江苏省苏州市太仓市八年级(上)期末数学试卷
2022-2023学年江苏省太仓市八年级数学第一学期期末教学质量检测试题含解析

2022-2023学年八上数学期末模拟试卷考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分) 1.使分式32xx +有意义的x 的取值范围为( ) A .x ≠﹣2B .x ≠2C .x ≠0D .x ≠±22.校乒乓球队员的年龄分布如下表所示: 年龄(岁) 131415人数a5a -7对于不同的a ,下列关于年龄的统计量不会发生改变的是( ) A .众数,中位数 B .众数,方差C .平均数,中位数D .平均数,方差3.若分式方程1244x ax x +=+--无解,则a 的值为( ) A .5B .4C .3D .04.将三角形三个顶点的横坐标都加3,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移三个单位B .关于原点对称C .将原图向右平移三个单位D .关于y 轴对称5.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm6.如图,在ABC 中,点D 是BC 延长线上一点,70A ∠=︒,120ACD ∠=︒,则B 等于( ).A .60°B .80°C .70°D .50°7.如图,将一张长方形纸片对折,再对折,然后沿第三个图中的虚线剪下,将纸片展开,得到一个四边形,这个四边形的面积是( )A .28cmB .216cmC .218cmD .220cm8.如图,下列条件中,不能..证明ABC ∆≌DCB ∆的条件是( )A .AB =DC ,AC =DB B .AB =DC ,ABC ∠=DCB ∠ C .AB =DC ,DBC ∠=ACB ∠D .DBC ∠=ACB ∠,A ∠=D ∠9.如图,在数轴上表示实数7的点可能是( ).A .点NB .点EC .点MD .点F10.已知14x x -=,则221x x+的值是( ) A .18B .16C .14D .12二、填空题(每小题3分,共24分)11.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为20.2s =甲,20.08s =乙,成绩比较稳定的是__________(填“甲”或“乙”)12.对于实数a ,b ,定义运算:a ▲b=()()00b a a a b a b a b b ⎧≤≠⎪⎨>≠⎪⎩,,,;如:2▲3=328=,4▲2=4216=.按照此定义的运算方式计算[(-14)▲2019]× [2020▲4]=________. 13.一组数据中共有40个数,其中53出现的频率为0.3,则这40个数中, 53出现的频数为__________________.14.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表: 价格/(元/kg )12 10 8 合计/kg 小菲购买的数量/kg2226小琳购买的数量/kg1236从平均价格看,谁买得比较划算?( )A .一样划算B .小菲划算C .小琳划算D .无法比较15.如图,将长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,若AB =5,AD =13,则EF =_____.16.分解因式:2a 3﹣8a=________.17.一个正数的平方根分别是1x +和5x -,则x =__.18.已知三个非负数a 、b 、c 满足a+2b =1和c =5a+4b ,则b 的取值范围是_____,c 的取值范围是_____. 三、解答题(共66分)19.(10分)如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B=30°,∠DAB=45°. (1)求∠DAC 的度数; (2)求证:DC =AB .20.(6分)化简求值:(1)已知1x =,求()()()()22112x x x x -++--+的值. (2)已知2230x x -+=,求代数式()()()2233x x x -+-+的值.21.(6分)如图,在平面直角坐标中,直角梯形OABC 的边OC 、OA 分别在x 轴、y 轴上,AB ∥OC ,∠AOC=90°,∠BCO=45°,2,点C 的坐标为(-18,0). (1)求点B 的坐标;(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且OE=4,∠OFE=45°,求直线DE 的解析式; (3)求点D 的坐标.22.(8分)已知等边ABC ∆和等腰CDE ∆,CD DE =,120CDE ∠=. (1)如图1,点D 在BC 上,点E 在AB 上,P 是BE 的中点,连接AD ,PD ,则线段AD 与PD 之间的数量关系为 ;(2)如图2,点D 在ABC ∆内部,点E 在ABC ∆外部,P 是BE 的中点,连接AD ,PD ,则(1)中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由. (3)如图3,若点D 在ABC ∆内部,点E 和点B 重合,点P 在BC 下方,且PB PC +为定值,当PD 最大时,BPC ∠的度数为 .23.(8分)已知:如图,在△ABC 中,AB=2AC ,过点C 作CD ⊥AC ,交∠BAC 的平分线于点D .求证:AD=BD .24.(8分)如图,已知ABC ∆.(1)画出ABC ∆关于y 轴对称的A B C '''∆; (2)写出ABC ∆关于x 轴对称的111A B C ∆各顶点的坐标.25.(10分)如图,在ABC ∆中,AB AC =,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,BD CE =. (1)求证:DEF ∆是等腰三角形; (2)当44A ∠=︒时,求DEF ∠的度数.26.(10分)如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:AD 平分BAC ∠.参考答案一、选择题(每小题3分,共30分) 1、A【分析】分式有意义要求分母不等于零. 【详解】解:若分式3xx 2+有意义, 即x+2≠0,解得:x≠﹣2, 故选A. 【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式概念是解题关键. 2、A【分析】先求出总人数,再确定不变的量即可. 【详解】5712a a +-+=人,∴一共有12个人,∴关于年龄的统计量中,有7个人15岁,∴众数是15,中位数是15,∴对于不同的a ,统计量不会发生改变的是众数和中位数,故选A . 【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数. 3、A【分析】解分式方程,用含a 的式子表示x ,根据分式方程无解,得到x -4=0,得到关于a 的方程,即可求解. 【详解】解:1244x ax x +=+--, 方程两边同时乘以(x -4)得()124x x a +=-+,9x a ∴=-,由于方程无解,40x ∴-=,940a ∴--=,5a ∴=,故选:A . 【点睛】本题考查根据分式方程解的情况求字母的取值,解题关键是熟练解分式方程.4、C【分析】根据坐标与图形变化,把三角形三个顶点的横坐标都加3,纵坐标不变,就是把三角形向右平移3个单位,大小不变,形状不变.【详解】解:∵将三角形三个顶点的横坐标都加3,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向右平移三个单位.故选:C.【点睛】本题考查了坐标位置的确定及坐标与图形的性质,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)5、D【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.6、D【分析】利用外角的性质解答即可.【详解】∵∠ACD=∠B+∠A,∴∠B=∠ACD-∠A=120°-70°=50°,故选:D.【点睛】本题考查外角的性质,属于基础题型.7、B【分析】在直角三角形BAC中,先求出AB长,四边形的面积即为图中阴影部分三角形面积的4倍,求出阴影部分三角形面积即可求解.【详解】再Rt△BAC中4AB===∴S△ABC=11244 22AB AC⨯⨯=⨯⨯=∴S 四边形=4 S △ABC =16 故选:B 【点睛】本题考查了图形的折叠问题,发挥空间想象力,能够得出S 四边形=4 S △ABC 是解题的关键. 8、C【解析】根据全等三角形的判定:SSS 、SAS 、ASA 、AAS ,和直角三角形全等的判定“HL ”,可知:由AB =DC ,AC =DB ,以及公共边,可由SSS 判定全等;由AB =DC ,ABC ∠ =DCB ∠,以及公共边,可由SAS 判定全等; 由AB =DC ,DBC ∠ =ACB ∠,不能由SSA 判定两三角形全等; 由DBC ∠ =ACB ∠,A ∠ =D ∠,以及公共边,可由AAS 判定全等. 故选C.点睛:此题主要考查了三角形全等的判定,解题关键是合理利用全等三角形的判定:SSS 、SAS 、ASA 、AAS ,和直角三角形全等的判定“HL”,进行判断即可. 9、B【分析】先确定7是在哪两个相邻的整数之间,然后确定对应的点即可解决问题. 479<<∴273<<7E , 故选:B . 【点睛】本题考查实数与数轴上的点的对应关系,正确判断无理数在哪两个相邻的整数之间是解题的关键. 10、A【分析】根据完全平方公式可得2211216x x x x-⨯⨯+=,然后变形可得答案. 【详解】∵14x x-=∴2211216x x x x -⨯⨯+= ∴22118x x += 故选:A . 【点睛】此题主要考查了完全平方公式,关键是掌握完全平方公式:222()2a b a ab b ±=±+.二、填空题(每小题3分,共24分) 11、乙【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵20.2s =甲,20.08s =乙, ∴22s s >甲乙,∴成绩比较稳定的是乙; 故答案为:乙. 【点睛】本题考查根据方差判断稳定性. 方差能够反映所有数据的信息方差越大,数据波动越大,数据越不稳定;方差越小,数据波动越小,数据越稳定. 只有当两组数据的平均数相等或接近时,才能用方差比较它们波动的大小. 12、-1【分析】根据题中的新定义进行计算即可. 【详解】根据题意可得,原式=20192020201920192019111()4=()44=-44=-4444-⨯-⨯⨯⨯⨯(),故答案为:-1. 【点睛】本题考查了整数指数幂,掌握运算法则是解题关键. 13、1【分析】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和. 【详解】∵样本数据容量为40,“53”出现的频率为0.3, ∴这一组的频数=40×0.3=1. 故答案为:1. 【点睛】本题考查频率、频数、总数的关系,属于基础题,关键是掌握频数=频率×数据总和.14、C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.15、13 5【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=135,故答案为:135.【点睛】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.16、2a(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a8a2a a4=2a a+2a2-=--.17、1.【分析】根据正数的两个平方根互为相反数可得关于x的方程,解方程即可得.【详解】根据题意可得:x+1+x﹣5=0,解得:x=1,故答案为1.【点睛】本题主要考查了平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.18、12b≤≤25c≤≤【分析】根据a+2b=1,可得a=1−2b,再根据a、b是非负数,求出b的取值范围即可;根据已知条件用含b的代数式表示c,再根据b的取值范围,求出c的取值范围即可.【详解】解:∵a+2b=1,∴a=1−2b,∵a、b是非负数,∴a≥0,b≥0,∴1−2b≥0,∴0≤b≤12;∵a+2b=1,c=1a+4b,∴c=1-6b,∵0≤b≤12,∴-3≤-6b≤0,∴2≤1-6b≤1,即2≤c≤1.故答案为12b≤≤,25c≤≤.【点睛】此题主要考查了不等式的性质和应用,分别用含b的代数式表示a,c是解题关键.三、解答题(共66分)19、(1)75°(2)证明见解析【解析】试题分析:(1)由AB=AC可得∠C=∠B=30°,可求得∠BAC,再利用角的和差可求得∠DAC;(2)由外角的性质得到∠ADC=75°,即可得到∠ADC=∠DAC,从而有AC=DC,即可得到结论.试题解析:(1)∵AB=AC,∠B=30°,∴∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)∵∠ADC=∠B+∠DAB=30° +45°=75°,∴∠ADC=∠DAC,∴AC=DC,∵AB=AC,∴AB=CD .考点:1.等腰三角形的性质;2.三角形的外角性质.20、 (1)3;(2)-11【分析】(1)根据整式乘法先化简,再代入已知值计算;(2)根据整式乘法先化简,把2230x x -+=变形可得2246x x -=-,再代入已知值计算.【详解】(1)()()()()22112x x x x -++--+=()()()222212x x x x x -+++-+- =()222212x x x x x -+++--+ =2x+1当1x =原式=2+1=3(2)()()()2233x x x -+-+=22449x x x -++-=2245x x --因为2230x x -+=所以223x x -=-,2246x x -=-所以原式=-6-5=-11【点睛】考核知识点:整式化简求值.掌握整式的运算法则,特别乘法公式是关键.21、(1)(-6,12);(2)y=-x+4;(3)D(-4,8)【分析】(1)过B 作BG ⊥x 轴,交x 轴于点G ,由题意得到三角形BCG 为等腰直角三角形,根据BC 的长求出CG 与BG 的长,根据OC -CG 求出OG 的长,确定出B 坐标即可;(2)由题意得到三角形EOF 为等腰直角三角形,确定出E 与F 的坐标,设直线DE 解析式为y=kx+b ,把E 与F 代入求出k 与b 的值,确定出直线DE 解析式;(3)设直线OB 解析式为y=mx ,把B 坐标代入求出m 的值,确定出OB 解析式,与直线DE 解析式联立求出D 坐标即可.【详解】解:(1)过B作BG⊥x轴,交x轴于点G,在Rt△BCG中,∠BCO=45°,2,∴BG=CG=12,∵C(﹣18,0),即OC=18,∴OG=OC-CG=18-12=6,则B=(﹣6,12);(2)∵∠EOF=90°,∠OFE=45°,∴△OEF为等腰直角三角形,∴OE=OF=4,即E(0,4),F(4,0),设直线DE解析式为y=kx+b,把E与F坐标代入得:b44k b0=⎧⎨+=⎩,解得:k=﹣1,b=4,∴直线DE解析式为y=﹣x+4;(3)设直线OB解析式为y=mx,把B(-6,12)代入得:m=﹣2,∴直线OB解析式为y=﹣2x,联立得:y x4 y2x=-+⎧⎨=-⎩,解得:x4 y8=-⎧⎨=⎩,则D(﹣4,8).【点睛】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,以及等腰直角三角形的判定与性质,熟练掌握待定系数法是解本题的关键.22、(1)AD2PD=;(2)成立,理由见解析;(3)60︒【分析】(1)根据等边三角形的性质,60B ACB ∠=∠=︒,120CDE ∠=,可得BDE ∆是等边三角形,P 是BE 的中点,利用等边三角形三线合一性质,以及CD DE =得出//PD CE ,所以PD 是BCE ∆中位线,得出点D 是BC 的中点,AD=CE ,可得出结论AD 2PD =.(2)作辅助线,延长ED 到F ,使得DF DE =,使得DFC ∆是等边三角形,PD 是EBF ∆的中位线,通过证明三角形全等得出BF AD =可证明结论.(3)作出等腰PDK ∆,由旋转模型证明三角形()BCF ACD SAS ∆≅∆,利用P 、C 、K 三点共线时,PK 最大,即PD 最大可求解得.【详解】(1)根据图1,在等边ABC ∆和等腰CDE ∆中,CD DE =,120CDE ∠=,60,30BDE DCE DEC ∴∠=︒∠=∠=︒,60B ∠=︒,BDE ∴∆是等边三角形,P 是BE 的中点,30BDE DCE ∴∠=∠=︒,//PD CE ∴,90BEC ∠=︒,∴PD 是BCE ∆中位线,D E ∴分别是,BC AB 的中点,2AD CE PD ∴==,故答案为:AD 2PD =.(2)结论成立.理由:如下图中,延长ED 到F ,使得DF DE =,连接FC ,BF ,,BP EP DE DF ==,2,//,BF PD BF PD ∴=120,EDC ∠=︒60,FDC ∴∠=︒,DF DE DC ==DFC ∴∆是等边三角形,60BCA DCF ∴∠=∠=︒,在BCF ∆和ACD ∆中CB CA BCF ACD CD CF =⎧⎪∠=∠⎨⎪=⎩∴()BCF ACD SAS ∆≅∆,BF AD ∴=,2AD PD ∴=,故答案为:结论成立;(3)作120PDK BDC ∠=∠=︒,且PD DK =,连接PK ,DK ,则PDK ∆为等腰三角形,在PDB ∆和KDC ∆中BD CD BDP CDK PD KD =⎧⎪∠=∠⎨⎪=⎩()PDB KDC SAS ∴∆≅∆,PB CK ∴=,即PB PC PC CK +=+为定值.P 、C 、K 三点共线时,PK 最大,即PD 最大,∴此时,18060BPC BPD DPC DKC DPC PDK ∠=∠+∠=∠+∠=︒-∠=︒, 故答案为:60︒.【点睛】考查了全等三角形的判定和性质应用,等腰三角形三线合一的性质应用,等边三角形的判定和性质,中点和中位线的性质,利用了三线共点判定线段最大,熟记性质和判定定理是解决问题的关键.23、见解析.【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得出DE=DC ,根据AAS 证△DEA ≌△DCA ,推出AE=AC ,利用等腰三角形的性质证明即可.【详解】证明:过D 作DE ⊥AB 于E ,∵AD 平分∠BAC ,CD ⊥AC ,∴DE=DC ,在△DEA 和△DCA 中,DAE DAC AED ACD DE DC ∠∠∠∠⎧⎪⎨⎪⎩===,∴△DEA ≌△DCA ,∴AE=AC ,∵2AC=AB∴AE=AC=BE∵AE ⊥DE∴AD=BD【点睛】此题考查了等腰三角形的性质,全等三角形的性质和判定的应用,关键是求出△DEA ≌△DCA ,主要培养了学生分析问题和解决问题的能力,题目比较好,难度适中.24、(1)图见解析;(2)111(1,2),(3,1),(1,2)A B C ----.【分析】(1)分别作各点关于y 轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可.【详解】(1)如图;(2)111(1,2),(3,1),(1,2)A B C ----【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.25、(1)见解析;(2)68°【分析】(1)根据条件即可证明△BDE ≌△CEF ,由全等三角形的性质得到DE=EF ,即可得DEF ∆是等腰三角形;(2)先求出∠B 的值,由(1)知∠BDE =∠CEF ,由外角定理可得∠DEF =∠B .【详解】(1)证明:∵AB AC =,∴∠B =∠C ,在△BDE 和△CEF 中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CEF (SAS ),∴DE=EF ,则DEF ∆是等腰三角形;(2)解:∵44A ∠=︒,AB AC =,∴∠B =∠C =11(180)(18044)6822︒-∠=︒-︒=︒A , 由(1)知△BDE ≌△CEF ,∴∠BDE =∠CEF ,∵∠DEC =∠BDE +∠B ,∴∠CEF +∠DEF =∠BDE +∠B ,即∠BDE +∠DEF =∠BDE +∠B ,∴∠DEF =∠B=68°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形的外角定理,解题的关键是熟练掌握全等三角形的判定与性质及角度的转换.26、见解析【分析】证明Rt △BDE ≌Rt △CDF ,得到DE=DF ,即可得出AD 平分BAC ∠.【详解】∵DE ⊥AB ,DF ⊥AC ,∴∠E=∠DFC=90°在Rt △BDE 和Rt △CDF 中,BD CD BE CF ⎧⎨⎩==, ∴Rt △BDE ≌Rt △CDF (HL ),∴DE=DF ,∴AD 平分∠BAC .【点睛】此题考查角平分线的判定定理:在角的内部,到角的两边的距离相等的点在角的平分线上.。
2022年江苏省苏州昆山、太仓市八年级数学第一学期期末学业水平测试试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁) 14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,152.下列计算结果正确的是( ) A .339a a a =B .()235a a =C .235a a a +=D .()3263a ba b =3.点P(4,5)关于y 轴对称的点的坐标是( ) A .(-4,5) B .(-4,-5) C .(4,-5) D .(4,5)4.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )A 33cm B .4cmC .2cmD .6cm5.在22、0.3•、227-38( )A .1个B .2个C .3个D .4个6.在直角坐标系中,已知点()2,b -在直线2y x =上,则b 的值为( ) A .1B .1-C .4D .4-7.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是( )A .B .C .D .8.如图,ABC ∆中,AB AC =,=90BAC ∠︒,P 为BC 中点,90EPF ∠=︒,给出四个结论:①B BAP ∠=∠;②AE CF =;③PE PF =;④12ABC AEPF S S ∆=四边形,其中成立的有( )A .4个B .3个C .2个D .1个9.如图,已知一条线段的长度为a ,作边长为a 的等边三角形的方法是:①画射线AM ;②连结AC 、BC ;③分别以A 、B 为圆心,以a 的长为半径作圆弧,两弧交于点C ;④在射线AM 上截取AB =a ;以上画法正确的顺序是( )A .①②③④B .①④③②C .①④②③D .②①④③10.如图,已知OA =OB ,OC =OD ,AD 和BC 相交于点E ,则图中共有全等三角形的对数( )A .2对B .3对C .4对D .5对二、填空题(每小题3分,共24分)11.点A (﹣3,2)关于y 轴的对称点坐标是_____.12.一个样本的40个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率分别为_______.13.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.14.如图,在ABC ∆中,D 为边BC 的中点,DE AB ⊥于点E ,DF AC ⊥于点F ,且BE CF =.若30BDE ∠=︒,则A ∠的大小为__________度.15.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.1628_______,面积是_______. 17.已知一次函数37y x =+的图像经过点(m ,1),则m=____________. 18.在平面直角坐标系中,直线l :y=x ﹣1与x 轴交于点A 1,如图所示依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1、…、正方形A n B n C n C n ﹣1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B n 的坐标是_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线AB 经过点A (32,32)和B (23,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 的横坐标为3. (1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t 秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.20.(6分)定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b dy +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点.(1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.21.(6分)如图,已知ABC ∆各顶点的坐标分别为()3,2A -,()4,3B --,()1,1C --,直线l 经过点()1,0-,并且与y 轴平行,111A B C ∆与ABC ∆关于直线l 对称.(1)画出111A B C ∆,并写出点1 A 的坐标 . (2)若点()P m n ,是ABC ∆内一点,点1P 是111 A B C ∆内与点P 对应的点,则点1P 坐标 .22.(8分)如图,已知(2,4)A -(4,2)B ,(2,1)C -,三点.(1)作ABC ∆关于x 轴的对称图形111A B C ∆,写出点C 关于x 轴的对称点1C 的坐标; (2)P 为x 轴上一点,请在图中找出使PAB ∆的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).23.(8分)如图,在ABC 中,AB AC =,,D E 分别在AC 、AB 边上,且BC BD =,AD DE EB ==,求A ∠的度数.24.(8分)如图,在ABC 中,8AB AC ==,AB 的垂直平分线交AB 于点D ,交AC 于点E .(1)若2BE EC -=,求CE 的长;(2)若o 36A ∠=,求证:BEC △是等腰三角形.25.(10分)解不等式组251331148x x x x ⎧+>-⎪⎪⎨⎪-<-⎪⎩,并求出它的整数解的和.26.(10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?参考答案一、选择题(每小题3分,共30分) 1、C【分析】由题意直接根据众数和中位数的定义求解可得. 【详解】解:∵这组数据中15出现5次,次数最多, ∴众数为15岁,中位数是第6、7个数据的平均数, ∴中位数为(1516)2+÷=15.5岁, 故选:C . 【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数. 2、D【解析】根据幂的加减和幂的乘方计算法则判断即可. 【详解】A .336a a a ⋅=,该选项错误; B . ()236a a =,该选项错误;C . 23,a a 不是同类项不可合并,该选项错误;D . ()3263a ba b =,该选项正确;故选D.【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.3、A【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】点P(4,5)关于y轴对称的点P1的坐标为(﹣4,5).故选A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4、A【分析】先根据角平分线的性质可证CD=DE,从而根据“HL”证明Rt△ACD≌Rt△AED,由DE为AB中线且DE⊥AB,可求AD=BD=3cm ,然后在Rt△BDE中,根据直角三角形的性质即可求出BE的长.【详解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E为AB中点,∴AC=AE=12 AB,所以,∠B=30° .∵DE为AB中线且DE⊥AB,∴AD=BD=3cm ,∴DE=12BD=32,∴=故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键. 5、A【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.•0.3、227-2是无理数; •0.3循环小数,是有理数; 227-是分数,是有理数;,是整数,是有理数;所以无理数共1个. 故选:A . 【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般. 6、D【分析】根据题意,将点()2,b -代入直线2y x =中即可的到b 的值. 【详解】将点()2,b -代入直线2y x =中得:2(2)4b =⨯-=-, 故选:D. 【点睛】本题主要考查了由直线解析式求点坐标的相关知识,熟练掌握代入法求未知点的坐标是解决本题的关键. 7、A【分析】根据轴对称图形的概念求解. 【详解】A 、是轴对称图形.故选项正确; B 、不是轴对称图形.故选项错误; C 、不是轴对称图形.故选项错误;D 、不是轴对称图形.故选项错误. 故选:A . 【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合. 8、A【分析】根据等腰直角三角形的性质,得∠B=45°,∠BAP=45°,即可判断①;由∠BAP=∠C=45°,AP=CP ,∠EPA=∠FPC ,得∆EPA ≅∆FPC ,即可判断②;根据∆EPA ≅∆FPC ,即可判断③;由12EPA FPAFPCFPACPAABC AEPF S S SSSSS ∆=+=+==四边形,即可判断④. 【详解】∵ABC ∆中,AB AC =,=90BAC ∠︒,P 为BC 中点, ∴∠B=45°,∠BAP=12∠BAC=12×90°=45°,即:B BAP ∠=∠, ∴①成立;∵AB AC =,=90BAC ∠︒, P 为BC 中点, ∴∠BAP=∠C=45°,AP=CP=12BC ,AP ⊥BC , 又∵90EPF ∠=︒,∴∠EPA+∠APF=∠FPC+∠APF=90°, ∴∠EPA=∠FPC , ∴∆EPA ≅∆FPC (ASA ), ∴AE CF =, ②成立; ∵∆EPA ≅∆FPC , ∴PE PF = ∴③成立, ∵∆EPA ≅∆FPC , ∴12EPA FPAFPCFPACPAABC AEPF S S SSSSS ∆=+=+==四边形, ∴④成立. 故选A . 【点睛】本题主要考查等腰直角三角形的性质以及三角形全等的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键.9、B【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.10、C【分析】由条件可证△AOD≌△BOC,可得∠A=∠B,则可证明△ACE≌△BDE,可得AE=BE,则可证明△AOE≌△BOE,可得∠COE=∠DOE,可证△COE≌△DOE,可求得答案.【详解】解:在△AOD和△BOC中OA OBAOD BOCOD OC=⎧⎪∠=∠⎨⎪=⎩∴△AOD≌△BOC(SAS),∴∠A=∠B,∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中A BAEC BEDAC BD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BDE(AAS),∴AE=BE,在△AOE和△BOE中OA OBA B AE BE=⎧⎪∠=∠⎨⎪=⎩∴△AOE≌△BOE(SAS),∴∠COE=∠DOE,在△COE和△DOE中OC ODCOE DOEOE OE=⎧⎪∠=∠⎨⎪=⎩∴△COE≌△DOE(SAS),故全等的三角形有4对,故选C.【点睛】本题主要考查全等三角形的性质和判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.二、填空题(每小题3分,共24分)11、(3,2)【解析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】点A(﹣3,2)关于y轴的对称点坐标是(3,2).故答案为:(3,2).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12、0.1【分析】求出第4组数据的频数,即可确定出其频率.【详解】根据题意得:40﹣(7+8+15)=10,则第4组数据的频率为10÷40=0.1.故答案为0.1.【点睛】本题考查了频率与频数,弄清频率与频数之间的关系是解答本题的关键.13、31-【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF ,即可得出结论.【详解】如图,过点A 作AF ⊥BC 于F , 在Rt △ABC 中,∠B=45°, ∴2AB=2,BF=AF=22AB=1, ∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt △ADF 中,根据勾股定理得,22AD AF -3∴33,3.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键. 14、60【分析】根据题意,点D 是BC 的中点,BE CF =,可证明Rt △BDE ≌Rt △CDF ,可得∠B=∠C=60°,利用三角形内角和180°,计算即可得.【详解】∵D 为边BC 的中点,DE AB ⊥于点E ,DF AC ⊥于点F ,∴BD=CD ,∠DEB=∠DFC=90°,又BE CF =,∴ Rt △BDE ≌Rt △CDF (HL ),∴30BDE ∠=︒∠CDF=,∴∠B=∠C=60°,∠A=180°-60°-60°=60°,故答案为:60°.【点睛】考查了垂直的定义,直角三角形全等的证明方法(HL ),三角形内角和定理,熟记几何图形的定理和性质是解题的关键.15、658【解析】过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.【详解】解:∵AC ∥BD ,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF ⊥AB ,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD ,∴∠8=∠1,在△BHE 和△BGD 中,8143BE BD ∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△BHE ≌△BGD (ASA ),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD ⊥BD∴∠BDM=90°,∴BC ∥MD ,∴∠5=∠MDG ,∴∠7=∠MDG∴MG=MD ,∵BC=7,BG=4,设MG=x ,在△BDM 中,BD 2+MD 2=BM 2,即()2227=4x x ++,解得x=338,在△ABC 和△MBD 中=8=1BC B ACB MDB D∠∠∠∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△MBD (ASA ) AB=BM=BG+MG=4+338=658. 故答案为:658.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.16、62 1【分析】利用长方形的周长和面积计算公式列式计算即可.【详解】解:长方形的周长=2×(28)=222)2, 长方形的面积28.故答案为:2;1.【点睛】此题考查二次根式运算的实际应用,掌握长方形的周长和面积计算方法是解决问题的关键.17、-1【分析】把(m ,1)代入37y x =+中,得到关于m 的方程,解方程即可.【详解】解:把(m ,1)代入37y x =+中,得137m =+,解得m=-1.故答案为:-1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.18、(2n ﹣1,2n ﹣1).【解析】解:∵y=x-1与x 轴交于点A 1,∴A 1点坐标(1,0),∵四边形A 1B 1C 1O 是正方形,∴B 1坐标(1,1),∵C 1A 2∥x 轴,∴A 2坐标(2,1),∵四边形A 2B 2C 2C 1是正方形,∴B 2坐标(2,3),∵C 2A 3∥x 轴,∴A 3坐标(4,3),∵四边形A 3B 3C 3C 2是正方形,∴B 3(4,7),∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴B n 坐标(2n-1,2n -1).故答案为(2n-1,2n -1).三、解答题(共66分)19、(1)y+2;(2)△AOD 为直角三角形,理由见解析;(3)t =23. 【分析】(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b ,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解;(3)点C1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C1),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH,即22﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12OP ,即可求解;③当PO =PM 时,故这种情况不存在. 【详解】解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:3=220k b b ⎧+⎪⎨⎪=+⎩,解得:3 =32kb⎧⎪⎨⎪=⎩-,故直线AB的表达式为:y=﹣33x+2;(2)直线AB的表达式为:y=﹣33x+2,则点D(0,2),由点A、O、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣33x+2,故点C(3,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(3,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH=32(2﹣t)=QH,OQ=QH+OH 32﹣t)+12(2﹣t)=t,解得:t =233; ②当MO =MP 时,如图2,则∠MPO =∠MOP =30°,而∠QOP =60°,∴∠OQP =90°,故OQ =12OP ,即t =12(2﹣t ), 解得:t =23; ③当PO =PM 时,则∠OMP =∠MOP =30°,而∠MOQ =30°, 故这种情况不存在;综上,t =23或33. 【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.20、(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==,故点C是点A、B的融合点;(2)①由题意得:x=433a c t++=,y=2533b d t++=,则3-4t x=,则()23-452-13xy x+==;②令x=0,y=-1;令y=0,x=12,图象如下:③当∠THD=90°时,∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t ) ∴t =8,∴点E (8,21);当∠HTD =90°时,由于EH 与x 轴不平行,故∠HTD 不可能为90°;故点E 的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.21、 (1) (1,2) ; (2) ()2,m n --.【分析】(1)根据轴对称的性质找到各点的对应点,然后顺次连接即可,画出图形即可直接写出坐标.(2)根据轴对称的性质可以直接写出1P .【详解】(1)如图所示:直接通过图形得到1A (1,2)(2) 由题意可得:由于()P m n ,与1P 关于x=-1 对称所以()12,P m n --.【点睛】此题主要考查了轴对称作图的知识,注意掌握轴对称的性质,找准各点的对称点是关键.22、(1)画图见解析;(2)画图见解析,点P 的坐标为(2,0)【分析】(1)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接可得; (2)连接AB 1,交x 轴于点P ,根据图形可得点P 的坐标.【详解】(1)如图所示,111A B C ∆即为所求;1C 的坐标为(2,1),(2)如图所示,连接1AB ,交x 轴于点P ,点P 的坐标为(2,0).【点睛】本题考查了作图-轴对称变换,轴对称-最短路线问题,熟练掌握轴对称的性质是解题的关键.23、45°【解析】试题分析:利用等腰三角形的性质和三角形的内角和定理,建立方程来解答本题.试题解析:DE EB =∴设BDE ABD x ∠=∠=2AED BDE ABD x ∴∠=∠+=AD DE =2AED A x ∴∠=∠=3BDC A ABD x ∴∠=∠+∠=BD BC =3C BDC x ∴∠=∠=AB AC =3ABC C x ∴∠=∠=在ABC 中332180x x x ︒++=解得22.5x ︒=222.5245A x ︒︒∴∠==⨯=考点:等腰三角形的性质24、(1)=3CE ;(2)见解析.【分析】(1)根据线段垂直平分线的性质可得EA =EB ,即2EA EC -=,结合8EA CE +=可求出5EA =,进而得到CE 的长;(2)根据三角形内角和定理和等腰三角形的性质求出∠C =72°,根据线段垂直平分线的性质可得EA =EB ,求出∠EBA =∠A =36°,然后利用三角形外角的性质得到∠BEC =72°即可得出结论.【详解】解:(1)∵DE 是AB 的垂直平分线,∴EA =EB ,∴2EA EC -=,∵8AC EA CE =+=,∴5EA =,∴=3CE ;(2)∵AB AC =,o 36A ∠=,∴∠ABC =∠C =18036=722,∵DE 是AB 的垂直平分线,∴EA =EB ,∴∠EBA =∠A =36°,∴∠BEC =∠EBA +∠A =72°,∴∠C =∠BEC ,∴BC =BE ,即BEC △是等腰三角形.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的判定和性质、三角形内角和定理以及三角形外角的性质等知识,灵活运用相关性质定理进行推理计算是解题关键. 25、1【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数解即可. 【详解】解不等式2513x x +>-得:125x >-, 解不等式31148x x -<-得:72x <, 此不等式组的解集为12752x -<<, 故它的整数解为:-2,-1,0,1,2,1,它的整数解的和为1.【点睛】本题主要考查解一元一次不等式组及其整数解,注意各个不等式的解集的公共部分就是这个不等式组的解集.但本题是要求整数解,所以要找出在这范围内的整数.26、(1)平均数:260件;中位数:240件;众数:240件(2)不合理,定额为240较为合理【解析】分析:(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.详解:(1)平均数:540450300224062103120226015++⨯+⨯+⨯+⨯=;中位数:240件;众数:240件.(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.点睛:本题考查了平均数、中位数和众数的知识,在求本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.。
太仓八年级数学期末试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. 0.1010010001……2. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 13. 下列各数中,属于负数的是()A. -1/2B. 0.5C. -3D. 24. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若a > 0,b < 0,则该函数的图像()A. 开口向上,顶点在x轴上方B. 开口向上,顶点在x轴下方C. 开口向下,顶点在x轴上方D. 开口向下,顶点在x轴下方5. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,则AB的长是()A. 5cmB. 6cmC. 7cmD. 8cm6. 若等腰三角形ABC中,AB = AC,且∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 60°D. 70°7. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 2x + 1D. y = x^3 - 2x^2 + 3x - 18. 若平行四边形ABCD的对角线AC和BD相交于点O,且OA = 5cm,OB = 8cm,则平行四边形ABCD的面积是()A. 40cm²B. 50cm²C. 60cm²D. 80cm²9. 下列各式中,正确的是()A. a² + b² = (a + b)²B. a² - b² = (a + b)(a - b)C. a² + 2ab + b² = (a + b)²D. a² - 2ab + b² = (a - b)²10. 若方程x² - 5x + 6 = 0的解为x₁和x₂,则x₁ + x₂的值是()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)11. 若a、b、c是等差数列的前三项,且a + b + c = 21,则b = _______。
太仓初二期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a < b,则下列不等式中正确的是()A. a - 2 < b - 2B. a + 2 > b + 2C. -a > -bD. a^2 < b^23. 下列方程中,x的值为()A. 2x + 3 = 11B. 3x - 4 = 5C. 5x + 2 = 7D. 4x - 3 = 94. 若等腰三角形的底边长为10cm,腰长为8cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 64cm²5. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)6. 下列函数中,自变量x的取值范围正确的是()A. y = 3x - 2,x ≥ 0B. y = 2/x,x ≠ 0C. y = √x,x ≥ 0D. y = 2x + 1,x ≤ 07. 若a,b,c是等差数列的前三项,且a + b + c = 15,则a² + b² + c²的值为()A. 75B. 90C. 100D. 1058. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 等腰梯形9. 下列方程中,根的判别式Δ=0的是()A. x² - 5x + 6 = 0B. x² - 4x + 4 = 0C. x² + 2x + 1 = 0D. x² - 3x + 2 = 010. 若a,b,c是等比数列的前三项,且a + b + c = 27,则a² + b² + c²的值为()A. 81B. 243C. 729D. 81/2二、填空题(每题5分,共25分)11. 若a,b,c是等差数列的前三项,且a + b + c = 12,则b = _______。
太仓初二上期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √4B. √-4C. πD. 0.1010010001…2. 已知a、b是方程x^2 - 4x + 3 = 0的两个实数根,则a + b的值是()A. 2B. 3C. 4D. 53. 如果一个数列的前三项分别是2,4,6,那么这个数列的通项公式是()A. 2nB. 2n + 1C. 2n - 1D. 2n + 24. 在直角坐标系中,点P的坐标为(-3,4),那么点P关于x轴的对称点坐标是()A.(-3,-4)B.(3,-4)C.(-3,4)D.(3,4)5. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √xB. y = x^2C. y = 1/xD. y = |x|6. 如果a、b、c是等差数列,且a + b + c = 18,a + c = 12,那么b的值是()A. 3B. 6C. 9D. 127. 在梯形ABCD中,AD平行于BC,且AD = 8cm,BC = 12cm,梯形的高为5cm,那么梯形ABCD的面积是()A. 40cm^2B. 50cm^2C. 60cm^2D. 70cm^28. 已知三角形ABC的边长分别为a、b、c,且a^2 + b^2 = c^2,那么三角形ABC 是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 不规则三角形9. 下列不等式中,正确的是()A. 2x + 3 > 5B. 3x - 2 < 4C. 4x - 5 ≥ 3D. 5x + 2 ≤ 610. 下列分式方程中,解为x = 2的是()A. x/2 + 1 = 3B. 2x - 1 = 5C. 2x + 1 = 3D. 2x - 1 = 2二、填空题(每题3分,共30分)11. 3^2 + (-2)^3 = ______12. (a - b)^2 = ______13. 1/x + 1/y = 1/(x + y) 的解是 x = ______,y = ______14. √(16 - 9) = ______15. 2x - 3 = 11 的解是 x = ______16. 下列数列中,第10项是______的数列是:1,2,3,5,8,13,21,34,5517. 如果∠A和∠B是等腰三角形的两个底角,且∠A = 40°,那么∠B的度数是______°18. 下列函数中,反比例函数是______函数19. 如果一个数列的前三项分别是3,6,9,那么这个数列的通项公式是______20. 在直角坐标系中,点P的坐标为(2,-3),那么点P关于原点的对称点坐标是______三、解答题(共40分)21. (10分)已知一元二次方程 x^2 - 4x + 3 = 0,求该方程的解,并写出其解法。
昆山太仓初二数学期末试卷

一、选择题(每题2分,共20分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √9D. π2. 已知a,b是方程x^2 - 4x + 3 = 0的两个实数根,则a + b的值为()A. 2B. 3C. 4D. 53. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2xC. y = 3/xD. y = x^24. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)5. 若等边三角形的边长为a,则其内角的大小为()A. 30°B. 45°C. 60°D. 90°6. 下列运算正确的是()A. (-2)^3 = -8B. (-2)^3 = 8C. (-2)^2 = -4D. (-2)^2 = 47. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 > b - 3C. a + 3 < b + 3D. a - 3 < b - 38. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 圆9. 若一个数的平方是25,则这个数是()A. ±5B. ±10C. ±25D. ±5010. 下列各数中,能被3整除的是()A. 14B. 21C. 28D. 35二、填空题(每题2分,共20分)11. (1)若a = -2,b = 3,则a^2 - b^2的值为______。
(2)一个数的倒数是-1/3,则这个数是______。
(3)若x + y = 5,x - y = 1,则x的值为______。
(4)等腰三角形的底边长为8,腰长为10,则这个三角形的周长为______。
(5)√(4^2 + 3^2)的值为______。
太仓初二期末数学试卷答案

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. 0.5B. -3C. √2D. 1/4答案:C解析:有理数是可以表示为两个整数之比的数,包括整数、小数和分数。
而√2是一个无理数,不能表示为两个整数之比。
2. 下列等式中,正确的是()A. 3x + 2 = 3x + 4B. 2(x + 3) = 2x + 6C. (3x + 2)² = 9x² + 4x + 4D. (3x + 2)² = 9x² + 12x + 4答案:B解析:根据分配律,2(x + 3) = 2x + 6 是正确的。
其他选项中,A项两边的常数项不相等,C和D项的展开式与题目给出的等式不符。
3. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x²D. y = √x答案:B解析:反比例函数的形式是y = k/x,其中k是常数。
只有B项符合这个形式。
4. 下列图形中,面积最大的图形是()A. 正方形B. 长方形C. 三角形D. 圆答案:D解析:在所有周长相等的平面图形中,圆的面积最大。
这是由于圆的形状使得周长与面积的比值最小。
5. 若一个等差数列的前三项分别是2、5、8,则该数列的公差是()A. 1B. 2C. 3D. 4答案:B解析:等差数列的公差是相邻两项之差。
因此,5 - 2 = 3,8 - 5 = 3,所以公差是3。
二、填空题(每题5分,共50分)6. 已知方程x² - 5x + 6 = 0,则x的值是______。
答案:2,3解析:这是一个一元二次方程,可以通过因式分解或使用求根公式来解。
因式分解得(x - 2)(x - 3) = 0,所以x的值为2或3。
7. 若等差数列的第一项是3,公差是2,则第10项是______。
答案:21解析:等差数列的第n项公式是a_n = a_1 + (n - 1)d,其中a_1是第一项,d是公差。
太仓初二期末数学试卷

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √16B. √-16C. πD. 0.1010010001…2. 已知a、b是实数,且a+b=0,则a与b的关系是()A. a>bB. a<bC. a=bD. a与b不能确定大小3. 下列等式中,正确的是()A. a²+b²=(a+b)²B. (a+b)²=a²+b²+2abC. (a-b)²=a²-b²D. (a+b)(a-b)=a²-b²4. 已知函数f(x)=2x-3,则f(2)的值是()A. 1B. 3C. 5D. 75. 下列不等式中,正确的是()A. 3x > 2x + 1B. 3x < 2x + 1C. 3x ≤ 2x + 1D. 3x ≥ 2x + 1二、填空题(每题5分,共25分)6. 如果x²-5x+6=0,那么x的值是________。
7. 已知等差数列{an}的首项为a₁,公差为d,那么第n项an=________。
8. 函数y=3x²-4x+1的对称轴是________。
9. 在平面直角坐标系中,点A(2,3),点B(-3,1),则线段AB的中点坐标是________。
10. 已知三角形ABC的三个内角A、B、C的度数分别为x、y、z,且x+y+z=180°,则x的取值范围是________。
三、解答题(每题10分,共40分)11. (10分)已知一元二次方程x²-6x+9=0,求该方程的解,并说明该方程的解的性质。
12. (10分)已知函数y=2x-1,求该函数的增减性,并画出函数的图像。
13. (10分)在等差数列{an}中,已知a₁=3,d=2,求第10项an的值。
14. (10分)已知三角形ABC的三个内角A、B、C的度数分别为x、y、z,且x+y+z=180°,求三角形ABC的面积S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省苏州市太仓市八年级(上)期末数学试卷
一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确
的选项代号填涂在答题卡相应的位置上)
1.(3分)下列实数中,其中无理数的是()
A.B.C.D.﹣5
2.(3分)下列图形中是轴对称图形是()
A.B.C.D.
3.(3分)化简的结果是()
A.﹣1B.1C.﹣a D.a
4.(3分)若x<0,则点M(x,x2﹣2x)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm
6.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()
A.B.C.m≥1D.m<1
7.(3分)如图,等边△ABC与正方形DEFG重叠,其中D、E两点分别在AB、BC上,且BD=BE.若AB=6,DE=2,则△EFC的面积为()
A.1B.2C.D.4
8.(3分)如图,三个正比例函数的图象分别对应函数关系式:①y=ax,②y =bx,③y=cx,将a,b,c从小到大排列并用“<”连接为()
A.a<b<c B.c<a<b C.c<b<a D.a<c<b 9.(3分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN ⊥AC于点N,则MN等于()
A.B.C.D.
10.(3分)如图,在平面直角坐标系xOy中,直线经过第一象限内一点A,且OA=4过点A作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,则点C的坐标为()
A.B.C.D.
二、填空题(本大题共8小题,每小题3分,共24分)
11.(3分)9的平方根是.
12.(3分)函数y=中自变量x的取值范围是.
13.(3分)某中学八年级共有900名学生,为了解该校八年级学生每天做家庭作业所用的时间,从该校八年级学生中随机抽取100名学生进行调查,此次调查的样本容量是.
14.(3分)若,则=.
15.(3分)已知点P(a,b)在一次函数y=4x+1的图象上,则代数式4a﹣b+2的值等于.
16.(3分)平面直角坐标系中,已知点A(﹣1,1)、B(﹣5,4),在y轴上确定点P,使得△APB的周长最小,则点P的坐标是.
17.(3分)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.
18.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC 的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.
三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤
或文字说明)
19.(12分)化简与计算:
(1)
(2)
(3)
(4)
20.(6分)先化简再求值:
化简分式:,并从2,0,﹣2,﹣中选择一个适当的x的值进行求值.
21.(6分)解分式方程:+=2.
22.(6分)已知:如图等腰△ABC中,AB=AC,BC=10,BD⊥AC于D,且BD=8.求△ABC的面积S△ABC.
23.(6分)如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB的面积为.
(1)求m的值及点A的坐标;
(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP 的解析式.
24.(6分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算,若由甲工程队单独完成这项工程,刚好如期完成;若由乙工程队单独完成此项工程,则要比规定工期多用6天.现先由甲、乙两队合做3天,余下的工程再由乙队单独完成,也正好如期完成.求该工程规定的工期天数.
25.(8分)为增强学生体质,正确树立健康意识,学校普遍开展了阳光体育活动.某校为了解全校1200名学生平均每天体育活动时间的情况,随机调查了部分学生,对学生每天参加体育活动的时间t(小时)按如下4个选项进行收集整理:(A)t≥1.5小时(B)1≤t<1.5小时(C)0.5≤t<1小时(D)t<0.5小时,并根据调查结果绘制了两幅不完整的频数分布直方图和扇形统计
图.
请你根据以上信息解答下列问题:
(1)求本次调查的学生人数和图(2)中选项“C”的圆心角度数;
(2)将图(1)中选项“B”的部分补充完整;
(3)请估计该校有多少名学生平均每天参加体育活动的时间在1小时以上(包括1小时).
26.(6分)已知:如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE =90°,连结AC,BD,且D,E,C三点在一直线上,AD=1,DE=2EC.(1)求证:△ADB≌△AEC;
(2)求线段BC的长.
27.(10分)已知:甲、乙两车分别从相距200千米的A,B两地同时出发相向而行,其中甲车到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)求甲车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(2)当x=3时,甲、乙两车离各自出发地的距离相等,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
28.(10分)如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t秒(0<t<13).
(1)①点D的坐标是(,);
②当点P在AB上运动时,点P的坐标是(,)(用t表示);(2)写出△POD的面积S与t之间的函数关系式,并求出△POD的面积等于9时点P的坐标;
(3)当点P在OA上运动时,连接BP,将线段BP绕点P逆时针旋转,点B恰好落到OC的中点M处,则此时点P运动的时间t=秒.(直接写出答案)
江苏省苏州市太仓市八年级(上)期末数学试卷
参考答案
一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确
的选项代号填涂在答题卡相应的位置上)
1.B;2.A;3.C;4.B;5.D;6.A;7.B;8.D;9.C;10.D;
二、填空题(本大题共8小题,每小题3分,共24分)
11.±3;12.x≥﹣2且x≠1;13.100;14.﹣5;15.1;16.(0,);
17.﹣4<x<﹣;18.;
三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤
或文字说明)
19.;20.;21.;22.;23.;24.;
25.;26.;27.;28.3;4;6;t﹣6;4;。