步知识(直线的倾斜角和斜率.直线方程的点斜式、两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的夹角.点到直线的距离.用二元一次不等式表示平面区域,简单的线性规划问题. 研究性课题和实习作业. 曲线与方程的概念王新敞由已知条件列出曲线方程. 圆的标准方程和一般方程.圆的参数方程).本章共需22课时,课时具体分配如下(供参考):7.1直线的倾斜角和斜率约2课时王新敞7.2直线的方程约3课时王新敞7.3两条直线的位置关系约5课时王新敞7.4简单的线性规划约3课时王新敞研究性课题和实习作业:线性规划的实际应用约1课时王新敞7.5曲线和方程约3课时王新敞7.6圆的方程约3课时王新敞小结与复习约2课时王新敞一、内容与要求本章六小节的内容大致可以分为三个部分:第一部分包括直线的倾斜角和斜率、直线的方程、两条直线的位置关系;第二部分包括简单的线性规划、研究性课题和实习作业;第三部分包括曲线和方程、圆的方程王新敞直线和圆都是最常见的简单几何图形,在实际生活和生产实践中有广泛的应用.初中几何对直线和圆的基本性质作了比较系统的研究.初中代数研究了一次函数的图象和性质,高一数学研究了平面向量、三角函数.直线和圆的方程是以上述知识为基础的,同时是平面解析几何学的基础知识,是进一步学习圆锥曲线以及其它曲线方程的基础,也是学习导数、微分、积分等的基础王新敞线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.简单的线性规划是在学习了直线方程的基础上,介绍直线方程的—个简单应用.通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学习数学的兴趣、应用数学的意识和解决实际问题的能力王新敞为了建立直线的方程,本章首先引入了直线的倾斜角和斜率的概念,导出经过两点的直线的斜率公式.然后,利用经过两点的斜率公式,推导出直线方程的点斜式,利用点斜式,推导出直线方程的两点式;作为以上直线方程的特殊形式,介绍了直线方程的斜截式、截距式.指出了在平面直角坐标系中直线与二元一次方程的关系,介绍了直线方程的一般式.接着,研究了判定平面直角坐标系中两条直线平行和垂直的充要条件、两条直线的夹角和交点、点到直线的距离等问题王新敞作为直线方程的一个简单应用,介绍了简单的线性规划问题.首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个实例,介绍了线性规划问题及有关的几个基本概念及一种基本的图象解法,并利用几道例题说明线性规划在实际中的应用.安排了一个研究性课题和实习作业,使学生了解身边实际问题中线性规划的应用王新敞在第一部分研究了直线的方程的基础上,第三部分进一步讨论了一般的曲线的方程、方程的曲线概念,并着重研究了求曲线的方程的问题.作为一般曲线的具体例子,介绍了圆的标准方程、一般方程和参数方程.此外,本章安排了介绍向量与直线、笛卡儿和费马的两个阅读材料王新敞本章的重点是直线的方程、两条直线的位置关系、曲线和方程以及圆的方程,这些都是平面解析几何的重要基础知识.直线的方程、圆的方程是最基本的曲线方程.直线的方程是研究两条直线位置关系的基础,同时也是讨论圆的方程及其它圆锥曲线方程的基础.曲线的方程、方程的曲线概念,是解析几何的基本概念,理解和掌握这两个基本概念,是求曲线的方程和讨论曲线的性质的基础.本章的教学要求有:1.理解直线斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程王新敞2.掌握两条直线平行与垂直的条件,掌握两条直线的夹角和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系3.会用二元一次不等式表示平面区域王新敞4.了解简单的线性规划问题,了解线性规划的意义,并会简单的应用5.了解解析几何的基本思想,了解用坐标法研究几何问题6.掌握圆的标准方程和一般方程,了解参数方程的概念.理解圆的参数方程王新敞7.结合教学内容进行对立统一观点的教育王新敞8.实习作业以线性规划为内容,培养解决实际问题的能力王新敞二、本章的特点(一)注意渗透数学思想方法数学思想方法是重要的数学基础知识.本章注意通过教学内容渗透从中反映出来的数学思想方法王新敞数与形是数学的两个最基本的研究对象,但是,在数学的早期发展历史上,人们对数与形的研究是相对独立和隔离的,从中发展出相对独立的代数学和几何学,直到解析几何学的产生,才使数与形这两个对象完美地结合起来.本章主要内容属于解析几何学的基础知识,学生初次接触借助于坐标方法研究图形.教科书注意渗透数形结合这一解析几何学中反映出来的重要数学思想方法.在本章引言中,教科书直接指出:“通过坐标系,把点和点的坐标、曲线和曲线方程联系起来,达到了形与数的结合”.引言中的实际问题都涉及到怎样把形转化为数,又把数转化成形的问题,分别属于计算机图形学、三维动画技术等领域,解析几何学的知识是这些现代技术的重要基础.在本章的一些参考例题和习题中都注意配备能比较明显体现数形结合这一重要数学思想方法的问题,在本章的“小结与复习”的需要注意的问题的(1)中又再次提出要注意这种重要数学思想.当然,数形结合这一重要数学思想是通过本章的主要内容为途径来体现的,新教科书直接提出这一思想,使之更加突出.教科书还通过阅读材料进一步介绍这种思想王新敞(二)注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益.与《原大纲》比较,《新大纲》在“直线和圆的方程”这部分内容之前增加了简易逻辑、平面向量等新的教学内容,把原位于“直线和圆的方程”这部分内容之后的充要条件移入第一章“集合与简易逻辑”中,客观上使这部分内容有了更新处理方法的可能王新敞例如,在处理两条直线平行的条件时,为了更好地反映解析几何利用方程讨论曲线性质的基本思想,教科书直接给出了用斜截式的斜率和截距表达的充要条件.在给出曲线的方程、方程的曲线概念以后,直接指出,如果曲线C 的方程是(,)0f x y =,那么点000(,)P x y 在曲线C 上的充要条件是00(,)0f x y =.在讨论二元一次不等式表示平面区域时,应用集合观点来描述直线和被直线划分所得的平面区域,并用集合的语言来表达这些点的集合,比较准确和简明.在介绍圆的参数方程时,首先讨论圆心在原点的圆的参数方程,利用三角函数的定义,直接得到圆的参数方程,沟通了这一知识与三角函数之间的联系王新敞“平面向量”是《新大纲》中新增加的一个重要内容,而“直线和圆的方程”与“平面向量”有着较为密切的联系,本章比较注意应用向量这一有力的工具来处理有关的内容.例如,在推导经过两点的直线的斜率公式时,过原点作向量,而直线OP 的倾斜角和直线12PP 的倾斜角相等,从而比较简捷地利用正切函数定义求得斜率公式.在讨论两条直线垂直的条件时,利用方向向量和斜率的关系,得到用斜率表达的垂直充要条件.教科书还安排了一个阅读材料“向量与直线”来帮助学生了解向量在直线问题中的应用王新敞(三)重视理论联系实际,注意培养用数学的意识注意贯彻理论联系实际的教学原则,培养学生应用数学的意识.本章的引言就从当今时代广泛应用的计算机技术中所涉及数学知识出发引入问题,让学生了解数学在今天的信息时代的重要地位,以激发学生学习的兴趣,树立正确的学习目的.本章的引言指出,在科研、工程设计、工艺美术、印刷、广告设计乃至影视艺术等各种领域,都已广泛应用各种计算机软件进行文字、图象的处理和创作.用这些软件,可以画各种多边形和圆等图形,并对这些图形进行各种操作.然后提出了两个问题:为什么用计算机能对文字、图形等作各种处理呢?我们怎样用某种计算机语言编写绘制图形的程序呢?这样,从某种角度提出了学习直线和圆的方程知识的意义.当然,在具体教学中,也可以根据实际教学情况,从其他的问题来引入新课王新敞本章还安排了“简单的线性规划”的内容,这是《新大纲》中增加的一个新内容,反映了《新大纲》对于数学知识的应用的重视.本章在介绍了二元一次不等式表示平面区域以后,用一个具体的例子说明了线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等有关的几个基本概念,介绍了线性规划问题的图解方法,举例说明了线性规划在实际中的应用王新敞第7.5节还安排了以线性规划为内容的研究性课题和实习作业.研究性课题主要原因是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究.在研究性课题中要充分体现学生的自主活动和合作活动.研究性活动应以所学的数学知识为基础,并且密切结合生活和生产实际,让学生了解所学知识在实际中的应用,并培养他们分析问题、解决问题的能力王新敞三、教学中应注意的问题(一)把握好本章的教学要求在本章中,对于直线方程的斜截式和截距式,《新大纲》没有把它们作为一种独立的直线方程形式提出来,教科书只是把它们分别作为直线方程的点斜式和两点式的特殊形式给出,对于斜截式,教材只配备少量习题和练习,对于截距式则只是出现一下,让学生能初步了解,没有专门练习和习题再作巩固训练,教学中要掌握好教学要求的度.在讨论两条直线的交点的问题时,不再就直线的一般形式对系数作讨论而得出一系列判定直线相交、平行、重合的条件,而仅要求学生能根据具体的直线方程组的解的情况来判断直线是否相交,如相交,会求出交点坐标.教学时不要拓宽加深.对于二元一次不等式表示平面区域以及线性规划问题,教科书都没有形式化地给出有关概念的定义,不作一般性讨论,而仅以特殊例子加以说明,教学中也不必引入形式化的定义王新敞(二)注意面向全体学生面向全体学生就是要对每一个学生负责,既要为所有学生打好共同基础,也要注意发展学生的个性和特长,进行因材施教王新敞本章的内容是进一步学习圆锥曲线、导数、微分、积分等的基础.因而,要学好整个高中数学,就必须打好本章知识的基础,否则将会给后续内容的学习带来许多困难.所以在教学中要注意关心每一个学生的学习,及时发现教学中的问题,查漏补缺,打好一个共同的基础,完成教学大纲的教学要求.此外,本章内容又为发展学生的个性和特长提供了许多可能,教科书也为此提供素材.例如,在一些问题的解答以后,教科书提出问题,要求学生用其他的方法解题.在推导了点到直线的距离公式后,提出研究一下用其他方法推导上面的距离公式.教科书安排了两个阅读材料,对本章所涉及的一些基本问题和数学史实、数学思想方法作了简要的介绍,可以要求学有余力的学生认真阅读和体会,帮助他们加深对所学知识的理解.例如阅读材料“向量与直线”介绍了把平面向量的一些知识应用于直线方程,讨论直线与直线的位置关系,使学生能复习平面向量的有关知识,加深对直线方程问题的理解.阅读材料“笛卡儿和费马”介绍了解析几何学产生的历史背景,以及两位数学家笛卡儿和费马在创立这门学科中的主要贡献,并就解析几何的创立对数学的发展所产生的重大影响作了介绍.通过阅读材料的学习,学生能从中了解一些重要的数学思想方法,并进而培养浓厚的学习兴趣,正确的学习目的,实事求是的科学态度,以及独立思考、勇于探索创新的精神王新敞(三)注意复习相关的教学内容本章的教学内容属于平面解析几何学的基础,研究的对象是直线和圆,属于几何图形,研究方法是坐标法,要综合应用代数、三角函数、平面几何、平面向量等多方面的知识,这就要求在教学中结合教学内容复习相关的知识.尤其是本章中应用平面向量来处理直线的问题较多,如直线的斜率、圆心不在原点的圆的参数方程等问题中都涉及应用向量这一有力工具来处理,教学中要注意复习相关知识王新敞四、关于教学内容的取舍关于直线方程的形式,《新大纲》规定的教学内容有点斜式、两点式、参数式和一般式,原大纲则还有斜截式和截距式.现在以例题形式作为点斜式、两点式的特殊形式保留了斜截式和截距式,一般认为,直线方程的点斜式和两点式给出了根据一定条件求直线方程的途径,但在具体应用中,由于点斜式和两点式的形式比较原始和复杂,参数比较多,常把它们化为斜截式和一般式;斜截式与初中的一次函数有相同的形式易于互相沟通,形式比较简单,参数有简明的几何意义;截距式的形式比较简明对称,参数意义明显,能为画直线图形提供方便王新敞。

直线与方程教案

直线与方程教案

公开课教案高考第一轮复习——§9.1直线与方程林秋林 2012.12.14一.考纲要求(教学目标):1、在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。

2、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。

3、能根据两条直线的斜率判定这两条直线平行或垂直。

4、掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。

5、能用解方程组的方法求两条相交直线的交点坐标。

6、掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

二.教学重点:1、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。

2、掌握直线方程的几种形式,掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

教学难点:化归与转化思想,函数与方程思想,数形结合思想等数学思想方法。

三.教学内容:(一)近几年福建高考数学解析几何题回顾:(09理题13)过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________ 。

(09理题19)已知A,B 分别为曲线C : 22x a+2y =1(y ≥0,a>0)与x 轴的左、右两个交点,直线l 过点B,且与x 轴垂直,S 为l 上 异于点B 的一点,连结AS 交曲线C 于点T.(1)若曲线C 为半圆,点T 为圆弧AB 的三等分点,试求出点S 的坐标;(II )如图,点M 是以SB 为直径的圆与线段TB 的交点,试问:是否存在a ,使得O,M,S 三点共线?若存在,求出a 的值,若不存在,请说明理由。

(10理题2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A.22x +y +2x=0 B. 22x +y +x=0 C. 22x +y -x=0 D. 22x +y -2x=0(10理题7)若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A. [3-23,)+∞B. [323,)++∞C. 7[-,)4+∞D. 7[,)4+∞(10理题8)设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( ) A.285B.4C. 125D.2(10理题17)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点。

新教材2022版新高考数学人教B版一轮复习学案:第8章第1节直线方程Word版含解析

新教材2022版新高考数学人教B版一轮复习学案:第8章第1节直线方程Word版含解析

课程标准命题解读1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.掌握直线方程的几种形式,了解斜截式与一次函数的关系.3.掌握直线方程的几种形式,能根据两条直线的斜率及直线方程判定这两条直线平行或垂直.4.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.5.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.6.能判断直线与圆,圆与圆的位置关系.7.掌握椭圆的定义、标准方程及简单几何性质.8.了解抛物线与双曲线的定义、标准方程,以及它们的简单几何性质.9.通过圆锥曲线与方程的学习,进一步体会数形结合的思想.考查形式:一般为两个选择题或填空题和一个解答题.考查内容:直线和圆的位置关系,圆锥曲线标准方程的求解,椭圆、双曲线离心率的计算等几何性质,直线与圆锥曲线的位置关系,最值与范围问题,定点与定值问题,探索性问题或证明问题.备考策略:(1)熟练掌握直线、圆、椭圆、双曲线和抛物线方程的求法.(2)深刻理解圆锥曲线的定义,并能应用定义解决相关问题.(3)在解决直线与圆锥曲线的位置关系问题时,要加强运算的训练,重视“设而不求”的思想方法的应用.(4)掌握最值和范围、定点与定值、探索性问题等的一般解法和思想.核心素养:数学抽象、数学运算.第1节直线方程一、教材概念·结论·性质重现1.直线的倾斜角(1)倾斜角的定义一般地,给定平面直角坐标系中的一条直线,如果这条直线与x轴相交,将x轴绕着它们的交点按逆时针方向旋转到与直线重合时所转的最小正角记为θ,则称θ为这条直线的倾斜角.(2)若直线与x轴平行或重合,则规定该直线的倾斜角为0°.(3)倾斜角的取值范围是0°~180°.2.直线的斜率(1)一般地,如果直线l的倾斜角为θ,则当θ≠90°时,称k=tan_θ为直线l 的斜率;当θ=90°时,称直线l的斜率不存在.(2)若A(x1,y1),B(x2,y2)是直线l上两个不同的点,则当x1≠x2时,直线l的斜率为k=y2-y1x2-x1,当x1=x2时,直线l的斜率不存在.直线的斜率公式与两点的顺序无关,即两纵坐标和两横坐标在公式中的次序可以同时调换.就是说,如果分子是y2-y1,那么分母必须是x2-x1;反过来,如果分子是y1-y2,那么分母必须是x1-x2.3.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0)不含直线x=x0斜截式y=kx+b 不含垂直于x轴的直线两点式y-y1y2-y1=x-x1x2-x1不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式xa+yb=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)所有的直线都适用(1)求直线方程时,若不能断定直线是否具有斜率,应对斜率存在与不存在加以讨论.(2)“截距式”中截距不是距离,在用截距式时,应先判断截距是否为0.若不确定,则需分类讨论.二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”. (1)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (2)直线的倾斜角越大,其斜率就越大.( × ) (3)斜率相等的两条直线的倾斜角不一定相等.( × ) (4)不经过原点的直线都可以用x a +yb =1表示.( × )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )2.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( )A .a +b =1B .a -b =1C .a +b =0D .a -b =0D 解析:因为sin α+cos α=0,所以 tan α=-1.又因为α为倾斜角,所以斜率k =-1.而直线ax +by +c =0的斜率k =-a b , 所以-ab =-1,即a -b =0.3.如果AC <0,且BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C 解析:由已知得直线Ax +By +C =0在x 轴上的截距-CA >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限.4.已知A (3,5),B (4,7),C (-1,x )三点共线,则 x =________.-3 解析:因为A ,B ,C 三点共线,所以k AB =k AC ,所以7-54-3=x -5-1-3,所以x =-3.5.过点P (2,3)且在两轴上截距相等的直线方程为__________________. 3x -2y =0或x +y -5=0 解析:当纵、横截距为0时,直线方程为3x -2y=0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5,直线方程为x +y -5=0.考点1 直线的倾斜角与斜率——基础性1.若图中的直线l 1,l 2,l 3的斜率分别是k 1,k 2,k 3,则有( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 2<k 3<k 1D 解析:由图可知k 1>0,k 2<0,k 3<0,且直线l 3的倾斜角大于直线l 2的倾斜角,所以k 3>k 2.综上可知k 2<k 3<k 1.故选D.2.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A .⎝ ⎛⎭⎪⎫-1,15B .⎝ ⎛⎭⎪⎫-1,12C .(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞D 解析:设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k .令-3<1-2k <3,解不等式得k <-1或k >12.3.已知直线的方程为x sin α+3y -1=0,α∈R ,则直线l 的倾斜角的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫2π3,π B.⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π C.⎣⎢⎡⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π6,π D.⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫2π3,π B 解析:因为直线l 的方程为x sin α+3y -1=0,所以y =-sin α3x +13,即直线的斜率k =-sin α3.由-1≤sin α≤1,得-33≤k ≤33.又直线的倾斜角的取值范围为[0,π),由正切函数的性质可得,直线的倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π. 4.(2021·八省联考)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为________.13,-3 解析:正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图的平面直角坐标系.设对角线OB 所在直线的倾斜角为θ,则tan θ=2.由正方形的性质可知,直线OA 的倾斜角为θ-45°,直线OC 的倾斜角为θ+45°,故k OA =tan(θ-45°)=tan θ-tan 45°1+tan θtan 45°=2-11+2=13,k OC =tan(θ+45°)=tan θ+tan 45°1-tan θtan 45°=2+11-2=-3.1.倾斜角α与斜率k 的函数关系k =tan α,α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π,求倾斜角或斜率范围时,可结合图像解题.2.斜率的两种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.考点2 求直线的方程——基础性根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解:(1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π). 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4). 即x +3y +4=0或x -3y +4=0.(2)由题设知纵、横截距不为0.设直线方程为x a +y12-a =1.又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(3)当斜率不存在时,所求直线方程为x -5=0,满足题意.当斜率存在时,设斜率为k,则所求直线方程为y-10=k(x-5),即kx-y+10-5k=0.由点到直线的距离公式,得|10-5k|k2+1=5,解得k=34.故所求直线方程为3x-4y+25=0.综上知,所求直线方程为x-5=0或3x-4y+25=0.求直线方程的方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程.(2)待定系数法:先设出直线方程,再根据已知条件求出待定系数,最后代入求出直线方程.求适合下列条件的直线方程:(1)求过点A(1,3),倾斜角是直线y=-3x的倾斜角的12的直线方程;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;(3)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.解:(1)因为y=-3x的斜率为k=-3,其倾斜角为120°,所以所求直线的倾斜角为60°,其斜率为3,所以直线方程为y-3=3(x-1),即直线方程为3x-y+3-3=0.(2)设直线y=3x的倾斜角为α,则所求直线的倾斜角为2α.因为tan α=3,所以tan 2α=2tan α1-tan2α=-34.又直线经过点A(-1,-3),因此所求直线方程为y+3=-34(x+1),即3x+4y+15=0.(3)由题意可知,所求直线的斜率为±1.又直线经过点(3,4),由点斜式得y-4=±(x-3).所求直线的方程为x-y+1=0或x+y-7=0.考点3直线方程的综合应用——综合性考向1求与最值有关的直线方程过点P (4,1)作直线l 分别交x 轴、y 轴正半轴于A ,B 两点,O 为坐标原点.(1)当△AOB 面积最小时,求直线l 的方程; (2)当|OA |+|OB |取最小值时,求直线l 的方程. 解:设直线l :x a +yb =1(a >0,b >0). 因为直线l 经过点P (4,1),所以4a +1b =1. (1)因为1=4a +1b ≥24a ·1b =4ab, 所以ab ≥16,当且仅当a =8,b =2时等号成立. 所以,当a =8,b =2时,△AOB 的面积最小. 此时直线l 的方程为x 8+y2=1,即x +4y -8=0. (2)因为4a +1b =1(a >0,b >0),所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a ≥5+2a b ·4ba =9,当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.求解与最值有关的直线方程问题的一般步骤(1)设出直线方程,建立目标函数.(2)利用均值不等式、一元二次函数求解最值,得出待定系数. (3)写出直线方程.考向2 由直线方程求参数的值或取值范围已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4.当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.12 解析:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154.又0<a <2,所以当a =12时,四边形的面积最小.由直线方程求参数的值或取值范围的注意事项(1)注意寻找等量关系或不等关系.若点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或均值不等式求解.(2)注意直线恒过定点问题.1.如图,在两条互相垂直的道路l 1,l 2的一角,有一根电线杆,电线杆底部到道路l 1的垂直距离为4米,到道路l 2的垂直距离为3米.现在要过电线杆的底部靠近道路的一侧修建一条人行直道,使得人行道与两条垂直的道路围成的直角三角形的面积最小,则人行道的长度为________米.10 解析:如图,建立平面直角坐标系.设人行道所在直线方程为y -4=k (x -3)(k <0),所以A ⎝ ⎛⎭⎪⎫3-4k ,0,B (0,4-3k ),所以△ABO 的面积S =12×(4-3k )×⎝ ⎛⎭⎪⎫3-4k =12×⎝ ⎛⎭⎪⎫24-9k -16k .因为k <0,所以-9k -16k ≥2(-9k )⎝ ⎛⎭⎪⎫-16k =24,当且仅当-9k =-16k ,即k =-43时取等号.此时,A (6,0),B (0,8),所以人行道的长度为62+82=10(米).2.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A ||PB |的最大值是________.5 解析:由直线x +my =0求得定点A (0,0),直线mx -y -m +3=0,即y -3=m (x -1),得定点B (1,3).当m =0时,两条动直线垂直;当m ≠0时,因为⎝ ⎛⎭⎪⎫-1m ×m =-1,所以两条动直线也垂直.因为P 为直线x +my =0与mx -y -m +3=0的交点,所以|P A |2+|PB |2=|AB |2=10,所以|P A ||PB |≤|P A |2+|PB |22=5(当且仅当|P A|=|PB|=5时,等号成立),所以|P A|·|PB|的最大值是5.已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.[四字程序]读想算思△ABO的面积的最小值及此时直线l的方程1.三角形面积的表达式;2.以谁为变量?用适当的变量表示面积S,并求其最小值和此时的直线方程转化与化归直线过定点,且与x轴、y轴的正半轴分别交于A,B两点1. S=12ah;2.S=12ab·sin C;3.点的坐标作变量;4.直线的斜率作变量1.S=12ab≥12;2.S≥12[12+2(-9k)·4(-k)]=12×(12+12)=121.均值不等式;2.三角函数的性质思路参考:设出直线的截距式方程,利用均值不等式求出ab的最小值.解:设直线方程为xa+yb=1(a>0,b>0).将点P (3,2)代入得3a +2b =1≥26ab ,得ab ≥24. 从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23.从而所求直线方程为2x +3y -12=0.所以△ABO 的面积的最小值为12,此时直线l 的方程为2x +3y -12=0.思路参考:设出截距式方程,利用三角函数的有界性求出面积的最值,进而求出直线方程.解:设直线方程为x a +y b =1(a >0,b >0),将点P (3,2)的坐标代入得3a +2b =1.令3a =sin 2α,2b =cos 2α,则a =3sin 2α,b =2cos 2α,所以S △ABO =12ab =3sin 2αcos 2α=12sin 22α.因为0<sin 22α≤1,所以S △ABO ≥12,当且仅当sin 22α=1时等号成立.由图可知b >0,所以当且仅当3a =2b 时等号成立,即k =-b a =-23,从而所求直线方程为2x +3y -12=0.所以△ABO 的面积的最小值为12,此时直线l 的方程为2x +3y -12=0.思路参考:设出直线的点斜式方程,表示出△ABO 的面积,结合均值不等式求得最值.解:依题意知,直线l 的斜率k 存在且k <0,则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝ ⎛⎭⎪⎫3-2k ,0,B (0,2-3k ), 所以S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12.当且仅当-9k =4-k,即k =-23时,等号成立,即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.1.本题考查根据具体的条件求直线的方程,基本策略是设出直线的方程,用变量表示三角形的面积,求出面积的最小值及取得最小值时的条件,得到直线的方程.2.本题体现了数学运算、数学抽象的核心素养.3.基于高考数学评价体系,本题创设了数学情境,通过知识之间的内在联系和转化,构造函数利用均值不等式或函数的性质求最值,体现了基础性和综合性.过点P (2,1)的直线分别与x 轴和y 轴的正半轴交于A ,B 两点.求:(1)|OA ||OB |取最小值时直线的方程;(2)|P A ||PB |取最小值时直线的方程.解:(1)设直线的方程为x a +y b =1(a >0,b >0),则2a +1b =1.所以ab =ab ⎝ ⎛⎭⎪⎫2a +1b =2b +a ≥22ab ,于是ab ≥8,所以|OA ||OB |=ab ≥8,即|OA ||OB |的最小值为8,当且仅当a =2b ,即a =4,b =2时取得等号.故所求直线的方程为x +2y -4=0.(2)显然直线的斜率存在,设其方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ).所以|P A ||PB |=⎝ ⎛⎭⎪⎫1k 2+1(4+4k 2)=8+4⎝ ⎛⎭⎪⎫k 2+1k 2≥4, 当且仅当k 2=1k 2,即k =-1时取等号,所以|P A ||PB |的最小值为4时,直线的方程为x +y -3=0.。

高三数学人教版A版数学(理)高考一轮复习教案直线的倾斜角与斜率、直线方程1

高三数学人教版A版数学(理)高考一轮复习教案直线的倾斜角与斜率、直线方程1

第一节 直线的倾斜角与斜率、直线方程直线及其方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 知识点一 直线的倾斜角与斜率 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫作直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫作这条斜线的斜率,斜率通常用小写字母k 表示,即k =tan_α.(2)斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.易误提醒 任意一条直线都有倾斜角,但只有与x 轴不垂直的直线才有斜率(当直线与x 轴垂直,即倾斜角为π2时,斜率不存在)[自测练习]1.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2解析:由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2.∴y =-3.答案:B2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1D.k1<k3<k2解析:由题图可知k1<0,k2>0,k3>0,且k2>k3,∴k1<k3<k2.答案:D知识点二直线方程名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点y-y1y2-y1=x-x1x2-x1与两坐标轴均不垂直的直线续表截距式纵、横截距xa+yb=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A2+B2≠0)所有直线易误提醒(1)利用两点式计算斜率时易忽视x1=x2时斜率k不存在的情况.(2)用直线的点斜式求方程时,在斜率k不明确的情况下,注意分k存在与不存在讨论,否则会造成失误.(3)直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.(4)由一般式Ax+By+C=0确定斜率k时易忽视判断B是否为0,当B=0时,k不存在;当B≠0时,k=-AB.[自测练习]3.过点(-1,2)且倾斜角为30°的直线方程为()A.3x-3y-6+3=0B.3x-3y+6+3=0C.3x+3y+6+3=0D.3x+3y-6+3=0解析:直线斜率k=tan 30°=3 3,直线的点斜式方程为y-2=33(x+1),整理得3x -3y +3+6=0,故选B. 答案:B4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a.∴a +2a =a +2,解得a =-2或a =1. 答案:D考点一 直线的倾斜角与斜率|1.直线x +3y +m =0(m ∈R )的倾斜角为( ) A .30° B .60° C .150°D .120°解析:∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.故选C. 答案:C2.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 解析:当a =-1时,直线l 的倾斜角为90°,符合要求:当a ≠-1时,直线l 的斜率为-aa +1,则有-a a +1>1或-a a +1<0, 解得-1<a <-12或a <-1或a >0.综上可知,实数a 的取值范围是⎝⎛⎭⎫-∞,-12∪(0,+∞).答案:⎝⎛⎭⎫-∞,-12∪(0,+∞) 3.(2016·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________.解析:如图,k P A =1+31-2=-4,k PB =1+21+3=34. 要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞ 求倾斜角α的取值范围的一般步骤(1)求出tan α的取值范围;(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围. 注意已知倾斜角θ的范围,求斜率k 的范围时注意下列图象的应用: 当k =tan α,α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π时的图象如图:考点二 直线的方程|根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12.[解] (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0<α<π),从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. (2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用.求直线过点(5,10)且到原点的距离为5的直线方程.解:当斜率不存在时,所求直线方程为x -5=0,适合题意,当斜率存在时,设斜率为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.考点三 直线方程的综合应用|直线方程的综合应用是高考常考内容之一,它经常与不等式、导数、平面向量、数列等有关知识进行交汇,考查学生综合运用直线知识解决问题的能力.归纳起来常见的命题探究角度有: 1.与最值相结合问题.2.与导数的几何意义相结合问题. 3.与平面向量相结合问题. 4.与数列相结合问题. 探究一 与最值相结合问题1.(2015·高考福建卷)若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )C .4D .5解析:法一:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以1=1a +1b ≥21a ·1b=2ab(当且仅当a =b =2时取等号),所以ab ≥2.又a +b ≥2ab (当且仅当a =b =2时取等号),所以a +b ≥4(当且仅当a =b =2时取等号),故选C.法二:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4(当且仅当a =b =2时取等号),故选C. 答案:C探究二 与导数的几何意义相结合问题2.已知函数f (x )=x -4ln x ,则曲线y =f (x )在点(1,f (1))处的切线方程为________. 解析:由f ′(x )=1-4x ,则k =f ′(1)=-3,又f (1)=1,故切线方程为y -1=-3(x-1),即3x +y -4=0.答案:3x +y -4=0探究三 与平面向量相结合问题3.在平面直角坐标平面上,OA →=(1,4),OB →=(-3,1),且OA →与OB →在直线的方向向量上的投影的长度相等,则直线l 的斜率为( )A .-14B.25 C.25或-43D.52解析:直线l 的一个方向向量可设为h =(1,k ),由题⎪⎪⎪⎪⎪⎪OA →·h |h |=⎪⎪⎪⎪⎪⎪OB →·h |h |⇒|1+4k |=|-3+k |,解得k =25或k =-43,故选C.答案:C探究四 与数列相结合问题4.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线xn +1+yn=1与坐标轴所围成三角形的面积为( ) A .36B .45解析:由a n =1n (n +1)可知a n =1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,∴1-1n +1=910,∴n =9. ∴直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),∴直线与坐标轴所围成的三角形的面积为12×10×9=45,故选B.答案:B(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.17.忽视零截距致误【典例】 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.[解] (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零.∴a =2,方程即为3x +y =0.当直线不经过原点时,截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a ≤-1.[易误点评] 本题易错点求直线方程时,漏掉直线过原点的情况.[防范措施] (1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.[跟踪练习] 若直线过点P (2,1)且在两坐标轴上的截距相等,则这样的直线的条数为( )A .1B .2C .3D .以上都有可能解析:当截距均为零时,显然有一条;当截距不为零时,设直线方程为x +y =a ,则a =2+1=3,有一条.综上知,直线过点P (2,1)且在两坐标轴上的截距相等的直线有两条,故选B.答案:BA 组 考点能力演练1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.答案:A2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).3.直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3D.⎝⎛⎭⎫-12,-3 解析:∵(2x +1)-m (y +3)=0恒成立, ∴2x +1=0,y +3=0,∴x =-12,y =-3.∴定点为⎝⎛⎭⎫-12,-3. 答案:D4.(2016·海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( )A .y =3x +3或y =-3x - 3B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2 解析:|AB |= (cos α+1)2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y =-33x -33,选B. 答案:B5.(2016·贵阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得.也可以利用数形结合.选D.6.(2016·温州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________.解析:令x =0,得y =k 4;令y =0,得x =-k 3.则有k 4-k3=2,所以k =-24.答案:-247.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________________________________________________________________.解析:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k .由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=09.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:法一:设直线方程为x a +yb =1(a >0,b >0),点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b时等号成立, 这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0.则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立, 即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y 2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12, 则直线BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.B 组 高考题型专练1.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3解析:法一:如图,过点P 作圆的切线P A ,PB ,切点为A ,B .由题意知OP =2,OA =1,则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.选D. 法二:设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k2≤1. 解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3. 答案:D2.(2014·高考江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.解析:∵y =ax 2+b x ,∴y ′=2ax -b x 2, 由题意可得⎩⎨⎧ 4a +b 2=-5,4a -b 4=-72解得⎩⎪⎨⎪⎧a =-1,b =-2.∴a+b=-3.答案:-33.(2014·高考四川卷)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx -y-m+3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解析:易知A(0,0),B(1,3),且P A⊥PB,∴|P A|2+|PB|2=|AB|2=10,∴|P A|·|PB|≤|P A|2+|PB|22=5(当且仅当|P A|=|PB|时取“=”).答案:5。

2025届高中数学一轮复习课件:第九章 第1讲直线方程(共59张ppt)

2025届高中数学一轮复习课件:第九章 第1讲直线方程(共59张ppt)

第18页
高考一轮总复习•数学
第19页
对点练 1(1)(2024·湖北四地七校联考)已知函数 f(x)=asin x-bcos x(a≠0,b≠0),
若 fπ4-x=fπ4+x,则直线 ax-by+c=0 的倾斜角为(
)
π π 2π 3π A.4 B.3 C. 3 D. 4
高考一轮总复习•数学
第6页
2.直线的斜率 (1)定义:一条直线的倾斜角 α 的 正切值 叫做这条直线的斜率,斜率常用小写字母 k
表示,即 k= tan α ,倾斜角是 90°的直线没有斜率.
(2)过两点的直线的斜率公式
经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 k=yx22--yx11. 3.直线的方向向量 若 P1(x1,y1),P2(x2,y2)是直线 l 上两点,则 l 一个方向向量的坐标为(x2-x1,y2-y1); 若 l 的斜率为 k,则一个方向向量的坐标为 (1,k) .
切线问题可利用导数的几何意义:设切点 P(x0,ln x0),则 k=f′(x0).
A.e
B.-e
1 C.e
D.-1e
解析:(2)方法一:∵f(x)=ln x,∴x∈(0,+∞),f′(x)=1x.设切点为 P(x0,ln x0),则
切线的斜率 k=f′(x0)=x10=lnx0x0,
∴ln x0=1,x0=e,∴k=x10=1e. 方法二(数形结合法):在同一坐标系中作出曲线 f(x)=ln x 及其经过原点的切线,如图
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本

2024届新高考一轮复习人教A版 第八章 第1节 直线的倾斜角与斜率、直线的方程 课件(39张)

2024届新高考一轮复习人教A版 第八章 第1节 直线的倾斜角与斜率、直线的方程 课件(39张)


,解得 m=.
2.直线 2xcos α-y-3=0(α∈
A.
C.


,



,


B.
D.



,


)的倾斜角的变化范围是( B )

,



,


解析:直线 2xcos α-y-3=0 的斜率 k=2cos α.
由于α∈




, ,所以≤cos α≤ ,因此 k=2cos α∈[1, ].
x=ty+b.

1.(选择性必修第一册 P58 T7 改编)若直线经过两点 A(5,-m),B(-m,2m-1),且倾斜角为,
则 m 的值为( C )
A.2
B.3
C.-1
D.-


-+

--

解析:由题意可知 kAB=
=tan =1,解得 m=-1.

2.过点(1,0)且与直线 y=x-1 倾斜程度相同的直线方程是( A )




A.y=x-
B.y=x+
C.y=-2x+2
D.y=-x+






解析:依题意所求直线方程的斜率为 k= ,因此所求的直线方程为 y-0= (x-1),




即 y= x- .

3.直线-=1 在两坐标轴上的截距之和为( B )
A.1
B.-1
C.7
D.-7
解析:直线在x轴上截距为3,在y轴上截距为-4,因此截距之和为-1.

直线的方程课件-2025届高三数学一轮复习


=

,



=
.所以



=
=


= +

≥ ,当且仅当


.所以直线的倾斜角为



=
时取等号,又 ∈ , ,所以 =





− = ,所以的斜率为 = −,又直线过点
2.斜率公式
(1)定义式:直线的倾斜角为 ≠ ,则斜率= .
(2)坐标式:设 , , , 在直线上,且 ≠ ,
率= − − .
如果 = 且 ≠ ,则直线与 轴平行或重合,斜率等于0;
当 = 时,直线方程为 = ,即 − = ;
当 = −时,直线方程为 − + = .
方法二:当直线过原点时,满足题意,此时直线方程为 = ,即
− = ;

当直线不过原点时,设直线方程为

+


= ≠ ,
因为直线过点 ,

,所以


,

= ∈ [, ].设直线的倾斜角为 ,则有
∈ [, ].又 ∈ [, ),所以 ∈

[ , ].故选B.


D.[ , ]


.由于 ∈ [ , ],所以


[ , ],即倾斜角的取值范围是

(2)已知直线过点 , ,且与以 , , , 为端点的线段有公


+ = .

2020高考数学理科大一轮复习导学案《直线的倾斜角与斜率、直线方程》

平面解析几何第一节直线的倾斜角与斜率、直线方程知识点一 直线的倾斜角与斜率1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α,倾斜角是90°的直线斜率不存在.(2)过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.1.思考辨析(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( × ) (2)直线的斜率为tan α,则其倾斜角为α.( × ) (3)斜率相等的两直线的倾斜角不一定相等.( × ) 2.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( B ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 解析:由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是⎣⎢⎡⎭⎪⎫3π4,π.知识点二 直线方程1.直线方程的五种形式2.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y22,此公式为线段P 1P 2的中点坐标公式.3.已知直线l 经过点P (-2,5),且斜率为-34.则直线l 的方程为( A ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=解析:由点斜式得y -5=-34(x +2),即3x +4y -14=0.4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( D )A .1B .-1C .-2或-1D .-2或1解析:当a =0时,直线方程为y -2=0,不满足题意,所以a ≠0,所以在x 轴上的截距为2+a a ,在y 轴上的截距为2+a ,则由2+a =2+aa ,得a =-2或a =1.5.(必修2P100A 组第5题改编)一条直线过点A (2,-3),并且它的斜率等于直线x +3y =0的斜率的2倍,则这条直线的方程为2x +3y +33-4=0.解析:x +3y =0的斜率为-33,所求直线的斜率为-233,代入点斜式方程得y -(-3)=-233(x -2),整理得:2x +3y +33-4=0.1.直线的倾斜角α和斜率k 之间的对应关系:α 0° 0°<α<90° 90° 90°<α<180°kk >0不存在k <02.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.考向一 直线的倾斜角与斜率【例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3 C.⎣⎢⎡⎦⎥⎤π4,π2 D.⎣⎢⎡⎦⎥⎤π4,2π3 (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l斜率的取值范围为__________________________________________________________.【解析】 (1)直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 【答案】 (1)B (2)(-∞,-3]∪[1,+∞)(1)①任一直线都有倾斜角,但斜率不一定都存在;直线倾斜角的范围是[0,π),斜率的取值范围是R .②正切函数在[0,π)不单调,借助图象或单位圆数形结合,确定倾斜角α的取值范围.(2)第(2)问求解要注意两点:①斜率公式的正确计算;②数形结合写出斜率的范围,切莫错误想当然认为-3≤k ≤1.(1)平面上有相异两点A (cos θ,sin 2θ),B (0,1),则直线AB 的倾斜角α的取值范围是⎝ ⎛⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.(2)已知线段MN 两端点的坐标分别为M (-1,2)和N (2,3),若直线kx -y+k -2=0与线段MN 有交点,则实数k 的取值范围是⎣⎢⎡⎭⎪⎫53,+∞.解析:(1)由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],那么直线AB 的倾斜角的取值范围是⎝ ⎛⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π. (2)直线kx -y +k -2=0过定点P (-1,-2).MP 平行于y 轴,k NP =3+22+1=53,所以k ≥53.考向二 直线方程的求法【例2】 求适合下列条件的直线的方程: (1)在y 轴上的截距为-5,倾斜角的正弦值是35; (2)经过点P (3,2),且在两坐标轴上的截距相等;(3)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 【解】 (1)设直线的倾斜角为α,则sin α=35.∴cos α=±45,直线的斜率k =tan α=±34.又直线在y 轴上的截距是-5,由斜截式得直线方程为y =±34x -5.(2)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2).∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +ya =1. ∵l 过点P (3,2),∴3a +2a =1.∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为2x -3y =0或x +y -5=0.(3)由已知:设直线y =3x 的倾斜角为α,则所求直线的倾斜角为2α. ∵tan α=3,∴tan2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零,若采用点斜式,应先考虑斜率不存在的情况.(1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( B )A .2x +y -12=0B .2x +y -12=0或2x -5y =0C .x -2y -1=0D .x -2y -1=0或2x -5y =0(2)已知直线l 过直线x -y +2=0和2x +y +1=0的交点,且与直线x -3y +2=0垂直,则直线l 的方程为3x +y +2=0.解析:(1)当直线过原点时,由直线过点(5,2),可得直线的斜率为25,故直线的方程为y =25x ,即2x -5y =0.当直线不过原点时,设直线在x 轴上的截距为k (k ≠0),则在y 轴上的截距是2k ,直线的方程为x k +y2k =1,把点(5,2)代入可得5k +22k =1,解得k =6.故直线的方程为x 6+y12=1,即2x +y -12=0.故选B.(2)由条件可设直线l 的方程为3x +y +m =0.解方程组⎩⎪⎨⎪⎧x -y +2=0,2x +y +1=0,得直线x -y +2=0和2x +y +1=0的交点坐标为(-1,1).由题意,得3×(-1)+1+m =0,即m =2.故直线l 的方程为3x +y +2=0. 考向三 直线方程的应用方向1 最值问题【例3】 若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8【解析】 因为直线ax +by =ab (a >0,b >0)过点(1,1),所以a +b =ab ,即1a +1b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +ab ≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.所以直线在x 轴,y 轴上的截距之和的最小值为4. 【答案】 C方向2 几何性质问题【例4】 已知A ,B 两点分别在两条互相垂直的直线2x -y -1=0和x +ay +2=0上,且线段AB 的中点为P ⎝ ⎛⎭⎪⎫0,10a ,则线段AB 的长为________. 【解析】 由两直线垂直,得2-a =0,所以a =2,所以P (0,5). 由2x -y -1=0和x +2y +2=0,得两直线的交点为Q (0,-1). 由直角三角形的性质,得线段AB 的长为2|PQ |=12. 【答案】 12(1)求解与直线方程有关的最值问题,先根据题意建立目标函数,再利用基本不等式(或函数)求解最值;(2)求解直线方程与函数相结合的问题,一般是利用直线方程中x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决问题.1.(方向1)已知直线l :x a +y b =1(a >0,b >0)在两坐标轴上的截距之和为4,则该直线与两坐标轴围成的三角形的面积的最大值是( D )A .2 2B .4C .6D .2解析:直线l :x a +y b =1(a >0,b >0)在两坐标轴上的截距之和为4,所以a +b =4,即4≥2ab ⇒ab ≤4⇒12ab ≤2,则该直线与两坐标轴围成的三角形的面积的最大值是2,故选D.2.(方向2)(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为3.解析:因为AB →·CD →=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =45°.设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan(θ+π4)=-3.又B (5,0),所以直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3.典例设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求直线l的方程;(2)若l在两坐标轴上的截距互为相反数,求a.【错解展示】【现场纠错】解:(1)当直线过原点时,该直线在x轴和y轴上的截距为0,∴a=2,方程即为3x+y=0.当直线不经过原点时,截距存在且均不为0,直线方程可写为x a -2a +1+y a -2=1, ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0.(2)由a -2a +1=-(a -2),得a -2=0或a +1=-1, ∴a =2或a =-2.【纠错心得】 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.。

高中数学直线及其方程教案

高中数学直线及其方程教案教学目标:
1. 了解直线的基本定义及性质;
2. 掌握直线的方程表示方法;
3. 熟练运用直线的方程解决具体问题。

教学重点:
1. 直线的基本性质;
2. 直线的方程表示方法。

教学难点:
1. 利用直线方程解决实际问题。

教学准备:
1. PowerPoint课件;
2. 教案复印件;
3. 钢笔、白板、擦拭布。

教学步骤:
一、引入(5分钟)
1. 引导学生回顾直线的基本概念;
2. 提出问题:如何表示直线的方程?
二、提出问题(10分钟)
1. 介绍直线的一般方程:Ax + By + C = 0;
2. 说明直线斜率的概念以及直线的斜截式方程;
3. 讲解直线的截距式方程及解题方法。

三、示范演练(15分钟)
1. 解答直线方程表示问题;
2. 演示如何根据直线方程解决相关问题。

四、练习与拓展(15分钟)
1. 学生互相讨论并解答相关问题;
2. 综合应用直线方程解决复杂问题。

五、总结与反思(5分钟)
1. 总结直线的方程表示方法及应用;
2. 提醒学生巩固相关知识,勤加练习。

教学反馈:
1. 课后布置作业:完成相关练习题;
2. 下节课继续巩固直线方程的应用。

教学延伸:
1. 注重学生自主学习,鼓励他们通过查阅资料和练习巩固所学知识;
2. 引导学生思考及解决实际应用问题,拓展直线方程的应用范围。

高中数学教案直线方程

高中数学教案直线方程
教学目标:
1. 理解直线的定义及直线方程的含义;
2. 掌握利用点斜式、截距式和一般式求解直线方程的方法;
3. 能够应用直线方程解决实际问题。

教学重点:
1. 点斜式、截距式和一般式的直线方程求解方法;
2. 直线方程应用题的解决能力。

教学步骤:
一、导入(5分钟)
教师通过引入一个真实的例子引出直线的概念及方程的含义,让学生了解直线方程的基本概念。

二、讲解直线方程的表示方法(10分钟)
1. 点斜式:y - y1 = k(x - x1);
2. 截距式:x/a + y/b = 1;
3. 一般式:Ax + By + C = 0。

三、练习及拓展(15分钟)
教师通过一些练习题让学生巩固以上三种表示方式的求解方法,并引导学生拓展到更复杂的题目中。

四、综合应用(15分钟)
教师出一些应用题,要求学生利用所学的知识解决实际问题,如求两直线的交点等。

五、总结(5分钟)
教师对本节课所学内容进行总结,强调重点,巩固学生的知识。

六、作业布置(5分钟)
布置相应的作业,用以巩固所学知识。

教学反思:
通过本节课的学习,学生可以掌握直线方程的基本概念及解题方法,从而提高解决实际问题的能力。

同时,教师要注意引导学生理解概念,注重实际应用,使学生学以致用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省泰兴市第三中学2015届高考数学一轮复习 直线方程(1)
教案
教学目标:掌握直线方程的点斜式、斜截式,能根据条件熟练求出直线的方程;
使学生感受到直线的方程和直线之间的对应关系
重点难点:掌握直线方程的点斜式、斜截式,能根据条件熟练求出直线的方程.
引入新课
飞逝的流星形成了一条美丽的弧线,这条弧线可以看做是满足某种运动规律的点的集合。

在平面直角坐标系中直线也可以看做是满足某种条件的点的集合,直线的位置可以由两点唯一确定,也可以由一点和一个方向来确定
建构教学
1.(1)若直线l 经过点()000y x P ,,且斜率为k ,则直线方程为 ;
这个方程是由直线上 及其 确定的,
所以叫做直线的 方程.
(2)直线的点斜式方程
①一般形式:
②适用条件:
2.(1)若直线l 的斜率为k ,且与y 轴的交点为()b ,0,代入直线的点斜式,
得 ,我们称b 为直线l 在y 轴上的 .
这个方程是由直线l 的斜率和它在y 轴上的 确定的,
所以叫做直线的 方程.
(2)直线的斜截式方程
①截距:
②一般形式:
③适用条件:
注意:当直线和x 轴垂直时,斜率不存在,此时方程不能用点斜式方程和斜截式方程
表示.
例题剖析
例1 已知一直线经过点P (-2,3),斜率为2,求此直线方程.
例 2 直线052=+y 的斜率和在y 轴上的截距分别为 ( )
A .0,-25
B .2,-5
C .0,-5
D .不存在,-2
5 例3 将直线l 1:023=-+-y x 绕着它上面的一点)32( ,
按逆时针方向旋 转︒15 得直线l 2,求l 2的方程.
已知直线l 的斜率为43,且与坐标轴所围成的三角形的面积为6,求直线l 的方程.
课堂小结
掌握直线方程的点斜式、斜截式,能根据条件熟练求出直线的方程.
数学(理)即时反馈作业
编号:003 直线方程一 1.直线l 经过点()31 -,M ,其倾斜角为60°,则直线l 的方程是 .
2.对于任意实数k ,直线()32+-=x k y 必过一定点,则该定点的坐标为_______
3.直线l :()21+=-x k y 必过定点 ,若直线l 的倾斜角为135°, 则直线l 在y 轴上的截距为 .
4.已知直线321+=x y l :,若2l 与1l 关于y 轴对称,则直线2l 的方程为 ;
若直线2l 与1l 关于x 轴对称,则直线2l 的方程为 .
5.将直线13-+=x y 绕着它上面的一点(1,3)按逆时针方向旋转︒15,得到直线的
方程为 .
6.若△ABC 在第一象限()()1511
,,,B A ,且点C 在直线AB 的上方,∠CAB =60°,∠CBA =45°,则直线AC 的方程是______________________________;
直线BC 的方程是 .
7.根据下列条件,分别写出直线的方程:
(1)斜率为3
3,经过点()28- ,; (2)经过点()02 -,,且与x 轴垂直; (3)斜率为-4,在y 轴上的截距为
8.已知直线53
3+-=x y 的倾斜角是直线l 的倾斜角的大小的5倍, 求分别满足下列条件的直线l 的方程:
(1)过点()43- ,
P ; (2)在y 轴上的截距为3.。

相关文档
最新文档