高考数学试题分类汇编直线的方程

合集下载

(完整版)全国高考数学直线与圆的方程试题汇编

(完整版)全国高考数学直线与圆的方程试题汇编

全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。

直线的方程(解析版)

 直线的方程(解析版)

直线的方程题型一:倾斜角、斜率问题典例1、直线3310x y ++=的倾斜角为( )A .150B .120C .30D .60答案: A解析: 求出直线斜率,可得倾斜角.【详解】 直线3310x y ++=的斜率为33k =-,所以倾斜角为150°. 故选:A.【点睛】本题考查直线的倾斜角,解题时可先求得直线斜率,由斜率与倾斜角关系得倾斜角. 典例2、如果过P (-2,m ),Q (m ,4)两点的直线的斜率为1,那么m 的值是( )A .1B .4C .1或3D .1或4答案: A解析: 根据直线的斜率公式,列出方程,即可求解,得到答案.【详解】由题意,过过P (-2,m ),Q (m ,4)两点的直线的斜率为1,根据直线的斜率公式,可得41(2)m m -=--,解得1m =. 故选:A.【点睛】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确运算是解答的关键,着重考查了计算能力,属于基础题.典例3、直线2x ﹣3y+1=0的一个方向向量是( )A .(2,﹣3)B .(2,3)C .(﹣3,2)D .(3,2) 答案: D解析: 由题意可得:直线2x ﹣3y+1=0的斜率为k=,所以直线2x ﹣3y+1=0的一个方向向量=(1,),或(3,2)故选D .典例4、直线l 的一个法向量(cos 1)n θ=,(θ∈R ),则直线l 倾角α的取值范围是_______。

答案: 3[0][)44πππ⋃,,解析: 依题意可得,直线l 的方向向量为(1,cos )θ-,则tan cos [1,1]αθ=-∈-,所以3[0,][,)44ππαπ∈⋃典例5、已知线段AB 的端点()()2,1,1,4A B -,直线l 过原点且与线段AB 不相交,则直线l 的斜率k 的取值范围是__________________答案: (-∞,-4+∞)解析: 求出直线,OA OB 的斜率,观察线段AB 是否过y 轴,即可得。

高中数学直线与方程精选题目(附答案)

高中数学直线与方程精选题目(附答案)

高中数学直线与方程精选题目(附答案)高中数学直线与方程精选题目(附答案)1.经过A (2,0),B (5,3)两点的直线的倾斜角为( ) A .45° B .135° C .90°D .60°解析:选A ∵A (2,0),B (5,3),∴直线AB 的斜率k =3-05-2=1. 设直线AB 的倾斜角为θ(0°≤θ<180°),则tan θ=1,∴θ=45°.故选A.2.点F (3m +3,0)到直线3x -3my =0的距离为( ) A. 3 B.3mC .3D .3m解析:选A 由点到直线的距离公式得点F (3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3= 3.3.和直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 设所求直线上的任一点为(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线3x -4y +5=0上,所以3x +4y +5=0.4.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 依题意得:直线3x -y =33的斜率为3,∴其倾斜角为60°.∴-3n =-3,-mn=tan 120°=-3,得m =3,n =1.5.直线y =ax +1a的图象可能是( )解析:选B 根据斜截式方程知,斜率与直线在y 轴上的截距同正负. 6.已知两点A (3,0),B (0,4),动点P (x ,y )在线段AB 上运动,则xy ( ) A .无最小值且无最大值 B .无最小值但有最大值 C .有最小值但无最大值D .有最小值且有最大值解析:选D 线段AB 的方程为x 3+y4=1(0≤x ≤3),于是y =41-x 3(0≤x ≤3),从而xy =4x 1-x 3=-43x -322+3,显然当x =32∈[0,3]时,xy 取最大值为3;当x =0或3时,xy 取最小值0.7.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且它们间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A 由题意,所给两条直线平行,∴n =-2.由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0. 8.若动点A(x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为( )A .2 3B .3 3C .3 2D .4 2解析:选C 由题意知,M 点的轨迹为平行于直线l 1,l 2且到l 1,l 2距离相等的直线l ,故其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2.9.直线l 过点(-3,0),且与直线y =2x -3垂直,则直线l 的方程为( ) A .y =-12(x -3)B .y =-12(x +3)C .y =12(x -3)D .y =12(x +3)解析:选B 因为直线y =2x -3的斜率为2,所以直线l 的斜率为-12.又直线l 过点(-3,0),故所求直线的方程为y =-12(x +3),选 B.10.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( ) A .3x -y -13=0 B .3x -y +13=0 C .3x +y -13=0D .3x +y +13=0解析:选C 由已知可知,l 是过A 且与AB 垂直的直线,∵k AB =2-4-3-3=13,∴k l =-3,由点斜式得,y -4=-3(x -3),即3x +y -13=0.11.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是( ) A .(2,0)或(4,6) B .(2,0)或(6,4) C .(4,6)D .(0,2)解析:选A 设B 点坐标为(x ,y ),根据题意知?k AC ·k BC =-1,|BC |=|AC |,∴3-43-0×y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解得 x =2,y =0或x =4,y =6.12.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0 解析:选D 依题意,设直线l :y -4=k (x -3),即kx -y +4-3k =0,则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6,或-5k +2=-(k +6),解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.13.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________. 解析:∵直线x -2y +5=0与直线2x +my -6=0互相垂直,∴12×-2m =-1,∴m =1. 答案:114.若x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,则k =________. 解析:∵直线x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,解方程组 2x +3y +8=0,x -y -1=0,得x =-1,y =-2,∴直线x +ky =0过点(-1,-2),解得k =-12.答案:-1215.若过点P (1-a,1+a )与点Q (3,2a )的直线的倾斜角是钝角,则实数a 的取值范围是________.解析:k =2a -(1+a )3-(1-a )=a -1a +2<0,得-2<1.<="" p="">答案:(-2,1)16.已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为________________.解析:设直线l 的方程为x a +y b =1,∴12|ab |=3,且-b a =16,解得a =-6,b =1或a =6,b =-1,∴直线l 的方程为x -6+y =1或x6-y =1,即x -6y +6=0或x -6y -6=0.答案:x -6y +6=0或x -6y -6=017.(本小题满分10分)已知直线l 的倾斜角为135°,且经过点P(1,1). (1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解:(1)∵k =tan 135°=-1,∴l :y -1=-(x -1),即x +y -2=0.(2)设A ′(a ,b ),则b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18.(本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.解:设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为 D.由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5. 由已知易得,直线AB 的方程为x -2y +3=0,所以d =|a +3|1+(-2)2=25,解得a =7或a =-13(舍去),所以点P 的坐标为(7,0).19.(本小题满分12分)已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点.(2)当-3<="" 的取值范围.="" 解:(1)证明:由y="" 轴上方,求实数k="" +1,得y="" +2).="" +2k="" -1=k="" =kx="">(2)设函数f (x )=kx +2k +1,显然其图象是一条直线(如图).若当-3<="">f (-3)≥0,f (3)≥0.即-3k +2k +1≥0,3k +2k +1≥0,解得-15≤k ≤1.所以实数k 的取值范围是-15,1. 20.(本小题满分12分)已知点A (m -1,2),B (1,1),C (3,m 2-m -1). (1)若A ,B ,C 三点共线,求实数m 的值; (2)若AB ⊥BC ,求实数m 的值.解:(1)因为A ,B ,C 三点共线,且x B ≠x C ,则该直线斜率存在,则k BC =k AB ,即m 2-m -22=1m -2,解得m =1或1-3或1+ 3.(2)由已知,得k BC =m 2-m -22,且x A -x B =m -2.①当m -2=0,即m =2时,直线AB 的斜率不存在,此时k BC =0,于是AB ⊥BC ;②当m -2≠0,即m ≠2时,k AB =1m -2,由k AB ·k BC =-1,得1m -2·m 2-m -22=-1,解得m =-3.综上,可得实数m 的值为2或-3.21.(本小题满分12分)直线过点P43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线满足下列条件:①△AOB 的周长为12;②△AOB 的面积为6.若存在,求出方程;若不存在,请说明理由.解:设直线方程为x a +yb =1(a >0,b >0),由条件①可知,a +b +a 2+b 2=12.由条件②可得12ab =6.又直线过点P 43,2,∴43a +2b =1,联立,得a +b +a 2+b 2=12,12ab =6,43a +2b=1,解得?a =4,b =3.∴所求直线方程为x 4+y3=1.22.(本小题满分12分)已知点P (2,-1).(1)求过点P 且与原点O 的距离为2的直线的方程;(2)求过点P 且与原点O 的距离最大的直线的方程,并求出最大距离;(3)是否存在过点P 且与原点O 的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.解:(1)①当直线的斜率不存在时,方程x =2符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为 y +1=k (x -2),即kx -y -2k -1=0. 根据题意,得|2k +1|k 2+1=2,解得k =34.则直线方程为3x -4y -10=0.故符合题意的直线方程为x -2=0或3x -4y -10=0.(2)过点P 且与原点的距离最大的直线应为过点P 且与OP 垂直的直线.则其斜率k=2,所以其方程为y+1=2(x-2),即2x-y-5=0.最大距离为 5.(3)不存在.理由:由于原点到过点(2,-1)的直线的最大距离为5,而6>5,故不存在这样的直线.。

专题2.2 直线的方程(一):直线方程的几种形式【八大题型】(举一反三)(人教A版2019选择性必修

专题2.2 直线的方程(一):直线方程的几种形式【八大题型】(举一反三)(人教A版2019选择性必修

专题2.2 直线的方程(一):直线方程的几种形式【八大题型】【人教A版(2019)】【题型1 直线的点斜式方程及辨析】 (2)【题型2 直线的斜截式方程及辨析】 (2)【题型3 直线的两点式方程及辨析】 (3)【题型4 直线的截距式方程及辨析】 (4)【题型5 直线的一般式方程及辨析】 (5)【题型6 直线一般式方程与其他形式之间的互化】 (6)【题型7 求直线的方向向量】 (7)【题型8 根据直线的方向向量求直线方程】 (7)【知识点1 直线的点斜式、斜截式方程】1.直线的点斜式方程(1)直线的点斜式方程的定义:设直线l经过一点,斜率为k l的点斜式方程.(2)点斜式方程的使用方法:①已知直线的斜率并且经过一个点时,可以直接使用该公式求直线方程.②当已知直线的倾斜角时,若直线的倾斜角,则直线的斜率不存在,其方程不能用点斜式表示,但因为l上每一个点的横坐标都等于x1,所以直线方程为x=x1;若直线的倾斜角,则直线的斜率,直线的方程为.2.直线的斜截式方程(1)直线的斜截式方程的定义:设直线l的斜率为k,在y轴上的截距为b,则直线方程为y=kx+b,这个方程叫作直线l的斜截式方程.(2)斜截式方程的使用方法:已知直线的斜率以及直线在y轴上的截距时,可以直接使用该公式求直线方程.【题型1 直线的点斜式方程及辨析】【例1】(2023春·江西九江·高二校考期中)过两点(0,3),(2,1)的直线方程为()A.x−y−3=0B.x+y−3=0C.x+y+3=0D.x−y+3=0【变式1-1】(2023·上海·高二专题练习)过点P(−5,7),倾斜角为135°的直线方程为()A.x−y+12=0B.x+y−2=0C.x+y−12=0D.x−y+2=0【变式1-2】(2023秋·广东广州·高二校考期末)经过点(1,2),且斜率为2的直线方程是()A.2x−y=0B.2x+y=0C.x−2y+1=0D.x+2y−3=0【变式1-3】(2023·全国·高二专题练习)方程y=k(x−2)表示()A.通过点(2,0)的所有直线B.通过点(2,0)且不垂直于y轴的所有直线C.通过点(2,0)且不垂直于x轴的所有直线D.通过点(2,0)且除去x轴的所有直线【题型2 直线的斜截式方程及辨析】【例2】(2022·全国·高二专题练习)直线2x+y−3=0用斜截式表示,下列表达式中,最合理的是()【变式2-1】(2022秋·高二校考课时练习)与直线y=−x+2垂直,且在x轴上的截距为2的直线的斜截式方程为().A.y=x+2B.y=x−2C.y=−x+2D.y=−x+4A.y=x+1B.y=x−1C.y=−x−1D.y=−x+1【变式2-3】(2023秋·江西吉安·高二校考期中)与直线2x−y−1=0垂直,且在y轴上的截距为4的直线的斜截式方程是()(1)直线的两点式方程的定义:设直线l经过两点(),则方程l的两点式方程.(2)两点式方程的使用方法:①已知直线上的两个点,且时,可以直接使用该公式求直线方程.②当().③当(2.直线的截距式方程(1)直线的截距式方程的定义:设直线l在x轴上的截距为a,在y轴上的截距为b,且a≠0,b≠0,则方程l的截距式方程.(2)直线的截距式方程的适用范围:选用截距式方程的条件是a≠0,b≠0,即直线l在两条坐标轴上的截距非零,所以截距式方程不能表示过原点的直线,也不能表示与坐标轴平行(或重合)的直线.(3)截距式方程的使用方法:①已知直线在x轴上的截距、y轴上的截距,且都不为0时,可以直接使用该公式求直线方程.②已知直线在x轴上的截距、y轴上的截距,且都为0时,可设直线方程为y=kx,利用直线经过的点的坐标求解k,得到直线方程.【题型3 直线的两点式方程及辨析】【例3】(2023·全国·高三专题练习)已知直线l过点G(1,−3),H(−2,1),则直线l的方程为()A.4x+y+7=0B.2x−3y−11=0C.4x+3y+5=0D.4x+3y−13=0【变式3-1】(2023秋·浙江温州·高二统考期末)过两点A(3,−5),B(−5,5)的直线在y轴上的截距为()【变式3-2】(2022秋·浙江杭州·高二校联考期中)已知直线l过点G(1,−3),H(2,1),则直线l的方程为()A.4x+y+7=0B.4x−y−7=0C.2x−3y−11=0D.4x−y+7=0【变式3-3】(2022·高二课时练习)已知直线l经过(−2,−2)、(2,4)两点,点(1348,m)在直线l上,则m的值为()A.2021B.2022C.2023D.2024【题型4 直线的截距式方程及辨析】【例4】(2023春·上海闵行·高二校考阶段练习)经过点A(5,2),并且在两坐标轴上的截距相等的直线l有()条A.0B.1C.2D.3【变式4-1】(2023秋·吉林·高二校联考期末)过点(3,−6)且在两坐标轴上截距相等的直线的方程是()A.2x+y=0B.x+y+3=0C.x−y+3=0D.x+y+3=0或2x+y=0【变式4-2】(2023·全国·高二专题练习)若直线l过点A(−2,0),B(0,3),则直线l的方程为()A.3x−2y+6=0B.2x−3y+6=0C.3x−2y−6=0D.3x+2y−6=0【变式4-3】(2023秋·安徽六安·高二校考期末)已知直线l过A(−2,1),且在两坐标轴上的截距为相反数,那么直线l的方程是().A.x+2y=0或x−y+3=0B.x−y−1=0或x−y+3=0C.x−y−1=0或x+y−3=0D.x+2y=0或x+y−3=0【知识点3 直线的一般式方程】1.直线的一般式方程(1)直线的一般式方程的定义:在平面直角坐标系中,任何一个关于x,y的二元一次方程都表示一条直线.我们把关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫作直线的一般式方程.对于方程Ax+By+C=0(A,B不全为0):当B≠0时,方程Ax+By+C=0可以写成y=它表示斜率为在y轴上的截距为线.特别地,当A=0时,它表示垂直于y轴的直线.当B=0时,A≠0,方程Ax+By+C=0可以写成x=,它表示垂直于x轴的直线.(2)一般式方程的使用方法:直线的一般式方程是直线方程中最为一般的表达式,它适用于任何一条直线.2.辨析直线方程的五种形式【题型5 直线的一般式方程及辨析】【例5】(2023秋·高二课时练习)经过点(0,−1),且倾斜角为60°的直线的一般式方程为()1=0【变式5-1】(2023·全国·高二专题练习)在直角坐标系中,直线x−2y+3=0经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限【变式5-2】(2023秋·北京西城·高二校考期末)已知直线l过点A(−3,1),且与直线x−2y+3=0垂直,则直线l的一般式方程为()A.2x+y+3=0B.2x+y+5=0C.2x+y−1=0D.2x+y−2=0【变式5-3】(2023秋·广东江门·高二统考期末)直线Ax+By+C=0(A,B不同时为0),则下列选项正确的是()A.无论A,B取任何值,直线都存在斜率B.当A=0,且B≠0时,直线只与x轴相交C.当A≠0,或B≠0时,直线与两条坐标轴都相交D.当A≠0,且B=0,且C=0时,直线是y轴所在直线【题型6 直线一般式方程与其他形式之间的互化】A.2x+3y+3=0B.2x+3y−3=0C.2x+3y+2=0D.3x−2y−2=0【变式6-1】(2023秋·江苏盐城·高二校考期末)如果AB<0,BC<0,那么直线Ax+By+C=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限A.1B.−1C.2D.−2【变式6-3】(2023秋·甘肃兰州·高二校考期末)已知直线l过点(2,4),且在x轴上的截距是在y轴上的截距的2倍,则直线l的方程为()A.x+2y−10=0B.x+2y+10=0C.2x−y=0或x+2y−4=0D.2x−y=0或x+2y−10=0【知识点4 方向向量与直线的参数方程】1.方向向量与直线的参数方程除了直线的点斜式、斜截式、两点式、截距式、一般式方程外,还有一种形式的直线方程与向量有紧密的联系,它由一个定点和这条直线的方向向量唯一确定,与直线的点斜式方程本质上是一致的.如图1,设直线l经过点,=(m,n)是它的一个方向向量,P(x,y)是直线l上的任意一点,则向量与共线.根据向量共线的充要条件,存在唯一的实数t,使=t,即)=t(m,n),所以①.在①中,实数t是对应点P的参变数,简称参数.由上可知,对于直线l上的任意一点P(x,y),存在唯一实数t使①成立;反之,对于参数t的每一个确定的值,由①可以确定直线l上的一个点P(x,y).我们把①称为直线的参数方程.【题型7 求直线的方向向量】【例7】(2023·上海·高二专题练习)直线x−2y+1=0的一个方向向量是()A.(2,1)B.(1,2)C.(2,−1)D.(1,−2)【变式7-1】(2023秋·广东肇庆·高二统考期末)直线2mx+my−3=0的一个方向向量是()A.(1,2)B.(2,−1)C.(2,1)D.(1,−2)【变式7-2】(2023秋·北京丰台·高二统考期末)已知经过A(0,2),B(1,0)两点的直线的一个方向向量为(1,k),那么k=()【变式7-3】(2022秋·高二课时练习)已知直线l:mx+2y+6=0,且向量(1−m,1)是直线l的一个方向向量,则实数m的值为()A.−1B.1C.2D.−1或2【题型8 根据直线的方向向量求直线方程】【例8】(2023春·河南开封·高二统考期末)已知直线l的一个方向向量为(2,−1),且经过点A(1,0),则直线l的方程为()A.x−y−1=0B.x+y−1=0C.x−2y−1=0D.x+2y−1=0【变式8-1】(2022秋·广东广州·高二校联考期中)直线l的方向向量为(2,3),直线m过点(1,1)且与l垂直,则直线m的方程为()A.2x+3y−5=0B.2x−3y+1=0C.3x+2y−5=0D.3x−2y−1=0【变式8-2】(2022秋·北京·高二校考期末)已知直线l:(2m+1)x+(m+1)y+m=0经过定点P,直线l′经过点P,且l′的方向向量a⃗=(3,2),则直线l′的方程为()A.2x−3y+5=0B.2x−3y−5=0C.3x−2y+5=0D.3x−2y−5=0【变式8-3】(2023秋·重庆渝中·高二校考期中)已知直线l1的方向向量为a⃑=(1,3),直线l2的方向向量为b⃑⃑=(-1,k),若直线l2过点(0,5),且l1①l2,则直线l2的方程是()A.x+3y-5=0B.x+3y-15=0C.x-3y+5=0D.x-3y+15=0。

高中 直线的方程

高中 直线的方程

直线的方程一、单选题1.直线320x y -=的斜率是()A .32-B .32C .23-D .232.已知直线l 方程为(),0f x y =,()111,P x y 和()222,P x y 分别为直线l 上和l 外的点,则方程()()()1122,,,0f x y f x y f x y --=表示()A .过点1P 且与l 垂直的直线B .与l 重合的直线C .过点2P 且与l 平行的直线D .不过点2P ,但与l 平行的直线3.直线1l :60x ay ++=和直线2l :()2320a x ay a -++=.若12//l l ,则a 的值为()A .0或5B .0C .5D .非上述答案4.经过点()1,1-,倾斜角是直线22y x =-的倾斜角的2倍的直线方程是()A .1x =-B .1y =C .)11y x -=+D .)11y x -=+5.下列四个命题中,正确的是()A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .不经过原点的直线都可以用方程1x ya b+=表示C .经过定点()0,A b 的直线都可以用方程y kx b =+表示D .对于直线()()211a y a x -=--,无论a 为何值,直线总过第一象限6.直线2y kx k =-恒过定点()A .()0,2-B .()0,2C .()2,0-D .()2,07.m R ∈,动直线1:10l x my +-=过定点A 动直线2:230l mx y m --+=过定点B ,若1l 与2l 交于点P (异于点A ,B ),则PA PB +的最大值为AB.CD.8.已知()111P a b ,与()122P a b ,是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是()A .无论12k P P 、、如何,总是无解B .无论12k P P 、、如何,总有唯一解C .存在12k P P 、、,使之恰有两解D .存在12k P P 、、,使之有无穷多解二、填空题9.若动点11(,)A x y ,22(,)B x y 分别在直线1:70l x y +-=和2:50l x y +-=上移动,则线段AB 的中点M 到原点的距离的最小值为____________.10.已知直线1l 过点1(2)P ,且与直线2l :1y x =+垂直,则1l 的点斜式方程为.11.已知三条直线1:220()l x my m R ++=∈,2:210l x y +-=,3:10()l x ny n R ++=∈,若1213//,l l l l ⊥,则m n +的值为______.12.已知点1(,)2M m m -和点1(,)2N n n -()m n ≠,若线段MN 上的任意一点P 都满足:经过点P 的所有直线中恰好有两条直线与曲线21:2C y x x =+(13)x -≤≤相切,则||m n -的最大值为___.参考答案1.B2.C3.A4.D5.D6.D7.B8.B9.10.y-1=-(x-2).11.1 12..。

高考数学分类汇编直线方程与圆的方程

高考数学分类汇编直线方程与圆的方程

2012年高考数学分类汇编 直线方程与圆的方程一、选择题1 .(2012年高考(陕西理))已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 ( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能2 .(2012年高考(天津理))设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A .[1B .(,1[1+3,+)-∞-∞C .[2-D .(,2[2+22,+)-∞-∞3 .(2012年高考(重庆文))设A,B 为直线y x =与圆221x y += 的两个交点,则||AB =( )A .1BCD .24 .(2012年高考(陕西文))已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 ( )A .l 与C 相交B .l 与C 相切 C .l 与C 相离D .以上三个选项均有可能5 .(2012年高考(山东文))圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A .内切B .相交C .外切D .相离6 .(2012年高考(辽宁文))将圆x 2+y 2-2x-4y+1=0平分的直线是 ( )A .x+y-1=0B .x+y+3=0C .x-y+1=0D .x-y+3=07 .(2012年高考(湖北文))过点(1,1)P 的直线,将圆形区域{}22(,)|4x y xy +≤分两部分,使得这两部分的面积之差最大,则该直线的方程为 ( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=8 .(2012年高考(广东文))(解析几何)在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( )A .B .CD .19 .(2012年高考(福建文))直线20x +-=与圆224x y +=相交于,A B 两点,则弦AB的长度等于 ( )A .B .CD .110 .(2012年高考(大纲文))正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC上,13AB BF ==动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 ( )A .8B .6C .4D .311.(2012年高考(安徽文))若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是 ( )A .[3,1]--B .[1,3]-C .[3,1]-D .(,3][1,)-∞-+∞12 .(2012年高考(重庆理))对任意的实数k,直线y=kx+1与圆222=+y x 的位置关系一定是( ) A .相离 B .相切 C .相交但直线不过圆心D .相交且直线过圆心二、填空题13.(2012年高考(浙江文))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l的距离,已知曲线C 1:y=x 2+a 到直线l:y=x 的距离等于曲线C 2:x 2+(y+4)2=2到直线l:y=x 的距离,则实数a=_______.14.(2012年高考(天津文))设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为_________.15.(2012年高考(上海文))若)1,2(=是直线l 的一个方向向量,则l 的倾斜角的大小为__________(结果用反三角函数值表示). 16.(2012年高考(山东文))如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.17.(2012年高考(江西文))过直线0x y +-=上点P 作圆221x y +=的两条切线,若两条切线的夹角是60︒,则点P 的坐标是__________。

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析1.过点且斜率为的直线与抛物线相交于,两点,若为中点,则的值是.【答案】【解析】直线,设,,则由有B为AC中点,则,∴,则带入直线中,有,∴.【考点】直线方程、中点坐标公式.2.直线l经过点(3,0),且与直线l′:x+3y-2=0垂直,则l的方程是______________.【答案】3x-y-9=0【解析】直线l′:x+3y-2=0的斜率为k′=-,由题意,得k′k=k=-1,则k=3.所以l 的方程为y=3(x-3),即3x-y-9=0.3.求经过点A(2,m)和B(n,3)的直线方程.【答案】当n≠2时,y-m=(x-2),当n=2时x=2.【解析】(解法1)利用直线的两点式方程.直线过点A(2,m)和B(n,3).①当m=3时,点A的坐标是A(2,3),与点B(n,3)的纵坐标相等,则直线AB的方程是y=3.②当n=2时,点B的坐标是B(2,3),与点A(2,m)的横坐标相等,则直线AB的方程是x=2.③当m≠3,n≠2时,由直线的两点式方程得.(解法2)利用直线的点斜式方程.①当n=2时,点A、B的横坐标相同,直线AB垂直于x轴,则直线AB的方程为x=2.②当n≠2时,过点A,B的直线的斜率是k=.又∵过点A(2,m),∴由直线的点斜式方程y-y1=k(x-x1),得过点A,B的直线的方程是y-m=(x-2).4.直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.【答案】2x-3y=0或x+y-5=0.【解析】解法1:(借助点斜式求解)由于直线l在两轴上有截距,因此直线不与x、y轴垂直,斜率存在,且k≠0.设直线方程为y-2=k(x-3),令x=0,则y=-3k+2;令y=0,则x=3-.由题设可得-3k+2=3-,解得k=-1或k=.故l的方程为y-2=-(x-3)或y-2=(x-3).即直线l的方程为x+y-5=0或2x-3y=0.解法2:(利用截距式求解)由题设,设直线l在x、y轴的截距均为a.若a=0,则l过点(0,0).又过点(3,2),∴l的方程为y=x,即l:2x-3y=0.若a≠0,则设l为=1.由l过点(3,2),知=1,故a=5.∴l的方程为x+y-5=0.综上可知,直线l的方程为2x-3y=0或x+y-5=0.5. 已知直线l :+4-3m =0.(1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 【答案】(1)见解析(2)2x +y +4=0 【解析】(1)证明:∵m +2x +y +4=0, ∴由题意得∴直线l 恒过定点M.(2)解:设所求直线l 1的方程为y +2=k(x +1),直线l 1与x 轴、y 轴交于A 、B 两点,则A,B(0,k -2).∵AB 的中点为M ,∴解得k =-2.∴所求直线l 1的方程为2x +y +4=0.,6. 已知直线的点斜式方程为y -1=- (x -2),则该直线另外三种特殊形式的方程为______________,______________,______________. 【答案】y =-x +,,【解析】将y -1=- (x -2)移项、展开括号后合并,即得斜截式方程y =-x +. 因为点(2,1)、均满足方程y -1=- (x -2),故它们为直线上的两点.由两点式方程得,即.由y =-x +知,直线在y 轴上的截距b =,又令y =0,得x =.故直线的截距式方程为7. 将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________________________________________________________________________. 【答案】y =-x +【解析】将直线y =3x 绕原点逆时针旋转90°得到直线y =-x ,再向右平移1个单位,所得到的直线方程为y =- (x -1),即y =-x +.8. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________. 【答案】(-∞,-2]∪[1,+∞)【解析】直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB 相交,即应满足-a≥或-a≤,得a≤-2或a≥1.9. 点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( ) A .-B .C .-D .【答案】D【解析】由题意知,解得k=-,b=,∴直线方程为y=-x+,其在x轴上的截距为.10.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是()A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-3【答案】D【解析】在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B 关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为=,即y=2x-3,故选D.11.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=0【答案】A【解析】方法一,设所求直线方程为x-2y+C=0,将点A代入得2-6+C=0,所以C=4,所以所求直线方程为x-2y+4=0,选A.方法二,直线2x+y-5=0的斜率为-2,设所求直线的斜率为k,则k=,代入点斜式方程得直线方程为y-3= (x-2),整理得x-2y+4=0,选A.12.直线过点(-1,2)且在两坐标上的截距相等,则的方程是________.【答案】或【解析】当过原点时,设直线方程为:,又因为过点,则,∴直线方程为;当直线不过原点时,设直线方程为:,代点得,则直线方程为.【考点】直线的截距式方程.13.若直线与幂函数的图象相切于点,则直线的方程为 .【答案】【解析】幂函数的图象相切于点,则,解得,所以,则,故直线的方程为,化简得.【考点】1.直线的切线方程.14.已知两条直线,且,则=A.B.C.-3D.3【答案】C【解析】根据题意,由于两条直线,且,则可知3+a=0,a=-3,故可知答案为选C.【考点】两直线的垂直点评:根据两条直线垂直的充要条件,就是,这是解题的关键,属于基础题。

2025届高三数学专题复习:直线方程重难点专题(解析版)

2025届高三数学专题复习:直线方程重难点专题(解析版)

直线的方程重难点专题常考结论及公式结论一:两直线平行与垂直的充要条件若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2;①l 1∥l 2⇒k 1=k 2⇒≠b 2;②l 1⊥l 2⇔k 1k 2=-1.若l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,且A 1、A 2、B 1、B 2都不为零.①l 1∥l 2⇒A 1A 2=B 1B 2≠C 1C 2;l 1与l 2重合⇒A 1A 2=B 1B 2=C1C 2;②l 1⊥l 2⇔A 1A 2+B 1B 2=0.结论二:到角公式和夹角公式(1)l 1到l 2的角公式①tan α=k 2-k 11+k 2k 1.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)(2)夹角公式①tan α=k 2-k 11+k 1k 2.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2.(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)直线l 1⊥l 2时,直线l 1与l 2的夹角是π2.结论三:四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A 、B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为l 1:(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.结论四:与对称有关的一些结论(1)点P (u ,v )关于点Q (s ,t )的对称点的坐标为:(2s -u ,2t -v ),特别地,点P (u ,v )关于原点的对称点的坐标为:(2×0-u ,2×0-v ),即(-u ,-v ).(2)直线Ax +By +C =0关于点P (-u ,-v )对称的直线的方程为:(2u -x )+B (2v -y )+C =0.(3)直线Ax +By +C =0关于原点、x 轴、y 轴对称的直线的方程分别为:A (-x )+B (-y )+C =0,Ax +B (-y )+C =0,A (-x )+By +C =0.(4)直线Ax +By +C =0关于直线x =u ,y =v 对称的直线的方程分为:A (2u -x )+By +C =0,Ax +B (2v -y )+C =0.(5)曲线f (x ,y )=0关于点P (u ,v )对称的直线的方程为:f (2u -x ,2v -y )=0.(6)点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:s -2A ∙As +Bt +C A 2+B 2,t -2B ∙As +Bt +CA 2+B2.特别地,当A =B ≠0时,点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:-Bt +C A,-As +CB .点P (s ,t )关于x 轴、y 轴,直线x =u ,直线y =v 的对称点的坐标分别为(s ,-t ),(-s ,t ),(2u -s ),(s ,2v -t ).题型一直线的倾斜角与斜率关系问题例1.直线x cos θ+y sin θ=0,θ∈0,5π6的斜率的取值范围为()A.-∞,3B.2,+∞C.-∞,0 ∪0,3D.-∞,2【答案】A【分析】求出直线的斜率的表达式,通过角的范围求解斜率的范围即可.【详解】由x cos θ+y sin θ=0,θ∈0,5π6 可得直线的斜率为:k =-cos θsin θ=-1tan θ.因为θ∈0,5π6 ,所以tan θ∈-∞,-33 ∪0,+∞ ,所以k =-1tan θ∈-∞,0 ∪0,3 当θ=π2时,易得k =0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年高考数学试题分类汇编:直线的方程
【考点阐述】
直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.
【考试要求】
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
【考题分类】
(一)选择题(共3题)
1.(全国Ⅱ卷理11)等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( )
A .3
B .2
C .13-
D .12- 【答案】A
【解析】1,02:11-==-+k y x l ,71,047:22=
=--k y x l ,设底边为kx y l =:3 由题意,3l 到1l 所成的角等于2l 到3l 所成的角于是有
371711112211+-=-+⇒+-=+-k k k k k k k k k k k 再将A 、B 、C 、D 代入验证得正确答案是A
【高考考点】两直线成角的概念及公式
【备考提示】本题是由教材的一个例题改编而成。

(人教版P49例7)
2.(全国Ⅱ卷文3)原点到直线052=-+y x 的距离为( )
A .1
B .3
C .2
D .5 【答案】D 【解析】5215
2=+-=d
【高考考点】点到直线的距离公式
3.(四川卷理4文6)直线3y x =绕原点逆时针旋转0
90,再向右平移1个单位,所得到的直线为( )
(A)1133y x =-
+ (B)113y x =-+ (C)33y x =- (D)113
y x =+ 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13
y x =-,从而淘汰(C),(D ) 又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ; 【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;
【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;
(二)填空题(共2题)
1.(江苏卷9)如图,在平面直角坐标系
xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO
上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF
的方程: ( ▲ )011=⎪⎪⎭⎫ ⎝⎛-+y a p x 。

【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填11c b
-.事实上,由截距式可得直线AB :1x y b a +=,直线CP :1x y c p += ,两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭
,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程. 【答案】11c b
- 2.(上海春卷12)已知(1,2),
(3,4)A B ,直线1l :20,:0x l y == 和3:l x +3y 10-=. 设i P 是i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是 .
解析:设P 1(0,y ),则P 1A 2+P 1B 2=(0-1)2+(y-2)2+(0-3)2+(y-4)2 =2(y-3)2+12,于是当y=3
时P 1与A 、B 两点距离平方和最小,故P 1(0,3)。

同理,设P 2(x ,0),则P 1A 2+P 1B 2=(x-1)2+(0-2)2+(x-3)2+(0-4)2 =2(x-2)2+22,于是当x=2
时P 2与A 、B 两点距离平方和最小,故P 2(2,0)。

同理,设P 3(1-3y ,y ),则P 1A 2+P 1B 2=(1-3y -1)2+(y-2)2+(1-3y -3)2+( y -4)2 =2y 2+24,于
是当y=0时P 3与A 、B 两点距离平方和最小,故P 3(1,0)。

所以231113||||(21)3222S P P OP =
=-=.。

相关文档
最新文档