【航空标准】HB5067-1985氢脆试验方法

合集下载

紧固件氢脆试验测试

紧固件氢脆试验测试

紧固件氢脆试验测试是一种常用的测试方法,用于检测紧固件在使用过程中是否会因为吸氢而导致脆性破裂。

以下是紧固件氢脆试验测试的一般步骤:
1.样品制备:选取要测试的紧固件样品,并加工成一定的标准尺
寸和形状,如标准螺钉、螺母等。

2.预处理:将样品放入预处理液中,一般为盐酸、硫酸等酸性溶
液,以去除表面油脂和其他污染物。

3.吸氢处理:将处理过的样品放入含有氢气的高压容器中,在一
定的压力和温度下进行吸氢处理,一般为24小时。

4.试验:将处理过的样品在一定温度和载荷下进行拉伸试验,比
较试验前后的拉伸性能,如延伸率、断裂强度等。

5.结果分析:根据试验结果和标准要求,判断样品是否存在氢脆
现象,如存在,则进行原因分析并提出改进建议。

需要注意的是,紧固件氢脆试验测试需要严格遵守标准操作规程和安全操作要求,以确保测试结果的准确性和安全性。

同时,样品的选取、处理和试验条件的确定也需要根据具体要求进行,以满足测试的目的和要求。

检测氢脆的方法

检测氢脆的方法

一般如何测试氢脆?为了研究或防止氢脆,需要对金属的氢脆情况进行测试,以获取相关信息。

测试氢脆的方法有好几种,常用的有往复弯曲试验和延迟破坏试验。

(1)往复弯曲试验往复弯曲试验对低脆性材料比较灵敏,可以用来对不同基体材料在经过相同的电镀工艺处理后的氢脆程度进行比较,也可以对相同的基体材料上的不同电镀工艺的氢脆程度进行比较。

这种试验的方法是取一个待测试片,其尺寸规格为:150mm×l3mm×l. 5mm,表面粗糙度Ra=1.6。

对试片进行热处理使之达到规定的硬度,然后用往复弯曲机让试片在一定直径的轴上以一定的速度进行缓慢的弯曲试验,直至试片断裂。

弯曲方式有90。

往复弯曲和l80。

单面弯曲两种,以前一种方式应用较多,弯曲的速度是0.6./s。

如果是单面弯曲则所取的速度则为0.13。

/s。

评价的方法是将弯曲试验至断裂时的次数乘以角度,以获得弯曲角度的总和,其角度总值越大,氢脆越小。

测试时要注意以下几点。

①试片在进行热处理后如果有变形,应静压校平,不可以敲打校正,否则会使试片的内应力增加,影响试验结果。

②为了防止应力影响,电镀前应进行去应力,在电镀后则要进行除氢处理,这时检测的是残余氢脆的影响。

③弯曲试验时所用的轴的直径的选用很重要,因为评价这种试验结果的量化指标与轴径有关,对于小的轴径,则弯曲至断裂的次数就会少一些,具体选用什么轴径要通过对基体材料的空白试验来确定,并且在提供数据时要指明所用的轴径,否则参数没有可比性。

(2)延迟破坏试验延迟破坏试验是一种灵敏度较高的试验方法,适合用于高强度钢制品的氢脆检测。

这种氢脆测试也是在试验机上进行的,所用的试验机为持久强度试验机或蠕变试验机,检测试样在这种试验机上受到小于破坏程度的应力的作用,观测其直到断裂时的时间。

如果到规定的时间尚没有发生断裂,即为合格。

这种试验需要采用按一定要求制作的标准的测试验棒。

并且每次要使用三支同样条件的试样平行做试验,以使结果更为可信。

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案直接说结论:以合金钢作原料生产的10。

9级、12.9级、14。

9级高强度螺栓电镀后(或仅酸洗后),必须在第一时间除氢脆处理,除氢脆处理的方法是:200度烘箱加热3—4小时析出氢原子。

以下内容是唠叨:第二次世界大战初期,英国皇家空军一架Spitpie战斗机由于引擎主轴断裂而坠落,机毁人亡,此事曾震惊英国朝野。

1975年美国芝加哥一家炼油厂,因一根15cm 的不锈钢管突然破裂,引起爆炸和火灾,造成长期停产。

法国在开采克拉克气田时,由于管道破裂,造成持续一个月的大火。

我国在开发某大油田时,也曾因管道破裂发生过井喷,损失惨重。

在军事方面还有:美国“北极星”导弹因固体燃料发动机机壳破裂而不能发射,美空军F—11战斗机在空中突然坠毁等.途中行驶的汽车因传动轴突然断裂而翻车,正在机床上切削的刀具突然断裂等事故枚不胜举。

这些灾难性的恶性事故,瞬时发生,事先毫无征兆,断裂无商量,严重地威胁着人们生产财产安全.起初科学工作者们对出事原因,众说纷纭,一筹莫展.后来经过长期观察和研究,终于探明这一系列的恶性事故的罪魁祸首-—氢脆。

1、氢脆的原因氢脆通常表现为钢材的塑性显著下降,脆性急剧增加,并在静载荷下(往往低于材料的σb)经过一段时间后发生破裂破坏的趋势.众所周知,氢在钢中有一定的溶解度.炼钢过程中,钢液凝固后,微量的氢还会留在钢中。

通常生产的钢,其含氢量在一个很小的范围内。

氢在钢中的溶解度随温度下降而迅速降低,过饱和的氢将要析出。

氢是在钢铁中扩散速度最快的元素,其原子半径最小,在低温区仍有很强的扩散能力。

如果冷却时有足够的时间使钢中的氢逸出表面或钢中的氢含量较低时,则氢脆就不易发生。

如果冷却速度快,钢件断面尺寸比较大或钢中氢含量较高时,位于钢件中心部分的氢来不及逸出,过剩的氢将进入钢的一些缺陷中去,如枝晶间隙、气孔内。

若缺陷附近由于氢的聚集会产生强大的内压而导致微裂纹的萌生与扩展.这是由于缺陷吸附了氢原子之后,使表面能大大降低,从而导致钢材破坏所需的临界应力也急剧降低。

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案直接说结论:以合金钢作原料生产的10.9级、12.9级、14.9级高强度螺栓电镀后(或仅酸洗后),必须在第一时间除氢脆处理,除氢脆处理的方法是:200度烘箱加热3-4小时析出氢原子。

以下内容是唠叨:第二次世界大战初期,英国皇家空军一架Spitpie战斗机由于引擎主轴断裂而坠落,机毁人亡,此事曾震惊英国朝野。

1975年美国芝加哥一家炼油厂,因一根15cm的不锈钢管突然破裂,引起爆炸和火灾,造成长期停产。

法国在开采克拉克气田时,由于管道破裂,造成持续一个月的大火。

我国在开发某大油田时,也曾因管道破裂发生过井喷,损失惨重。

在军事方面还有:美国“北极星”导弹因固体燃料发动机机壳破裂而不能发射,美空军F-11战斗机在空中突然坠毁等。

途中行驶的汽车因传动轴突然断裂而翻车,正在机床上切削的刀具突然断裂等事故枚不胜举。

这些灾难性的恶性事故,瞬时发生,事先毫无征兆,断裂无商量,严重地威胁着人们生产财产安全。

起初科学工作者们对出事原因,众说纷纭,一筹莫展。

后来经过长期观察和研究,终于探明这一系列的恶性事故的罪魁祸首——氢脆。

1、氢脆的原因氢脆通常表现为钢材的塑性显著下降,脆性急剧增加,并在静载荷下(往往低于材料的σb)经过一段时间后发生破裂破坏的趋势。

众所周知,氢在钢中有一定的溶解度。

炼钢过程中,钢液凝固后,微量的氢还会留在钢中。

通常生产的钢,其含氢量在一个很小的范围内。

氢在钢中的溶解度随温度下降而迅速降低,过饱和的氢将要析出。

氢是在钢铁中扩散速度最快的元素,其原子半径最小,在低温区仍有很强的扩散能力。

如果冷却时有足够的时间使钢中的氢逸出表面或钢中的氢含量较低时,则氢脆就不易发生。

如果冷却速度快,钢件断面尺寸比较大或钢中氢含量较高时,位于钢件中心部分的氢来不及逸出,过剩的氢将进入钢的一些缺陷中去,如枝晶间隙、气孔内。

若缺陷附近由于氢的聚集会产生强大的内压而导致微裂纹的萌生与扩展。

这是由于缺陷吸附了氢原子之后,使表面能大大降低,从而导致钢材破坏所需的临界应力也急剧降低。

氢脆理论分析

氢脆理论分析

HIC 的类型1、 氢气压力引起的开裂溶解在材料中的H 在某些缺陷部位析出气态氢H 2(或与氢有关的其它气体),当H 2的压力大于材料的屈服强度时产生局部塑性变形,当H 2的压力大于原子间结合力时就会产生局部开裂。

某些钢材在表面酸洗后能看到象头发丝一样的裂纹,在断口上则观察到银白色椭圆形斑点,称为白点。

白点的形成是氢气压力造成的。

钢的化学成分和组织结构对白点形成有很大影响,奥氏体钢对白点不敏感;合金结构钢和合金工具钢中容易形成白点。

钢中存在内应力时会加剧白点倾向。

焊接件冷却后有时也能观察到氢致裂纹。

焊接是局部冶炼过程,潮湿的焊条及大气中的水分会促进氢进入焊接熔池,随后冷却时可能在焊肉中析出气态氢,导致微裂纹。

焊接前烘烤焊条就是为了防止氢致裂纹。

2、氢化物脆化许多金属(如Ti 、Zr 、Hf 、V 、Nb 、Ta 、稀土等)能够形成稳定的氢化物。

氢化物属于一种脆性相,金属中析出较多的氢化物会导致韧性降低,引起脆化。

3、氢致滞后断裂材料受到载荷作用时,原子氢H 向拉应力高的部位扩散形成H 富集区。

当H 的富集达到临界值时就引起氢致裂纹形核和扩展,导致断裂。

由于H 的扩散需要一定的时间,加载 后要经过一定的时间才断裂,所以称为氢致滞后断裂。

氢致滞后断裂的外应力低于正常的抗拉强度,裂纹试件中外加应力场强度因子也小于断裂韧度。

氢致滞后断裂是可逆的,除去材料中的氢就不会发生滞后断裂。

即使在均匀的单向外加应力下,材料中的夹杂和第二相等结构不均匀处也会产生应力集中,导致氢的富集。

设应力集中系数为α,则σh =ασ,应力集中处的氢浓度为:式中,C H -合金中的平均氢浓度;V H -氢在该合金中的偏摩尔体积(恒温、恒压下加入 1 摩尔氢所引起的金属体积的变化)。

若氢的浓度达到临界值C th 时断裂,对应的外应力即为氢致滞后断裂的门槛应力σth ,即:•若σth 裂;• 若σ>σth ,经过时间 t f 后,发生断裂,且应力越大,滞后断裂时间越短。

氢脆测试作业指导书的

氢脆测试作业指导书的

氢脆测试作业指导书1、目的测试电镀后除氢效果。

2、范围经过表面处理处理加工后的镀锌(含彩锌、白锌、黑锌、黄锌、锌镍合金)的自攻螺钉、自挤螺钉、组合自攻螺钉、弹簧垫圈、弹性垫圈。

本试验的温度范围为10~35℃。

3、试验夹具根据不同类型产品,应使用不同的试验夹具。

3.1自攻螺钉、自挤螺钉、组合自攻螺钉厚度≥1d(d-螺纹公称直径)的带预制螺纹的钢板;钢板硬度为140HV~170HV(按GB/T 3098.5和GB3098.7中拧入试验的有关规定);注:对于长螺钉的试验,可将一块或多块具有平行平面且表面磨削的钢板3.2 弹簧垫圈、弹性垫圈将若干个弹簧垫圈试件装到螺纹公称直径与弹簧垫圈公称直径相同的螺栓上。

用平垫圈将各弹簧垫圈试件相互隔开,最后拧上直径相同的螺母,直到与第一个垫圈接触。

平垫圈硬度应大于弹簧垫圈试件的硬度,且其最低硬度为40HRC。

试验锥形弹性垫圈时,应成对试验.4、职责:4.1 质检部是检验归口管理部门;4.2 检验员接到《送检通知单》后应及时取样、安排试验,并做好记录工作。

5、操作流程5.1抽样15个/批;样件应经过检测,在不使用放大镜的条件下,应看不见裂缝。

5.2 试验开始时间试验应尽快进行,最好在表面处理结束后的24h内进行。

注:如果试验开始时间延长到数天甚至一周,或者更长,将在相当大的程度上减小查出氢脆的可能性。

5.3 施加预载力实验该试验时,应特别注意有氢脆的紧固件可能突然断裂,从而产生伤害。

因此,检验员需适当防护,以免这种伤害发生。

最大拧紧速度为(0.33s-1(20r/min)=缓慢拧入。

5.4 自攻螺钉、自挤螺钉、组合自攻螺钉的拧紧扭矩值参照《热处理检验报告》的实际破坏扭矩数值,取其最小值的90%作为试件的拧紧扭矩值。

最大破坏扭矩和最小破坏扭矩的差值,不应大于最小值的15%。

5.5 弹簧垫圈和弹性垫圈施加预载荷按3.2条规定,将弹簧(性)垫圈试件装到试验螺栓上,扳拧螺母,直到与第一个垫圈接触;拧紧组装件,直到压平弹簧(性)垫圈。

紧固件氢脆试验测试

紧固件氢脆试验测试

紧固件氢脆试验测试
在工程和制造领域中,紧固件的质量和可靠性非常重要。

然而,由于氢脆问题的存在,紧固件的性能可能会受到严重影响。

氢脆是一种由于紧固件在制造和使用过程中吸收了氢气而导致的材料脆化现象。

为了确保紧固件的质量和可靠性,进行氢脆试验测试是必不可少的。

氢脆试验测试旨在评估紧固件在氢气环境中的抗脆性能。

该测试通常通过将紧固件暴露在一定浓度的氢气环境中,以模拟实际工作条件下可能存在的氢气环境,然后对紧固件进行拉伸、扭转或冲击等加载,观察其是否发生脆断现象。

在氢脆试验测试中,紧固件的材料和制造工艺非常重要。

一些常见的高强度合金钢、不锈钢和镀锌钢等材料在氢气环境中较容易发生氢脆现象。

因此,在设计和选择紧固件材料时,需要考虑其抗氢脆性能。

此外,制造工艺也会对紧固件的抗氢脆性能产生影响。

例如,热处理和电镀等工艺可能导致氢的吸收,增加紧固件发生氢脆的风险。

因此,在制造过程中需要采取相应的措施,如控制热处理温度和时间,选择合适的电镀方法等,以减少氢的吸收。

进行氢脆试验测试的目的是识别和评估紧固件的氢脆风险,并采取相
应的措施进行改进。

一旦发现某种紧固件在氢脆试验测试中存在问题,可以尝试改变材料、制造工艺或采用其他防护措施,以提高紧固件的抗氢脆性能。

总之,紧固件氢脆试验测试是确保紧固件质量和可靠性的重要步骤。

通过评估紧固件在氢气环境中的抗脆性能,可以及时发现和解决氢脆问题,以确保紧固件在实际工作条件下的可靠性和安全性。

汽车高强度紧固件的氢脆预防及试验方法

汽车高强度紧固件的氢脆预防及试验方法

汽车高强度紧固件的氢脆预防及试验方法1 前言近年来,随着汽车、桥梁、航空航天事业的长足发展,高强度紧固件的应用日益广泛。

高强度螺栓在节约原材料成本、节省装配位置及减轻整车分量等方面无疑有着不可替代的优势,但钢制高强度紧固件对氢脆的敏感性隐患却是一个不容忽视的重要课题,同时也已经引起了整个紧固件行业及用户的广泛关注。

汽车高强度紧固件因氢脆问题在装配生产现场或者用户使用过程中浮现早期断裂,将使整车或者总成质量与声誉受到严重影响。

因氢脆断裂具有不可预期的延迟性,即使装配时未发生脆断,而是在此后更长期才发生断裂,更换零件就不得不在汽车下线后进行,甚至不得不采用召回整车进行返修的措施,势必造成极大的经济损失和名誉损失。

虽然国内外对于氢脆研究的论文不在少数,但由于影响钢铁材料氢脆的因素不少,包括基体材料的强度水平、零件服役温度、材料表面状况、应力状态等等,在这些因素交叉影响下氢脆的作用机理变得更为复杂,至今仍未有文献能做出完整的解释。

目前基本被接受的解释是氢的陷阱效应理论。

目前针对紧固件氢脆的防治及试验方法标准的出台也为数不少,如:国际标准化组织 (ISO)、美国汽车工程师协会(SAE)、德国标准 (DIN)、国家标准 (GB) 等,因此,全球比较大的汽车公司或者集团都制定了更加详细的企业标准,如:美国戴姆勒·克莱斯勒公司、韩国大宇公司、日本本田公司、日本丰田公司、韩国现代公司、法国PSA集团、美国通用公司、德国大众公司等等。

2 氢脆的机理——陷阱效应所谓氢脆,是指氢原子侵入基体材料中而引起的材料延迟失效断裂。

氢脆通常表现为应力作用下的延迟断裂现象。

其主要原理是将钢铁基体中一些易于渗入氢原子的位置形容为“陷阱”,这些位置包括钢铁结构中的晶界、位错中心、非金属夹杂物及碳化物等与钢铁原子之间形成的固- 固界面,还有应力中心等。

当活动氢原子进入这些“陷阱”,即被束缚而成为非活跃氢原子。

氢原子在陷阱位置的会萃将使材料的断裂应力下降,应力集中部位将形成裂纹,裂纹逐渐扩展直至断裂发生,此即为氢脆引起的延迟断裂现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档