LG-11型功率方向继电器特性实验报告
继电器控制实验报告

继电器控制实验报告实验目的:掌握继电器的基本原理和控制方法,了解继电器在电路中的应用。
实验器材:继电器、电源、开关、电路板、导线等。
实验原理:继电器是一种能够根据外部信号来控制电路开关的电器设备。
它由电磁部分和机械部分组成。
当电流通过电磁线圈时,产生的磁场可以使机械部分产生位移,从而使继电器的触点打开或关闭,进而控制电路的导通和断开。
实验步骤:1. 将继电器连接到电路板上,注意接线的正确性。
2. 连接电源,调整电压到适当范围。
3. 连接开关和电路,使继电器能够响应开关信号。
4. 观察继电器的工作状态,确定触点的开和闭。
5. 测试不同信号下继电器的工作情况,记录实验数据。
实验结果:在实验中,我们使用了一个5V继电器,通过接线端子将其连接到电路板上。
在调整电压为5V后,我们连接了一个开关和一个12V电源。
当开关闭合时,电流通过继电器的线圈,产生磁场,使继电器的触点闭合。
当开关断开时,继电器的触点恢复原位,断开电路。
我们观察到在继电器闭合的状态下,电路中的导通电流变大,灯泡明亮,说明继电器可以起到调节电流的作用。
同时,在实验中我们还测试了不同的信号输入,如短时间的开关与长时间的开关,观察到继电器能够稳定地识别并响应这些不同的信号输入。
实验分析:继电器是一种常见的电器元件,在实际生活中得到广泛应用。
其主要作用是在外部信号控制下,切断或导通电路。
继电器可以实现电路的中断、转换和保护等功能。
在实验过程中,我们通过连接继电器到电路中,使其作为一个开关来控制电流的通断。
通过观察继电器的工作状态,我们可以判断其控制电路的正常与否。
实验中我们也发现,继电器可以很好地应对不同信号输入,在不同时间长度的开关操作下,继电器的触点能够稳定地打开或关闭。
继电器作为一种较为简单且可靠的控制设备,广泛应用于工业自动化控制、家用电器、电力系统等领域。
在实验中我们初步了解了继电器的原理和基本操作,为今后更深入地学习和应用继电器打下了基础。
继电器的特性实验

实验一电磁型继电器的特性实验一.实验目的:1.进一步了解电磁型继电器(电流、电压、时间、中间继电器)的构造、工作原理和特性;2.了解继电器各种参数的意义,掌握继电器整定植的调试方法;3.了解有关仪器、仪表的选择原则及使用方法。
二.实验项目:1.打开外壳,仔细观察各种继电器的内部构造,并记录下继电器铭牌的主要参数;2.测定电流继电器的动作电流、返回电流及返回系数;3.测定电压继电器的动作电压、返回电压及返回系数;4.测定时间继电器的动作电压、返回电压及返回系数;5.测定中间继电器的动作电压、返回电压及返回系数。
三.实验内容:(一)熟悉常用继电器的内部接线DL-21C DL-22C;DY-22C DL-23C;DY-23CDS-21A~24A DZ-31B(二)测定电流继电器的动作电流I.d.j。
返回电流I f.j及返回系数K f。
1.实验接线:图1-1 电流继电器实验接线图2.实验需用仪器设备①交流电流表 0~5A②单相自藕调压器(ZOB) 2KVA 220/0~250V 一台③滑线电阻 69Ω3.9A或40Ω6A 一台④电流继电器 DL-21C 一个3.实验方法(1)首先将继电器的两组线圈串联;将继电器的整定把手放在某一选定位置;将自藕调压器把手旋至输出为零伏位置;将滑线电阻的滑动端放在阻值为最大位置;(2)合上电源开关,逐渐增大通入继电器的电流,使继电器刚好动作(常开接点闭合,即指示灯亮)的最小电流称为电流继电器的动作电流Id.j.(3)逐渐减小通入继电器的电流,使继电器的接点返回到原始位置(常开接点断开,即指示灯灭)的最大电流称为电流的继电器的返回电流If.j.(4)测定Id.j 和If.j时,对所选的整定位置重复作三次,将测量结果填入表1中(5)断开电源,将继电器的两组线圈改为并联.然后,按上述方法测量继电器线圈并联时的和将测量结果填入表2中.(6)数据处理误差: △I%=要求:返回系数:K=要求:0.05<Kf<0.9表1 继电器的两组线圈串联(表中电流单位:A )表2 继电器的两组线圈并联(表中电流单位:A )(三)测定低电压继电器的动作电压Ud.j 返回电压Uc。
实验七 功率方向继电器实验

实验七 功率方向继电器实验一.实验目的1.学会运用相位测试仪测量电流和电压之间相角的方法。
2.掌握功率方向继电器的动作特性,接线方式及动作特性的试验方法。
3.研究接入功率方向继电器的电流、电压的极性对功率方向继电器的动作特性的影响。
二.LG-11型功率方向继电器简介1.LG-11整流型功率方向继电器的工作原理LG-11型功率方向继电器是目前广泛应用的整流型功率方向继电器,其比较幅值的两电气量动作方程为:m y m K m y m K U K I K U K I K ⋅⋅⋅⋅⋅⋅⋅⋅-≥+继电器的接线图如图7-1所示,其中图(a )为继电器的交流回路图,也就是比较电气量的电压形成回路,加入继电器的电流为m I ⋅,电压为m U ⋅。
电流m I ⋅通过电抗变压器DKB 的一次绕组W1,二次绕组W2和W3端钮获得电压分量m K I K ,它超前电流m I ⋅的相角就是转移阻抗R K 的阻抗角 k ,绕组W4用来调整 k 的数值,以得到继电器的最大灵敏角。
电压m U ⋅经电容C1接入中间变压器YB 的一次绕组W1,由两个二次绕组W2和W3获得电压分量m K U K ⋅⋅,m U y K ⋅⋅超前m U ⋅的相角为90度。
DKB 和YB 标有W2的两个二次绕组的联接方式如图所示,得到动作电压m y m K U K I K ⋅⋅⋅⋅+,加于整流桥BZ1输入端;DKB 和YB 标有W3的二次绕组的联接方式如图所示,得到制动电压m y m K U K I K ⋅⋅⋅⋅-,加于整流桥BZ2输入端。
图(b )为幅值比较回路, 它按循环电流式接线,执行元件采用极化继电器JJ 。
继电器最大灵敏度的调整是利用改变变压器DKB 第三个二次绕组W4所接的电阻值来实现的。
继电器的内角 =090- k ,当接入电阻R3时,阻抗角 k =060, =030;当接入电阻R4时, k =045, =045。
因此,继电器的最大灵敏度αϕ-=res ,并可以调整为两个数值,一个为-030,另一个为-045。
继电保护实验内容

第一章概述一、系统简介:TQDB-III多功能微机保护与变电站综合自动化实验培训系统采用集成式、开放式的设计思路,覆盖了多个专业多门课程,适合电力系统、电气类、自动化类、电工类专业学生进行研究性、综合性、设计性、开放性实验、课程设计、毕业设计及创新设计。
本实验指导书着重介绍与《电力系统继电保护原理》、《电力系统微机保护》、《变电站综合自动化》课程相关的实验。
本实验台可完成:常规继电器特性实验、数字式继电器特性实验及成组微机保护综合实验三大部分。
其中包含的常规继电器有:DL-31型电流继电器、DY-36型电压继电器、LG-11型功率方向继电器、LCD-4型变压器差动继电器。
数字式继电器有:数字式电流继电器、电压继电器,反时限电流继电器,功率方向继电器,差动继电器,阻抗继电器,零序电流、零序电压继电器,负序电流继电器、负序电压继电器,反时限零序继电器、反时限负序电流继电器。
微机保护部分包括:单双电源10kv线路微机保护综合实验,单双电源35kv线路微机保护综合实验,单双电源110kv线路微机保护综合实验,变压器微机保护综合实验,电容器微机保护综合实验。
二、系统特点:1. 实验接线非常简单明确,减小实验准备工作的强度。
2. 实验系统采用自主研制的信号发生装置提供高精度实验信号,省去了传统实验系统中的调压器、移相器、滑线电阻和测量仪表。
实验接线非常简单,不需要进行实验准备工作。
3. 各种常规继电器和微机保护继电器特性实验可以设置为自动或手动测试,并在PC机屏幕上直观的显示坐标描点和绘制继电器特性曲线全过程4. 实验台面板上具有成组微机保护实验的接线图,学生在面板上进行微机保护装置与电流、电压及出口信号的连接,在上位机界面上设置故障类型和故障点,可在接线图上或在上位机界面中执行短路操作,并观察动态的实验现象5. 系统附带详细的原理讲解和操作说明,可以帮助学生在加深理解实验原理的基础上熟悉实验过程,达到良好的实验效果三、系统构成:一套实验培训系统由一个实验操作台、多个常规保护继电器、一台TQDB-II型多功能微机保护实验装置、一台TQWX-II微机型继电保护试验测试仪和一台PC机构成。
继电保护实验报告

继电保护报告LOGO HERE Document number : NOCG-YUNOO-BUYTT-UU986-1986UT 继电保护及微机保护实验报吿实验一DL-31型电流继电器特性实验—、实验目的:1、了解常规电流继电器的构造及工作原理。
2、掌握设置电流继电器动作定值的方法。
3、学习微机型继电保护试验测试仪的测试原理和方法,并测试DL-31型电流继电器的动作值、返回值和返回系数。
二、实验方法:(1)、按照实验指导接好连线;(2)、打开测试仪,在PC机上运行“继电保护特性测试”系统软件;(3)、设置测试仪的控制参数,本实验是动态改变la的幅值,以“h幅值"为控制量,步长设置为,整定值为3A,起始值设置为0A。
(4)、重复手动测试继电器动作值及返回值,记录数据。
三、实验结果1、电磁型电流继电器的动作电流与电流的整定值有关,也就是舌片的上方的止位螺钉的位置有关系,动作电流也与舌片的Z字型的舌片的Z的角度有关。
还与铁芯上的线圈的粗细,匝数、游丝的松紧程度有关。
2、返回系数的大小主要是继电器断开的时间长断,返回系数是指返回电流匚与动作电流5的比值称为返回系数K“,^\]K re ?〒1 OP实验二DY-36型电压继电器特性实验一、实验目的:1、了解常规电压继电器的构造及工作原理。
2、掌握设置电压继电器动作定值的方法。
3、测试DY-36型电压继电器的动作值、返回值和返回系数二、实验方法:(1)、按照实验指导接好连线;(2)、打开测试仪,在PC机上运行“继电保护特性测试”系统软件;(3)、设置测试仪的控制参数,本实验是动态改变匕的幅值,以“Ua幅值”为控制量,步长设置为,整定值为50V,起始值设置为40v。
4)、重复手动测试继电器动作值及返回值,记录数据。
三、实验结果四、思考题1、电磁型电压继电器的动作电压与电压的整定值有关,和相关磁路的磁阻有关(具体包括铁芯材料的磁导率、铁芯的尺寸、空气气隙的长度),也和线圈的匝数有关。
继电器控制实验报告

继电器控制实验报告摘要:继电器作为一种常见的电气元件,在电路中广泛应用。
本实验旨在探究继电器的工作原理及其在控制电路中的应用。
通过搭建简单的继电器控制电路,我们研究了继电器在不同输入情况下的切换特性,并分析了其对电路稳定性的影响。
实验结果表明,继电器能够有效地将小功率信号转换为大功率信号,并且具有良好的传输特性,适用于各种自动控制系统中。
1. 引言继电器是一种电器开关装置,通过控制一个电磁线圈的电流,来控制另一个或多个电路的开闭。
它由电磁机构和电动触点组成,常用于自动控制系统、电力系统及仪表仪器等领域。
本实验旨在深入理解继电器的工作原理,并通过实验验证其在电路中的应用。
2. 实验原理2.1 继电器的工作原理继电器的工作原理基于电磁感应现象。
当继电器的电磁线圈中通有电流时,电流产生的磁场将使继电器的铁芯发生磁化,引起磁铁的吸引力,进而使触点发生作动。
利用这种原理,继电器可以将小电流信号转换为大电流信号,并且能够起到隔离、保护和自动控制的作用。
2.2 继电器的构造和型号继电器通常由铁芯、线圈、触点和外壳等部件组成。
根据其用途和工作特性的不同,继电器可以分为吸引式继电器、保持式继电器、交流继电器和直流继电器等多种型号。
其中,吸引式继电器是应用最广泛的一种类型,具有结构简单、使用方便等特点。
3. 实验过程3.1 实验材料- 继电器- 直流电源- 开关- 电阻- 连接线3.2 实验步骤1. 将继电器连接至直流电源,其中电源的正极连接于继电器的一个接线端,而电源的负极则接至继电器线圈的另一个接线端。
2. 连接开关电路。
将一个端子连接至继电器线圈的接线端,另一个端子通过电阻连接至电源的负极。
3. 打开电源,观察继电器的运行情况。
通过动作按钮控制开关,看到继电器的触点是否能够切换。
4. 使用示波器测量继电器在不同输入情况下的切换时间和稳定性。
记录相关数据,并进行分析。
4. 实验结果和分析在实验中,我们发现继电器在受到输入电流时能够正常运行,且触点切换时间短暂且稳定。
继电器实验报告

继电器实验报告继电器实验报告继电器是一种常见的电器元件,广泛应用于电力系统、自动化控制、通信设备等领域。
本次实验旨在通过对继电器的实际操作,深入了解其原理和工作机制,并探索其在电路中的应用。
实验一:继电器的基本原理继电器是一种电磁开关,由线圈和触点组成。
当线圈通电时,产生磁场,使触点闭合或断开,从而实现电路的开关控制。
实验中,我们使用了一个直流继电器,通过连接电源和开关,观察继电器的工作状态。
在实验过程中,我们发现继电器的工作与线圈的极性有关。
当正极连接到线圈的一端,负极连接到线圈的另一端时,继电器的触点闭合;反之,触点断开。
这说明继电器的工作是由线圈产生的磁场所引起的。
此外,我们还观察到继电器在断开电源后,触点会恢复到初始状态,这是由于继电器内部的弹簧机构的作用。
实验二:继电器在电路中的应用继电器在电路中有着广泛的应用,其中之一就是电路的开关控制。
我们通过搭建一个简单的电路,使用继电器实现灯泡的开关控制。
实验中,我们将继电器的触点与灯泡连接,线圈与电源和开关相连。
当开关闭合时,线圈通电,继电器的触点闭合,灯泡亮起;当开关断开时,线圈断电,继电器的触点断开,灯泡熄灭。
通过这个实验,我们可以看到继电器在电路中的重要作用,实现了电路的远程控制。
除了开关控制,继电器还可以用于电路的保护。
例如,在电力系统中,继电器可以用于监测电流、电压等参数,一旦超过设定值,继电器会自动断开电路,起到保护作用。
此外,继电器还可以用于电路的时序控制、电机的启动等。
实验三:继电器的特点和注意事项继电器作为一种常见的电器元件,具有一些特点和需要注意的事项。
首先,继电器的线圈需要匹配电源的电压,否则无法正常工作。
此外,线圈的功率也需要根据实际需求进行选择,过大或过小都会影响继电器的工作。
其次,继电器的触点有一定的寿命,需要定期检查和更换。
触点的负载能力也需要根据实际情况进行选择,过大的负载会导致触点烧毁。
另外,继电器在使用过程中需要注意防护措施,避免触电和短路等事故。
继电器的特性实验

实验一电磁型继电器的特性实验一.实验目的:1.进一步了解电磁型继电器(电流、电压、时间、中间继电器)的构造、工作原理和特性;2.了解继电器各种参数的意义,掌握继电器整定植的调试方法;3.了解有关仪器、仪表的选择原则及使用方法。
二.实验项目:1.打开外壳,仔细观察各种继电器的内部构造,并记录下继电器铭牌的主要参数;2.测定电流继电器的动作电流、返回电流及返回系数;3.测定电压继电器的动作电压、返回电压及返回系数;4.测定时间继电器的动作电压、返回电压及返回系数;5.测定中间继电器的动作电压、返回电压及返回系数。
三.实验内容:(一)熟悉常用继电器的内部接线DL-21C DL-22C;DY-22C DL-23C;DY-23CDS-21A~24A DZ-31B(二)测定电流继电器的动作电流I.d.j。
返回电流I f.j及返回系数K f。
1.实验接线:图1-1 电流继电器实验接线图2.实验需用仪器设备①交流电流表 0~5A②单相自藕调压器(ZOB) 2KVA 220/0~250V 一台③滑线电阻 69Ω3.9A或40Ω6A 一台④电流继电器 DL-21C 一个3.实验方法(1)首先将继电器的两组线圈串联;将继电器的整定把手放在某一选定位置;将自藕调压器把手旋至输出为零伏位置;将滑线电阻的滑动端放在阻值为最大位置;(2)合上电源开关,逐渐增大通入继电器的电流,使继电器刚好动作(常开接点闭合,即指示灯亮)的最小电流称为电流继电器的动作电流Id.j.(3)逐渐减小通入继电器的电流,使继电器的接点返回到原始位置(常开接点断开,即指示灯灭)的最大电流称为电流的继电器的返回电流If.j.(4)测定Id.j 和If.j时,对所选的整定位置重复作三次,将测量结果填入表1中(5)断开电源,将继电器的两组线圈改为并联.然后,按上述方法测量继电器线圈并联时的和将测量结果填入表2中.(6)数据处理误差: △I%=要求:返回系数:K=要求:0.05<Kf<0.9表1 继电器的两组线圈串联(表中电流单位:A )表 2 继电器的两组线圈并联(表中电流单位:A )(三)测定低电压继电器的动作电压Ud.j 返回电压Uc。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二LG-11型功率方向继电器特性实验
1.实验目的
(1)学会运用相位测试仪器测量电流和电压之间相角的方法。
(2)掌握功率方向继电器的动作特性、接线方式及动作特性的试验方法。
(3)研究接入功率方向继电器的电流、电压的极性对功率方向继电器的动作特性的影响。
2.实验内容
1)功率方向继电器电压潜动现象检查实验
LG-11功率方向继电器实验原理接线如图2-1所示。
图中,380V交流电源经移相器和调压器调整后,由bc相分别输入功率方向继电器的电压线圈,A相电流输入至继电器的电流线圈,注意同名端方向。
图2-1 LG-11功率方向继电器实验原理接线图
图2-2LG-11功率方向继电器实验原理接线图
实验步骤如下:
(1)熟悉LG-11功率方向继电器的原理接线及试验原理。
(2)按实验原理线路图2-1接线,将电流回路开路。
(3)调节三相调压器和单相调压器,使其输出电压为0V。
(4)合上三相电源开关,调节三相调压器对电压回路加入110V电压。
(5)测量极化继电器JJ两端之间电压,若小于0.1V,则说明无电压潜动。
检查功率继电器是否有潜动现象。
电压潜动测量:将电流回路开路,对电压回路加入110V电压;测量极化继电器JJ两端之间电压,若小于0.1V,则说明无电压潜动。
2)用实验法测LG-11整流型功率方向继电器角度特性U pu= f(ϕ),并找出继电器的最大灵敏角和最小动作电压。
实验步骤如下:
(1)按图2-2所示原理接线图接线。
(2)检查线路无误后,合上三相电源开关、单相电源开关、直流电源开关和移相器电源开关。
(3)调节单相调压器的输出电压使电流表的读数为1A,并保护此电流值不变。
(4)在操作开关断开状态下,调节三相调压器的输出电压约为20V左右,按下移相器开机按钮,继续调节调压器输出,使电压表读数为20V。
(5)调节移相器,在电压表为给定值的条件下找到使继电器动作(动作信号灯由不亮变亮)的两个临界角度ϕ1,、ϕ2,,将测量数据记录于表2-1中。
(6)保持电流为1A不变,调节三相调压器,依次降低电压值,重复步骤(5)的过程,在给定电压的情况下,使继电器动作的ϕ1,、ϕ2,,并记录在表2-1中。
当所需电压很小时,如2V、1.5V、1.0V时,用下面方法来进行调节。
(7)将两个滑线电阻的滑动触点移到靠近移相器输出bc接线端,调节三相调压器使其输出电压为5V。
(8)合上操作开关K1,调节两个滑线电阻的滑动触点使电压表读数为所需电压。
(9)调节移相器角度,找到ϕ1,、ϕ2,,将数据记录于表2-1。
(10)当电压值达到很小时,继电器不再动作,此电压范围内就是电压死区。
此动作电压临界值就是最小动作电压。
表2-1角度特性U pu= f(ϕ)实验数据记录表
(11)实验完成后,使调压器输出为0,断开所有电源开关。
(12)计算继电器的最大灵敏角
22
1ϕ
ϕϕ+
=
sen
,绘制角度特性曲线,并标明动作区。
3)用实验法作出功率方向继电器的伏安特性U pu= f(I r)和最小动作电压实验步骤如下:
(1)调整功率方向继电器的内角ϕ=30︒,调节移相器使电压与电流之间的角度ϕ = ϕsen,即调节移相器的角度为ϕsen+90。
,并保持不变。
(2)实验接线与图2-2相同,检查线路无误后,合上三相电源开关、单相电源开关和直流电源开关,按下移相器的电源开关。
(3)调节移相器加入一定电压(20V左右),按下移相器开机按钮。
(4)调节三相调压器将电压表读数调至表2-1中的某一给定值。
调节单相调压器的输出,改变继电器输入电流的大小,当继电器动作时,记录此时电流表的读数。
(5)重复步骤(3)和(4),在依次给出不同的电压时,找出使继电器动作(指示灯由不亮到亮)的相应的电流值,记入表2-2中。
注意找出使继电器动作的最小电压和电流。
表2-2伏安特性U pu= f(I r)实验数据记录表
(6)实验完成后,使所有调压器输出电压为0V,断开所有电源开关。
(7)绘出U pu= f(I r)特性曲线。
4.思考题
(1)功率方向继电器为什么会有死区?应如何消除死区?
(2)用相量图分析加入功率方向继电器的电压、电流极性发生变化对动作特性的影响。
(3)LG-11整流型功率方向继电器的动作区是否等于180度?为什么?
(4)整流型功率方向继电器的角度特性与感应型功率方向继电器角度特性有什么差异?
(5)功率方向继电器为什么要采用90︒接线?用0︒接线行不行?
(6)改变内角α对保护动作性能有何影响?它有何实质意义?
(7)角度特性及伏安特性有什么用途?。