固体物理 第二章 晶体的结合

合集下载

第二章 晶体的结合

第二章 晶体的结合

范德瓦尔斯力的分类: 1)葛生互作用力:取向力,固有电偶
极矩间的作用力(极性分子晶体中) 2)德拜互作用力:感应力,感应电偶极
矩间的作用力(极性分子晶体中) 3)伦敦互作用力:弥散力,瞬时电偶极
矩间的作用力(非极性分子晶体中)
一、极性分子结合 因为两极性分子同性相斥,异性相吸,有使偶极矩 排成一个方向的趋势。

r
12


A6

r12
j
1 a1j2
,
A6

j
1 a6j
2.2.4 离子晶体的结合能
若两个离子间的互作用势为

r


e2
40r

b rn
I族元素:Li、Na、K、Ru、Cs具有最低的负 电性,它们的晶体是最典型的金属。负电性 较低的元素对电子束缚较弱,容易失去电子, 因此形成晶体时便采取金属性结合。 IV族至VI族元素:具有较强的电负性,它们 束缚电子比较牢固,获取电子的能力较强, 这种情况适于形成共价结合。 IV族元素:最典型的结构是金刚石结构,金 刚石结构直接反映了共价结合的特点。
2.2.3 分子晶体的结合能
惰性气体分子间的相互作用是瞬时偶极矩与
瞬时感应偶极矩间的作用,类同于极性分子
与非极性分子的吸引势,所以一对分子间的
互作用势能为
r
A r6

B r12
引入两个参量


A2 4B
,


1
B 6 A

r

4


r
12


原子间吸引力和排斥力的来源: 吸引力:异种电荷的库仑引力。 排斥力: 1.同种电荷的静电排斥。

固体物理:第二章 晶体的结合

固体物理:第二章 晶体的结合

晶体为什么形成这么有序的结构?
7
原子结合成晶体时,原子的外层电子要作重新
分布
不同分布产生了不同类型的结合

不同类型的结合力,导致了晶体结合
的不同类型。
+ = 原子
原子核+ 芯电子(稳定、满壳层)
价电子
原子外层的芯电子层对相互作用贡献不大,价电子的
相互作用
决定了原子间的相互作用后的性质。
同一种原子,不同的结合类型中具有不同的电子云分布,因此呈现出
10
我们讲到:
原子外层的芯电子层对相互作用贡献不大,价电子相互
作用
决定了原子间相互作用的性质。
原来中性的原子能够结合成晶体,除了外界的压力和温度 等条件的作用外,主要取决于原子最外层电子的作用。没 有一种晶体结合类型,不是与原子的电性有关的。
下面我们来系统学习一下:18
各壳层容纳的电子数
19
能量最低原理 “电子优先占据最低能态”
20
21
22
原子捕获电子的能力(电性)
一、电离能
定义:使原子失去一个电子所需要的能量称为原子的电离能。 从原子中移去第一个电子所需要的能量为第一电离能,从正1 价离子中再移去一个电子所需要的能量为第二电离能。
Na + 5.14 eV Na+ + e
23
电离能的大小可以用来度量原子对价电子的束缚强弱。 电离能越大,越难失去电子;电离能越小,越易失去电 子,金属性越强。 在一个周期内,从左到右,电离能不断增加。
24
二、电子亲和能
定义:一个中性原子获得一个电子成为负离子所释放出的能 量称为电子亲和能,亲和过程不能看成是电离过程的逆过程。 电子亲和能越大,那么得到电子的能力越大。 电子亲和能一般随原子半径的减小而增大。因为原子半径小, 核电荷对电子的吸引力较强,对应较大的互作用势。

7、晶体的结合力(第二章)详解

7、晶体的结合力(第二章)详解

A Wi A (e)
原子半径、有效核电荷和原子的 电子构型 电离能的意义:反映了元素原子失
电子的难易,电离能越大,失电子
越难,金属性越弱,电离能越小, 金属性越强。
电离能变化规律:
A:同周期元素而言,ⅠA族第一电离能小,ⅦA族第一电离能最大,从左到右总体 呈现增大趋势. B:同主族,从上到下,第一电离能逐渐减弱
胞是体心立方结构。碳原子
熔于铁的体心立方组织叫铁 素体--单相α 相 。 纯 铁 在 912℃ 以 上 的 晶 胞也是一个立方体 -- 面心立 方结构。碳原子熔于铁的面 心立方组织叫奥氏体。
第 26 页
§2.2 晶体的结合类型
Page 27
不同金属的熔点,在很宽的范围内变化。铅的熔点:327度,锡的熔
第 21 页
§2.2 晶体的结合类型
三、金属结合(金属晶体)
(1)元素族:
大多数的元素是金属,周期表上I, II
族元素及过渡元素(Cu, Al, Mg, Zn, Ni)
(2)结合方式: 原子的最外层电子形成共有化的电子云,剩下的原子实(正离子)具有 稳定的满壳层结构。 (3)结合力: 原子实(正离子)和电子云之间的静电库仑力。无饱合性和方向性。 原子实与电子云之间的作用,不存在明确的方向性,原子实与原子实
原子中各壳层可以容纳的最多电子数
壳层 (主量子数)
K(n=1)
L(n=2) M(n=3) N(n=4) O(n=5)
支壳层2(2l+1)
S(l=0) P(l=1) d(l=2) f(l=3) g(l=4)
最多电 子数
(2n2)
2
2 2 2 2
6 6 6 6
10 10 10
14 14

固体物理-第二章

固体物理-第二章


如H2、N2、O2在低温时可以变成固体,室温下它们都是以气态分

子形式存在的,也就是说,室温的热能已足够破坏分子之间的结

合力,但分子内的结合力是很牢固的。这种分子间的力实际上是 范德瓦尔斯力,分子内的力就是共价键力,由于电子对键的客观
限制,使得H2、N2、O2只能以低配位的形式存在。
➢ 固态:存在一些相对高配位的共价键晶体结构,即整个晶体是靠 共价键力结合起来的,例如:金刚石的结构。
➢共价键与共价晶体
金刚石

➢ 和闪锌矿的结构有点类似:几何结构上两者的构型

完全相同(四配位),只是闪锌矿由S2-和Zn2+两种

离子组成,金刚石则全都是碳原子。






➢共价键与共价晶体
金刚石


➢ 两者存在本质差别:结合力不同。

✓ 闪锌矿是一种典型的离子晶体,同其它AB型离子结构一

样,是由于S2-和Zn2+两种离子的相对大小恰好合适,使 得相等数目的阴、阳离子成为六方密堆积,即大个的阴
1 k

V
P V
T
V
2U

V
2
V
应 用
在T=0K时(忽略原子振动的影响),晶体平衡体积为V0,则:
2U
K
V0

V 2
V V0
➢原子间相互作用能
抗张强度的计算
抗张强度Pm:晶体所能承受的最大引力


当晶体所受张力处于r=rm处时,有效引力最大,此时张力
氢键与氢键晶体
离子晶体的结合力与结合能混合键与混合键晶体

《固体物理学》房晓勇主编教材-习题解答参考02第二章_晶体的结合和弹性

《固体物理学》房晓勇主编教材-习题解答参考02第二章_晶体的结合和弹性

d 2U ( dV 2 )V0
=
1 9V 2
0

N 2
⎡ ⎢ ⎣

m2 A r0m
+
n2B ⎤
r0n
⎥ ⎦
=
1 9V02

N 2
⎡⎢−m ⎣
mA r0m
+
n
nB r0n
⎤ ⎥ ⎦
=
1 9V02

N 2
⎡⎢−m ⎣
nB r0n
+
n
mA ⎤
r0m
⎥ ⎦
=

mn 9V02

N 2
⎡⎢− ⎣
A r0m
+
B r0n
第二章 晶体的结合和弹性 第二章 晶体的结合和弹性
2.1 有一晶体,在平衡时的体积为V0 ,原子之间总的相互作用能为U0 ,如果相距为 r 的原子间相互作用能
由下式给出: 证明:(1)体积弹性模量为
u(r) = − A + B , rm rn
K
=
U0
mn 9V0
(2)求出体心立方结构惰性分子晶体的体积弹性模量。 解:参考王矜奉 2.2.1 根据弹性模量的定义可知
2
平衡条件
dU dr
|r = r0
=
⎛ ⎜⎜⎝
mA r m+1
0

nB r n+1
0
⎞ ⎟⎟⎠
=
0

mA r m+1
0
=
nB r n+1
0
第二章 晶体的结合和弹性
1
r0
=
⎛ ⎜⎝
nB mA
⎞n−m ⎟⎠

晶体的结合

晶体的结合
第二章 晶体的结合
2.1 晶体结合的基本类型
在固体物理发展的早期阶段, 人们从化学的角度来研究固体, 所以化很大的精力去计算 各种固体的结合能(binding energy),并依此对固体进行粗略的分类。后来在原子物理和量子 力学发展以后, 人们依据电子在实空间的分布来对固体进行分类, 也就是化学键或者是晶体 的键合(crystal binding)的理论。最精确的固体分类是在能带理论发展以后才实现的。 在原子结合成为固体的过程中,内部满壳层的电子(core electrons) 基本保持稳定,价电子 (valence electrons)在实空间会随着原子之间的相互作用重新分布。按化学家的语言说,就是 在原子之间形成了化学键(Chemical bond)。不同的固体拥有不同的化学键。 晶体:原子、离子或分子呈空间周期性排列的固体,以区别于内部不具有周期性的非晶体。 原子间引力:一般来说,晶体比自由原子的空间混乱集合稳定,这意味着原子之间存在等效 的相互吸引力(本质是库仑相互作用加上量子效应),从而构成晶体。 结合能:晶体能量比同样数量的自由原子集合的能量低,能差为结合能, 吸引力 F=-dU/dr 。 化学键:也称原子键。原子间引力作用构成原子之间的键(形象的说法)。键保证晶体稳定。 一、离子晶体 离子键(Ionic Bond):[以 NaCl(Sodium Chloride)晶体为例] 饱和的电子壳层是最稳定的原子核外电子结构。为了趋向于饱和壳层的结构,Na 原子把唯 一的价电子转移给附近的缺少一个价电子的 Cl 原子,于是形成一个 Na , Cl 离子对,然后 再由这些离子结合成离子晶体。 钠离子与氯离子之间存在的静电库仑吸引作用即是离子晶体 的“原子间引力” 。如果只存在原子间引力,离子晶体就要崩塌,离子晶体的稳定性表明

固体物理 第二章 结合能

固体物理 第二章 结合能
在两原子间的自旋反向电子对似乎产生吸引力,使两 原 子 键 和 , 从 而 能 量 降 低 , 称 为 成 键 态 ( bonding state)。 能量较高的-态则称反键态(antibonding state),电 子处在-态时,能量高于自由原子情形,不利于原子 间的键和。
固体物理第二章 23
固体物理第二章
17
固体物理第二章
18
3
典型的共价键是氢分子的共价键,两个氢原子 的价电子,围绕着两个氢原子核运动,形成 电子云。在两个氢核之间,为两个氢核所共 有。实际上,共价键的现代理论正是由氢分 子的量子理论开始的。 设想有原子A 和 B ,它们表示互为近邻的一对 原子。当它们是自由原子时,各有一个价电 子,归一化的波函数分别用 A 、 B 表示,即:
这一四体问题迄今还不能严格求解,需作近 似处理,常用的比较成功的做法是分子轨道 法 (Molecular Orbital Method) 。忽略电子 - 电 子间相互作用,且假定 : (r1 , r2 ) 1 (r ) 2 (r )
固体物理第二章 20
2 2 2 2 1 2 VA1 VA 2 VB1 VB 2 V12 2m 2m

* H dr
* H aa * A H A dr B H B dr 0
* H ab * A H B dr B H A dr 0

* dr
2 2C ( H aa H ab )
+态波函数是对称的,可填充两个自旋相反的电子, +态的能量亦低于自由氢原子1s态的能量。较多出现
固体物理第二章 3
2-1 结合力的普遍性质与结合能
研究组成晶体的原子结构和它们之间的结合力与结 合力的性质,是固体物理中最基本、最重要的问题 之一。 不同的晶体具有不同的结合力类型,但它们的结合力 在定性上具有共同的普遍性质。 在晶体中,粒子的相互作用可分为吸引作用和排斥作 用两类。当粒子间距离较远时(大于几个A),吸引作 用为主;当距离较近时 ( 小于平均粒子间距),排斥 作用为主;当距离适当时,二者相等,相互抵消, 使晶体中的粒子处于平衡状态。 首先研究处于基态的两个相同的原子由相距无穷远处 移到一起时能量和结合能变化的情形。

固体物理第二章复习

固体物理第二章复习

式中



B
1
6
;

A2
A
4B
'N 1
A12
j
a12 j
A6 , A12 是仅与晶体结构有关的常数。
'N 1
A6
j
a6 j
3.原子晶体、金属晶体和氢键晶体
(1)原子晶体
结构:第Ⅳ族、第Ⅴ族、第Ⅵ族、第Ⅶ族元素都可以形成
原子晶体。
结合力: 共价键 (2)金属晶体
饱和性 方向性
层一共有 8 个量子态, 最多能接纳(8- N)个电子, 形成(8- N)个共价键. 这就 是共价结合的 “饱和性”.
共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的 “方向性”.
10. 为什么许多金属为密积结构? 金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的
(2)结合力: 范德瓦尔斯力。
(3)配位数: 通常取密堆积,配位数为12。
(4)互作用势能:
u(r )

4
12



6

r r
U ( R)

2 N

A12


R
12

A6


R

6


雷纳德-琼斯势
r1 rA a, a1 1, r2 rB 2a, a2 2, r3 rC 3a, a3 3,
2( 1 1 1 1 ) ln( 1 x ) x x2 x3 x4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章晶体的结合填空体1. 晶体的结合类型为:共价结合、离子结合、分子结合、金属结合和氢键结合。

2. 共价结合的特点方向性和饱和性。

3. 晶体中原子的相互作用力可分为两类吸引力和排斥力。

4. 一般固体的结合可概括为范德瓦耳斯结合、金属结合、离子结合和共价结合四种基本类型。

5. 金属具有延展性的微观根源是金属原子容易相对滑动。

6. 石墨晶体的结合涉及到的结合类型有共价结合、氢键结合和金属结合。

7. GaAs晶体的结合涉及到的结合类型有共价结合和离子结合。

二、基本概念1. 电离能始原子失去一个电子所需要的能量。

2.电子的亲和能电子的亲和能:一个中性原子获得一个电子成为负离子所释放出的能量。

3.电负性描述化合物分子中组成原子吸引电子倾向强弱的物理量。

4.共价键原子间通过共享电子所形成的化学键。

5.离子键两个电负性相差很大的元素结合形成晶体时,电负性小的原子失去电子形成正离子,电负性大的得到电子形成负离子,这种靠正、负离子之间库仑吸引的结合成为离子键。

6.范德瓦尔斯力答:分子晶体的粒子间偶极矩相互作用以及瞬时偶极矩相互诱生作用力称为范德瓦耳斯力。

7.氢键答:氢原子处于两个电负性很强的原子(如氟、氧、氮、氯等)之间时,可同时受两个原子的吸引而与它们结合,这种结合作用称为氢键。

8.金属键答:在金属中,组成金属的原子的价电子已脱离母原子而成为自由电子,自由电子为整个晶体共有,而剩下的离子实就好像沉浸在自由电子的海洋中。

自由电子与离子实间的互相吸引作用具有负的势能,使势能降低形成稳定结构。

这种公有化的价电子(自由电子)与离子实间的互作用称为金属键。

三、简答题1.共价结合为什么有“饱和性”和“方向性”答:饱和性:当一个原子与其它原子结合时,能够形成共价键的数目有一个最大值,这个最大值决定于它所含的未配对的电子数,这个特性称为共价键的饱和性。

方向性:两个原子在以共价键结合时,必定选取尽可能使其电子云密度为最大的方位,电子云交迭得越厉害,共价键越稳固。

这就是共价键具有方向性的物理本质。

2. 晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别答: 自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能。

原子的动能与原子间的相互作用势能之和为晶体的内能。

在0K 时, 原子还存在零点振动能,但零点振动能与原子间的相互作用势能的绝对值相比小得多,所以, 在0K 时原子间的相互作用势能的绝对值近似等于晶体的结合能.3. 原子间的排斥作用取决于什么原因答: 相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠.4. 共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释答:共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电子的电子云交迭, 量子态相同的电子产生巨大的排斥力, 使得系统的能量急剧增大.5. 试解释一个中性原子吸收一个电子一定要放出能量的现象.答:当一个中性原子吸收一个电子变成负离子, 这个电子能稳定的进入原子的壳层中, 这个电子与原子核的库仑吸引能的绝对值一定大于它与其它电子的排斥能. 但这个电子与原子核的库仑吸引能是一负值. 也就是说, 当中性原子吸收一个电子变成负离子后, 这个离子的能量要低于中性原子原子的能量. 因此, 一个中性原子吸收一个电子一定要放出能量.6. 为什么许多金属为密积结构答:金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大). 原子实越紧凑, 原子实与共有电子电子云靠得就越紧密, 库仑能就越低. 所以, 许多金属的结构为密积结构.7. 当2个原子由相距很远而逐渐接近时,二原子间的力与势能是如何逐渐变化的答:当2个原子由相距很远而逐渐接近时,2个原子间引力和斥力都开始增大,但首先引力大于斥力,总的作用为引力,0)(<r f ,而相互作用势能)(r u 逐渐减小;当2个原子慢慢接近到平衡距离r 时,此时,引力等于斥力,总的作用为零,0)(=r f ,而相互作用势能)(r u 达到最小值;当2个原子间距离继续减小时,由于斥力急剧增大,此时,斥力开始大于引力,总的作用为斥力,0)(>r f ,而相互作用势能)(r u 也开始急剧增大。

8. 为什么金属比离子晶体、共价晶体易于进行机械加工并且导电、导热性良好答:由于金属晶体中的价电子不像离子晶体、共价晶体那样定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”,因而金属晶体的延展性、导电性和导热性都较好。

9. 为什么组成晶体的粒子(分子、原子或离子)间的互作用力除吸引力外还要有排斥力,吸引力和排斥力的来源是什么答:组成晶体的粒子间只有同时存在这两种力,在某一适当的距离,这两种力相互抵消,晶体才能处于稳定状态。

就结合力起源来说,吸引力主要应归于异性电荷之间的库仑引力,此外还有微弱的磁相互作用和万有引力作用,排斥力包括同性电荷间的库仑排斥力和泡利原理引起的排斥作用。

10. 有人说“晶体的内能就是晶体的结合能”,对吗答:这句话不对,晶体的结合能是指当晶体处于稳定状态时的总能量(动能和势能)与组成这晶体的N 个原子在自由时的总能量之差,即0E E E N b -=。

(其中bE 为结合能,NE 为组成这晶体的N 个原子在自由时的总能量,E 为晶体的总能量)。

而晶体的内能是指晶体处于某一状态时(不一定是稳定平衡状态)的,其所有组成粒子的动能和势能的总和。

11. 原子间的相互作用势能、晶体的内能就是晶体的结合能,此话正确吗为什么 答:晶体的总能量0E 与构成晶体的N 个原子(离子或分子)在自由状态时的总能量NE 之差的绝对值E E E N b -=称为晶体的结合能,而晶体的内能包括晶体的总互作用势能和系统的总动能,题中三者的范围和概念均不一致,所以说原命题不正确。

12. 是否有与库仑力无关的晶体结合类型答:共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间,通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力。

金属结合中,原子实依靠原子实与电子云间的库仑力紧紧地吸引着。

分子结合中, 是电偶极矩把原本分离的原子结合成了晶体。

电偶极矩的作用力实际就是库仑力。

氢键结合中,氢先与电负性大的原子形成共价结合后,氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合。

可见,所有晶体结合类型都与库仑力有关。

13. 何理解库仑力是原子结合的动力答:晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力。

14. 原子间的排斥作用取决于什么原因答:相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠。

15. 根据结合力的不同,晶体可分为哪几种不同类型,并简述它们的基本特点。

答:根据晶体中原子间相互作用的性质,晶体可分为五种基本结合类型:(1)离子晶体。

它是由正负离子,靠静电相互作用结合而成。

在晶体中,异性离子靠库仑吸引作用,同性离子互相排斥,正负离子相间排列,在相互作用达到平衡时,构成稳定的晶体。

这种晶体结合力较强,配位数高,硬度大,熔点高,在高温下靠离子导电。

(2)共价晶体,靠共价键结合,有饱和性和方向性。

共价键的强弱,决定于电子云的重叠程度,在电子云密度最大方向成键。

这种晶体硬度大,熔点高,多是绝缘体或半导体。

(3)金属晶体。

它是靠离子实与自由电子之间以及离子与离子之间,电子与电子之间的相互作用达到平衡构成稳定的晶体,即靠金属键结合。

导电性好,熔点高,致密度高。

(4)分子晶体。

晶体中的原子或分子之间靠范德瓦耳斯键结合。

这种力的特点是原子或分子之间靠电矩间相互作用的平均效果。

这种键无饱和性和方向性。

所以分子晶体熔点很低,硬度也较小。

(5)氢键晶体,靠氢键结合。

由于氢原子只带一个电子,所以当这个电子与另一个原子的电子形成电子对后,氢核就裸露出来,可以与负电性较强的原子相互作用,一般认为是氢键有方向性的较强的范德瓦耳斯键。

16.为什么多数金属形成密堆积结构答:金属原子结合成晶体时,每个原子的价电子将为所有的原子实所共有,金属键通过共有化的价电子和原子实间的静电相互作用形成,因此金属键无确定的方向性,对晶体结构无特殊要求。

金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大)。

原子实越紧凑, 原子实与共有电子电子云靠得就越紧密, 库仑能就越低。

即,当按密堆积规则排列时,可使相互作用能尽可能低,结合最稳定。

所以多数金属形成密堆积结构。

17.画出结合力及相互作用势随距离半径的变化关系图。

解:18.画出晶体内能函数示意图。

解:四、证明计算1. 一维离子链,正负离子间距为a ,试证:马德隆常数2ln 2=μ。

相距rij 的两个离子间的互作用势能可表示成nijij ij r br q r U +=πε4)(2μ设最近邻原子间的距离为 R ,则有Ra r j ij =则总的离子间的互作用势能]1)1(4[2)(22∑∑∑≠≠≠-±-==j i njnj i j j i ij a bR a R q N r U N U πε其中∑≠±=ji ja )1(μ为离子晶格的马德隆常数,式中+、-号分别对应于与参考离子相异和相同的离子。

任选一正离子作为参考离子,在求和中对负离子取正号,对正离子取负号,考虑到对一维离子链,参考离子两边的离子是正负对称分布的,则有...)41312111(2)1(+-+-=±=∑≠ji j a μ利用下面的展开式...4321)1ln(+-+-=-x x x x x并令x =l ,得2ln (41)312111=+-+-于是一维离子链的马德隆常数为2ln 2=μ2. 有一晶体,平衡时体积为V 0,原子间总的相互作用势能为U 0,如果相距为r 的两原子互作用势为nmrr )r (U βα+-=证明:体积弹性模量为 009V mnU K = 证明:由0)rU(0r =∂∂ 可得平衡状态时的最近邻原子间距:mn 10m n r -⎪⎭⎫⎝⎛=αβ,mn 0r nm -=αβ 平衡时的势能为:nmn r U m00--=α体积弹性模量可写为r 22020)r u (9V r K ∂∂= 而2n 02m 0r 22r 1)n(n r 1)m(m )r u (0+++++-=∂∂βα 上式代入体积弹性模量中去可得:]r 1)n(n r 1)m(m [9V r )r u (9V r K 2n 02m 0020r 220200+++++-=∂∂=βα ]r 1)n(n r 1)m(m [9V 1nm 00βα+++-=]r n m r 1)n(n r 1)m(m [9V 1mn 0n 0m 00-+++-=αα ]r 1)m(n r 1)m(m [9V 1m0m 00αα+++-=)m n (r 9V m m00-=α00m0U 9V mn)n m n (r 9V mn K =-=证毕 3.已知原子间相互作用势为nmrrr u βα+-=)(,其中n m ,,,βα均为大于0的常数,试证明此系统可以处于稳定平衡态的条件是m n >。

相关文档
最新文档