2012广东高考数学理科试题及答案
2012年广东高考试题(理数,word解析版)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i--==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==;则BC =( )()A (2,4)-- ()B (2,4) ()C (,)610 ()D (,)-6-10【解析】选A (2,4)B C B A C A =-=-- 4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y = ()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( )()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b 满足0a b ≥>, a 与b 的夹角(0,)4πθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )()A 12 ()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a ba b b a a b b a baθθθ=>=>⇒⨯=∈,a b b a 都在集合}2nn Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2012年高考数学广东卷含参考答案(理科)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科A 卷)本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56ii-= A .65i +B .65i -C .65i -+D .65i --2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ðA .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量(2,3)BA = ,(4,7)CA = ,则BC =A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--4.下列函数中,在区间(0,)+∞上为增函数的是A . ln(2)y x =+B y =C . 1()2xy =D . 1y x x=+5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-16.某几何体的三视图如图1所示,它的体积为 A .12π B .45π C .57π D .81π7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 A .49 B .13 C .29 D .198.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且αβ 和βα 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B .1 C .32 D .52二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2|||1x x +-≤的解集为___________. 10.261()x x+的展开式中3x 的系数为__________.(用数字作答) 11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =________. 12.曲线33y x x =-+在点(1,3)处的切线方程为__________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为_______.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系中xoy 中,曲线1C 和曲线2C 的 参数方程分别为⎩⎨⎧==ty t x (t 为参数)和⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数),则曲线1C 和曲线2C 的交点坐标为 .15.(几何证明选讲选做题)如图3,圆O 的半径为1,A ,B ,C 是圆上三点,且满足︒=∠30ABC ,过点A 做圆O 的切线与OC 的延长线交与点P ,则PA= .图3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数)6cos(2)(πω+=x x f (其中R x ∈>,0ω)的最小正周期为π10.(1) 求ω的值;(2) 设,56)355(,2,0,-=+⎥⎦⎤⎢⎣⎡∈παπβαf 1716)655(=-πβf ,求)cos(βα+的值. 17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是: [40,50), [50,60), [60,70), [70,80), [80,90), [90,100], (1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面PAC ;(2)若1PA =,2AD =,求二面角B PC A --的正切值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,*n N ∈,且123,5,a a a +成等差数列. (1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211132n a a a ++⋅⋅⋅+<.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1) 求椭圆C 的方程(2) 在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.)21.(本小题满分14分)设1a <,集合2{0},{23(1)60}A x R x B x R x a x a =∈>=∈-++>,D A B = . (1) 求集合D (用区间表示);(2) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.2012年普通高等学校招生全国统一考试(广东卷)理科数学A 卷参考答案一、选择题:1. D2. C3. A4. A5. B6. C7. D8. C 二、填空题:9.12x x ⎧⎫≤-⎨⎬⎩⎭ 10. 20 11. 2n-1 12. y=2x+1 13. 814. (1,1) 15.三、解答题:16. 解:(1)由f(x)得: 其最小正周期(2)由(1)得:同理由:又17. 解:(1)由图得:(2)由图得:由题知:21105T w w ππ==⇒=15w ∴=0,w >又1()2cos()56f x x π=+515(5)2cos 53536f παπαπ⎡⎤⎛⎫∴+=++ ⎪⎢⎥⎝⎭⎣⎦62cos 25πα⎛⎫=+=-⎪⎝⎭3sin 5α⇒=5168(5)cos 61717f βπβ-==得:,0,παβ⎡⎤∈⎢⎥4cos 5α∴==15sin 17β=cos()cos cos sin sin αβαβαβ∴+=-483151351751785=⨯-⨯=-()0.0060.0060.010.0540.006101x +++++⨯=0.018x ⇒=()()8090100.18901000.006100.06P X x P X ≤<==≤<=⨯=[)8090∴⨯在,的学生人数为:0.1850=9[)90100⨯在,的学生人数为:0.0650=30,1,2ξ=()()()2122993322212121212910,1,2222222C C C C P P P C C C ξξξ=========18. 解: (1)证明:(2)由(1)得:在矩形ABCD 中,如图所示建立直角坐标系,由(1)知,所以,二面角B-PC-A 的正切值为:3。
2012广东高考数学试题(高清版含详细答案)

2012广东高考数学试题(高清版含详细答案)一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-= A . 65i + B .65i - C .65i -+ D .65i -- 【答案】D2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =, 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6} 【答案】C3. 若向量(2,3)BA = ,(4,7)CA =,则BCA .(2,4)--B .(3,4)C .(6,10)D .(6,10)-- 【答案】A4. 下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+ B.y = C .1()2xy = D .1y x x=+【答案】A5. 已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1 【答案】B6. 某几何体的三视图如图1所示,它的体积为A .12πB .45πC .57πD .81π 【答案】C7. 从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A .49 B .13 C .29 D .19【答案】D8. 对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅ 。
若平面向量,a b 满足||||0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合{|}2∈nn Z 中,则a b = A .12 B. 1 C. 32 D. 52【解析】:因为||cos cos ||θθ⋅==≥>⋅ a b a a b b b b ,||cos cos 1||θθ⋅==≤<⋅ b a b b a a a a 且a b 和b a 都在集合{|}2∈nn Z 中 所以,||1cos ||2θ== b b a a ,||1||2cos θ=b a ,所以2||cos 2cos 2||θθ==< a a b b所以22≤< a b ,故有1= a b 【答案】B二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。
2012年广东高考理科数学卷(试题和答案)

(二)选做题(14、15 题,考生只能从中选做一题) 14. (坐标系与参数方程选做题)在平面直角坐标系中 xoy 中,曲线 C1 和曲线 C 2 的 参数方程分别为 ⎨ 为 .
⎧x = t ⎩y = t
( t 为参数)和 ⎨
⎧ ⎪ x = 2 cosθ ( θ 为参数) ,则曲线 C1 和曲线 C 2 的交点坐标 ⎪ ⎩ y = 2 sin θ
β=
α ⋅β .若平面向量 a , b 满足 a ≥ b > 0 , a 与 b 的夹 β
⎧n ⎫ ⎟ ,且 a b 和 b a 都在集合 ⎨ | n ∈ Z ⎬ 中,则 a b = 4⎠ ⎩2 ⎭
B. 1 C.
1 2
3 2
D.
5 2
第 1 页 共 4 页
二、填空题:本大题共 7 小题.考生 作答 6 小题.每小题 5 分,满分 30 分. (一)必做题(9~13 题) 9.不等式 | x + 2 | − | x |≤ 1 的解集为___________. 10. ( x + ) 的展开式中 x 3 的系数为__________. (用数字作答)
8. 选 C. 【提示】 a b =
a b
⋅ cos θ =
b n1 n nn ⋅ cos θ = 2 , 两 式 相 乘 , 得 cos 2 θ = 1 2 , ,b a= 2 2 4 a
nn 1 1 nn 1 3 ∵ < cos 2 θ < 1 ,∴ < 1 2 < 1 ,由于 n ∈ Z ,故 1 2 = × . 2 2 4 4 2 2
2012 年普通高等学校招生全国统一考试(广东卷)
数学(理科 A 卷)
本试卷共 4 页,21 小题,满分 150 分.考试用时 120 分钟. 一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.设 i 为虚数单位,则复数 A. 6 + 5i
2012年高考理科数学广东卷(含详细答案)

数学试卷 第1页(共42页)数学试卷 第2页(共42页)数学试卷 第3页(共42页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数56ii-= ( )A .65i +B .65i -C .65i -+D .65i -- 2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3. 若向量(2,3)BA =,(4,7)CA =,则BC = ( ) A .(2,4)-- B .(2,4) C .(6,10)D .(6,10)--4. 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =C .1()2x y =D .1y x x=+5. 已知变量x ,y 满足约束条件211 y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,则3z x y =+的最大值为( )A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个 位数为0的概率是( )A .49 B .13C .29D .198. 对任意两个非零的平面向量α和β,定义=αβαβββ.若平面向量a ,b 满足||||0a b ≥>,a 与b 的夹角π(0,)4θ∈,且a b 和b a 都在集合{|}2nn ∈Z 中,则=a b ( )A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2||1|x x +-≤的解集为_______.10.261()x x+的展开式中3x 的系数为_______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_______.12.曲线33y x x =-+在点(1,3)处的切线方程为________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为________.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩(t为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =_______.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数π()2cos()6f x xω=+(其中0ω>,x∈R)的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设π[0,]2αβ,∈,56(5π)35fα+=-,516(5π)617fβ-=,求cos()αβ+的值.17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若1PA=,2AD=,求二面角B PC A--的正切值.19.(本小题满分14分)设数列{}na的前n项和为nS,满足11221nn nS a++=-+,*n∈N,且1a,25a+,3a成等差数列.(Ⅰ)求1a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211132na a a+++<.20.(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a b>>)的离心率e=且椭圆C上的点到点(0,2)Q的距离的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C上,是否存在点(,)M m n,使得直线l:1mx ny+=与圆O:221x y+=相交于不同的两点A、B,且OAB△的面积最大?若存在,求出点M的坐标及对应的OAB△的面积;若不存在,请说明理由.21.(本小题满分14分)设1a<,集合{|0}A x x=∈>R,2{|23(1)60}B x x a x a=∈-++>R,D A B=.(Ⅰ)求集合D(用区间表示);(Ⅱ)求函数32()23(1)6f x x a xax=-++在D内的极值点.数学试卷第4页(共42页)数学试卷第5页(共42页)数学试卷第6页(共42页)3 / 142012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析【答案】A【解析】(2,BC BA AC BA CA =+=-=-【提示】由向量(2,3)BA =,向量(4,7)CA =,知(2,AB =-,(4,7)AC =--,再由BC AC AB =-能求数学试卷 第10页(共42页) 数学试卷 第11页(共42页)数学试卷 第12页(共42页)||cos ||a b θ,||cos ||y b a θ,x ,,所以24cos ,所以cos θ5 / 143||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =, 则||cos 333||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即数学试卷 第16页(共42页) 数学试卷 第17页(共42页)数学试卷 第18页(共42页)60,所以60,因为直线是直角三角形,最后利用三角函数在直角三角形中的定义,结合题tan603=7 / 14(Ⅰ)10T =π=65f ⎛-= ⎝3sin 5α∴=16517f ⎛= ⎝cos β∴=110(0.054x f =-0.018x ∴=(Ⅱ)成绩不低于数学试卷 第22页(共42页) 数学试卷 第23页(共42页)数学试卷 第24页(共42页)PAPC P =,PAC ; ACBD O =,连结,OE ,BE ⊥BE ,所以(2,DB=-的一个法向量,(0,2,0)BC=,(2,0,1)BP=-设平面PBC的法向量为(,,)n x y z=202n BC yn BP x⎧==⎪⎨=-⎪⎩2,取(1,0,2)n=,的平面角为θ,2||||8510DB nDB n==所以二面角B PC A--的正切值为3.9 / 14数学试卷 第28页(共42页) 数学试卷 第29页(共42页)数学试卷 第30页(共42页)(Ⅰ)2n n S a +=17a a =⎧⎪-⇒⎨133n -,所以时,111a =1221122222n n n n n n n C C --++⋯++-122-1-1222222n n n n n n C C C +++>1)-数学试卷 第34页(共42页) 数学1||||sin 2OA OB AOB ∠的距离2d =,即12)(,)x +∞,2x <,所以2(,Ax B +∞=2)(,)x +∞,30a =>,所以2212339309339309(0,)(,)0,,44a a AB a a a a x x ⎛⎫⎛+--+++-++∞=+∞ ⎪⎪ ⎝⎝⎭=1<时,0∆<,则()0g x >恒成立,A B =(0,+∞综上所述,当0a ≤时,33a ⎫⎛++⎪⎪ ⎭⎝2)(,)x +∞的变化情况如下表:a极值即可.【考点】导数的运算,利用导数求函数的极值,解含参的一元二次不等式,集合的基本运算数学试卷第40页(共42页)数学。
2012年广东高考理科数学试题及答案(详解) 2

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。
锥体的体积公式为,其中S 为锥体的底面积,h 为锥体的高。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 . 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i 2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6} 3 若向量B A =(2,3),C A =(4,7),则B C =A (-2,-4)B (3,4)C (6,10D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)(12)x D.y=x+1x5.已知变量x ,y 满足约束条件,则z=3x+y 的最大值为A.12B.11C.3D.-1 6,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A. 49 B. 13C. 29D. 198.对任意两个非零的平面向量α和β,定义。
若平面向量a,b满足|a|≥|b|>0,a 与b的夹角,且a b和b a都在集合中,则A.12 B.1 C. 32D. 5216.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。
10. 的展开式中x³的系数为______。
(用数字作答)11.已知递增的等差数列{an }满足a1=1,a3=22a-4,则a n=____。
12.曲线y=x3-x+3在点(1,3)处的切线方程为。
13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。
2012年广东高考试题(理数,word解析版)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i --==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==;则BC =( )()A (2,4)-- ()B (2,4) ()C (,)610 ()D (,)-6-10【解析】选A (2,4)BC BA CA =-=--4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y =()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( ) ()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b 满足0a b ≥>, a 与b 的夹角(0,)4πθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )()A 12 ()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a ba b b a a b b a baθθθ=>=>⇒⨯=∈,a b b a 都在集合}2nn Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=(一)必做题(9-13题)9. 不等式21x x +-≤的解集为_____【解析】解集为_____1(,]2-∞-原不等式⇔2(2)1x x x ≤-⎧⎨-++≤⎩或2021x x x -<≤⎧⎨++≤⎩或021x x x >⎧⎨+-≤⎩,解得12x ≤-,10. 261()x x+的展开式中3x 的系数为______。
2012广东高考数学(理科)参考答案mianfai

2012广东高考数学(理科)参考答案mianfai2012广东高考数学(理科)参考答案 选择题答案:1-8: DCAAB CDC填空题答案: 9. 1,2⎛⎤-∞- ⎥⎝⎦ 10. 2011. 21n -12. 21y x =+ 13. 814. ()1,1 15. 3解答题16.(1)15ω= (2)代入得62cos 25πα⎛⎫+=- ⎪⎝⎭3sin 5α⇒= 162cos 17β=8cos 17β⇒= ∵ ,0,2παβ⎡⎤∈⎢⎥⎣⎦∴ 415cos ,sin 517αβ== ∴ ()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=- 17.(1)由300.006100.01100.054101x ⨯+⨯+⨯+=得0.018x =(2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人 随机变量ξ的可能取值有0,1,2()292126011C P C ξ=== ()11932129122C C P C ξ===解得:2123a a =+,31613a a =+又()21325a a a +=+解得11a =(2)由11221n n n S a ++=-+212221n n n S a +++=-+得12132n n n a a +++=+又121,5a a ==也满足12132a a =+所以132nn n a a n N *+=+∈对成立∴ ()11+232n n n n a a ++=+∴ 23n n n a +=∴ 32n n n a =-(3)(法一)∵()()123211323233232...23n nn n n n n n a -----=-=-+⨯+⨯++≥∴ 1113n n a -≤ ∴21123111311111113...1 (1333213)nn n a a a a -⎛⎫⎛⎫⨯- ⎪⎪ ⎪⎝⎭⎝⎭+++≤++++=<-(法二)∵1111322322n n n n n n a a ++++=->⨯-=∴ 11112n na a +<⋅当2n ≥时,321112a a <⋅431112a a <⋅541112a a <⋅………11112n n a a -<⋅累乘得: 221112n n a a -⎛⎫<⋅ ⎪⎝⎭ ∴212311111111173...1...5252552n n a a a a -⎛⎫+++≤++⨯++⨯<< ⎪⎝⎭20.(1)由23e =223a b =,椭圆方程为22233x y b +=椭圆上的点到点Q 的距离()()222222332d x y b y y =+-=-+-)222443y y b b y b =--++-≤≤当①1b -≤-即1b ≥,2max 633d b =+=得1b =当②1b ->-即1b <,2max 443d b b ++=得1b =(舍)∴ 1b =∴ 椭圆方程为2213x y += (2)11sin sin 22AOB S OA OB AOB AOB ∆=⋅∠=∠当90AOB ∠=,AOB S ∆取最大值12,点O 到直线l 距离2222d m n ==+∴222m n +=又∵2213m n +=解得:2231,22m n ==所以点M 的坐标为62626262,22222222⎛⎫⎛⎛⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭或或或 AOB ∆的面积为1221.(1)记()()()223161h x x a x a a =-++<()()()291483139a a a a ∆=+-=-- ① 当0∆<,即113a <<,()0,D =+∞ ② 当103a <≤, 22339309339309a a a a a a D ⎛⎫+--+++-+=⋃+∞ ⎪ ⎪⎝⎭⎝⎭③ 当0a ≤,2339309a a a D ⎫++-+=+∞⎪⎪⎝⎭(2)由()()266160=1f x x a x a x a '=-++=得,得① 当113a <<,()D f x a 在内有一个极大值点,有一个极小值点1 ② 当103a <≤,∵()()12316=310h a a a =-++-≤ ()()222316=30h a a a a a a a =-++->∴ 1,D a D ∉∈∴ ()D f x a 在内有一个极大值点③ 当0a ≤,则a D ∉又∵()()12316=310h a a a =-++-<∴ ()D f x 在内有无极值点理科数学试卷评析——汪治平1.整体分析:试卷难度偏易,题型较正统,解答题考查了常见六大板块:三角函数、概率统计、立体几何、数列、解析几何、函数与导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:(本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 设i 为虚数单位,则复数56ii-= A .65i + B .65i - C .65i -+ D .65i --2. 设集合{}{}1,2,3,4,5,6,1,2,4U M ==,则U C M =A .UB .{}1,3,5C .{}3,5,6D .{}2,4,6 3. 若向量(2,3),(4,7)BA CA ==,则BC =A .(2,4)--B .(2,4)C .(6,10)D .(6,10)-- 4. 下列函数中,在区间(0, )+∞上为增函数的是A .ln(2)y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x =+5. 已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是A .49B .13C .29D .198. 对任意两个非零向量α,β,定义⋅⋅αβαβ=ββ,若向量a,b 满足||||0≥>a b ,a,b 的夹角(0,)4πθ∈,A .12 B .1 C .32 D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9~13题)9. 不等式|2|||1x x +-≤的解集为 。
10. 261()x x+的展开式中3x 的系数为 。
(用数字作答)11. 已知递增的等差数列{}n a 满足21321,4a a a ==-,则n a = 。
12. 曲线33y x x =-+在点(1,3)处的切线方程为 。
13. 执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为 。
(二)选做题(14~15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 参数方程分别为()x tt y t =⎧⎪⎨=⎪⎩为参数和2cos ()2sin x y θθθ⎧=⎪⎨=⎪⎩为参数,则曲线1C 和2C 的交点坐标为 。
15. (几何证明选讲选做题)如图3,圆O 的半径为1,,,A B C 为圆周上的三点,满足30ABC ∠=︒,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA = 。
三、解答题:本大题共6小题,满分80分。
解答须写出文字说明、证明过程和演算步骤。
16. (本小题满分12分) 已知函数()2cos()6f x x πω=+(其中0,x R ω>∈)的最小正周期为10π1)求ω的值; 2)设56516,[0,],(5),(5)235617f f πππαβαβ∈+=--=,求cos()αβ+的值。
某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100。
1)求图中x 的值;2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望。
18. (本小题满分13分)如图5,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,点E 在线段PC 上,PC BDE ⊥平面(1)证明:BD PAC ⊥平面(2)若1,2PA AD ==,求二面角B PC A --的正切值。
19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足1*1221,n n n S a n N ++=-+∈,且123,5,a a a +成等差数列。
(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211132n a a a +++<。
在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为e =且椭圆C 上的点到(0,2)Q 的距离的最大值为3.(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点,A B ,且AOB ∆的面积最大?若存在,求出点M 的坐标及对应的AOB ∆的面积;若不存在,请说明理由。
21.(本小题满分14分)设1a <,集合{}{}2|0,|23(1)60A x R x B x R x a x ax =∈>=∈-++>,D A B =(1)求集合D (用区间表示);(2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点。
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案:1—8: DCAAB CDB注:第8题解析:因为||cos cos ||2θθ⋅==≥>⋅a b a a b b b b ,||cos cos 1||θθ⋅==≤<⋅b a b b a a a a 且a b 和b a 都在集合{|}2∈nn Z 中, 所以,||1cos ||2θ==b b a a ,||1||2cos θ=b a ,所以2||cos 2cos 2||θθ==<a a b b9. ]21,(-∞(写成集合形式也给分1|2x x ⎧⎫≤-⎨⎬⎩⎭) 10. 20 11. 21n - 12. 210x y -+= 13. 8 14. (1,1) 15. 3 第9题注解:|2|||1x x +-≤⇔|x-(-2)|-|x-0|1≤ 即数轴上到-2的点与到0点距离只差小于1的点的集合。
三、解答题:本大题共6小题,满分80分。
解答须写出文字说明、证明过程和演算步骤。
16. (本小题满分12分)已知函数()2cos()6f x x πω=+(其中0,x R ω>∈)的最小正周期为10π(1)求ω的值;(2)设56516,[0,],(5),(5)235617f f πππαβαβ∈+=--=,求cos()αβ+的值。
解:(1)由题意210ππω=,解得15ω=。
(2)由题62cos()25162cos 17παβ⎧+=-⎪⎪⎨⎪=⎪⎩,即3sin 58cos 17αβ⎧=⎪⎪⎨⎪=⎪⎩,又,[0,]2παβ∈,可得4cos 515sin 17αβ⎧=⎪⎪⎨⎪=⎪⎩,所以48315cos()cos cos sin sin 5175171385αβαβαβ+=-=⨯-⨯=-。
17. (本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100。
(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望。
解:(1)由题意:(0.0540.010.0063)101x ++⨯+⨯=,解得0.018x =;(2)80~90分有500.018109⨯⨯=人;90~100分有500.006103⨯⨯=人。
ξ所有可能的取值为0, 1, 2211299332221212121291(0); (1); (0)222222C C C C P P P C C C ξξξ=========故 129101222222212E ξ=⨯+⨯+⨯=。
18. (本小题满分13分)如图5,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,点E 在线段PC 上,PC BDE ⊥平面(1)证明:BD PAC ⊥平面(2)若1,2PA AD ==,求二面角B PC A --的正切值。
(1)证明:∵PA ABCD ⊥平面,∴PA BD ⊥;∵PC BDE ⊥平面,∴PC BD ⊥。
又PAPC P =,∴BD PAC ⊥平面。
(2)解:设,AC BD 交于O ,连结OE ,由题, PC BE PC OE ⊥⊥,所以BEO ∠即为二面角B PC A --的平面角。
由(1)知,BD AC ⊥,所以四边形ABCD 为正方形,易得2212, 1832OC AC PC PA AC ===+=+=。
由(1)知90OEC PAC ∠=∠=︒又OCE PCA ∠=∠,有OECPAC ∆∆,故OE OC PA PC =,23OC OE PA PC =⋅=。
在Rt BOE ∆中,tan 3OBBEO OE∠==。
所以二面角B PC A --的正切值为319.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足1*1221,n n n S a n N ++=-+∈,且123,5,a a a +成等差数列。
(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211132n a a a +++<。
解:(1)由题21232212()21a a a a a ⎧=-+⎪+=-+⎨,解得115a a =⎧⎪=⎨ 1.a =(2)当1n =时,11a =;当2n ≥时,11221n n n S a ++=-+ ① 1221nn n S a -=-+ ② 由①-②得: 122n n n n a a a +=--,整理得111332,1(1)222nn nn n n na a a a +++=-+=+, 故1(2)2n na n ⎧⎫+≥⎨⎬⎩⎭为公比为32的等比数列, 首项为229124a +=,故29331()()2422n nn n a -+=⋅=,32n n n a =-,经验证当1n =时,1132a ==-综上*32()n n n a n N =-∈。
(3)当3n ≥时32(12)2n n n n n a =-=+-12211122222n n n n n n n C C C --=+⋅+⋅++⋅+-122111222n n n n n C C C --=+⋅+⋅++⋅2222(1)n C n n >⋅=-又因为2522(21)a =>⨯⨯-,所以,2(1),2n a n n n >-≥。
所以,11111()2(1)21n a n n n n <=--- 所以,12311111111111131(1)1(1).2234122n a a a a n n n ++++<+-+-++-=+-<- 20. (本小题满分14分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为e =且椭圆C 上的点到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点,A B ,且AOB ∆的面积最大?若存在,求出点M 的坐标及对应的AOB ∆的面积;若不存在,请说明理由。