七年级数学_实数教案

合集下载

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。

本节内容主要包括实数的定义、实数的分类和实数的性质。

通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。

但是,对于实数的定义和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。

三. 教学目标1.理解实数的概念,掌握实数的分类和性质。

2.能够运用实数的概念和性质解决一些简单的实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数的分类。

五. 教学方法采用讲授法、引导法、讨论法等教学方法。

通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。

六. 教学准备1.教师准备教案、PPT等教学资料。

2.学生准备笔记本、文具等学习用品。

七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。

2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。

引导学生理解和记忆实数的概念和性质,掌握实数的分类。

3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

通过练习,巩固学生对实数的理解和掌握。

4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。

5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。

6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。

7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。

第03讲实数(教案)

第03讲实数(教案)
(3)实数运算的运用:特别是无理数的运算,学生容易出错。
突破方法:分类讲解实数运算的规则,给出具体的例题,引导学生逐步掌握运算方法。
(4)实数与实际问题的联系:学生可能难以相关的题目,引导学生运用实数知识解决问题,提高学生的实际应用能力。
四、教学流程
举例:讲解实数定义时,可通过具体的数(如3、2/3、π等)来说明实数的涵盖范围。
(2)实数的大小比较:使学生掌握实数的大小比较法则,并能熟练运用。
举例:比较两个实数(如有理数和无理数)的大小,解释大小比较的原理。
(3)实数的运算:包括实数的加减乘除、乘方和开方运算,使学生能够熟练进行实数运算。
举例:给出具体的实数运算题目,如(2+π)×3、√2+√3等,指导学生按照运算规则进行计算。
首先,我发现通过日常生活中的例子来导入新课,确实能够激发学生的兴趣和好奇心。比如,通过讨论圆周率π这个无理数,学生们对实数的概念有了更加直观的认识。这种联系实际的教学方法有助于提高学生的学习积极性。
然而,我也注意到在讲解实数的大小比较时,部分学生仍然感到困惑,特别是涉及到无理数的大小比较。这可能是因为这个概念比较抽象,需要更多的实例和练习来巩固。在今后的教学中,我需要设计更多的对比练习,让学生在实践中掌握大小比较的方法。
5.实数的运算:实数的加减乘除运算,以及乘方和开方运算。
二、核心素养目标
《数学》七年级下册第五章第一节实数教学,核心素养目标如下:
1.理解实数的概念及其分类,培养学生的抽象思维能力。
2.通过对无理数的探索,激发学生的探究精神,提高发现问题、分析问题的能力。
3.培养学生掌握实数大小比较的方法,增强学生的逻辑思维能力。
另外,实数的运算部分,学生们普遍对无理数的运算感到不太适应。这可能是因为他们在之前的数学学习中,主要接触的是有理数的运算。针对这一点,我计划在下一节课中,通过分类讲解和举例,让学生逐步熟悉无理数的运算规则。

2023实数数学七年级上册教案

2023实数数学七年级上册教案

2023实数数学七年级上册教案实数教案【知识与技能】1.了解无理数和实数的概念,会将实数按一定的标准进行分类.2.知道实数与数轴上的点一一对应.【过程与方法】1.了解无理数和实数的概念,适时拓展数的观念.2.通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”思想. 【情感态度】从分类、集合的思想中领悟数学的内涵,激发兴趣.【教学重点】正确理解实数的概念.【教学难点】对“实数与数轴上的点一一对应关系”的理解.一、情境导入,初步认识问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.二、思考探究,获取新知例1 (1)试着写出几个无理数.(2)判断下列各数中,哪些是有理数哪些是无理数《实数》课时练习含答案1.(2023•安徽模拟)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3}、{﹣2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.下列集合为好的集合的是( )A. {1,2}B. {1,4,7}C. {1,7,8}D. {﹣2,6}答案:B知识点:实数.解析:根据题意,利用集合中的数,进一步计算8﹣a的值即可.解:A、{1,2}不是好的集合,因为8﹣1=7,不是集合中的数,故错误;B、{1,4,7}是好的集合,这是因为8﹣7=1,8﹣4=4,8﹣1=7,1、4、7都是{1、4、7}中的数,正确;C、{1,7,8}不是好的集合,因为8﹣8=0,不是集合中的数,故错误;D、{﹣2,6}不是好的集合,因为8﹣(﹣2)=10,不是集合中的数,故错误; 故选:B.本题考查了有理数的加减的应用,要读懂题意,根据有理数的减法按照题中给出的判断条件进行求解即可.《6.3实数》专项测试题1、下列说法正确的是( )A. 单独的一个数或一个字母也是代数式B. 任何有理数的绝对值都是正数C. 如果两个数的绝对值相等,那么这两个数相等D. 数轴上的任意一个点都可以表示一个有理数【答案】A【解析】解:数轴上的点可表示为有理数和无理数。

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。

本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。

通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。

二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。

但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.能够对实数进行分类,了解实数的丰富性和广泛性。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.实数的定义和实数与数轴的关系。

2.实数的分类和各类实数的特征。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。

六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。

2.准备实数的分类表格,方便学生理解和记忆。

3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。

例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。

同时,结合案例和图片,使学生直观地理解实数的概念。

例如:“同学们,今天我们要学习的是实数。

实数包括有理数和无理数,它们都可以用数轴上的点来表示。

请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。

”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。

第六章实数教案

第六章实数教案

人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013。

3。

8第六章实数6.1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。

【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示.【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣.2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。

3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。

(二)知识归纳:1、板书:1。

1平方根2、李老师家装修厨房,铺地砖10。

8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10。

8120=0。

09平方米。

由于0.32=0。

09,因此面积为0。

09平方米的正方形,它的边长为0.3米。

4、练习:由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。

5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。

初中数学实数教案模板

初中数学实数教案模板

初中数学实数教案模板一、教学目标1. 知识与技能:使学生了解实数的定义和性质,能够运用实数解决一些简单的问题。

2. 过程与方法:通过学生自主探究、合作交流,培养学生推理、概括的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心。

二、教学重点与难点1. 重点:实数的定义和性质。

2. 难点:实数的运算和应用。

三、教学过程1. 复习提问:复习有关有理数的相关知识,提问学生有理数的运算规则。

2. 引入新课:讲解实数的定义和性质,通过实例让学生理解实数的概念。

3. 自主探究:让学生自主探究实数的性质,如加法、减法、乘法、除法的运算规则。

4. 合作交流:学生分组讨论,分享自己探究的结果,教师给予指导和点评。

5. 巩固练习:给出一些练习题,让学生运用实数的知识解决问题,教师及时给予反馈和讲解。

6. 课堂小结:让学生总结实数的定义和性质,以及运算规则。

7. 课后作业:布置一些相关的作业题,让学生巩固所学知识。

四、教学策略1. 情境教学:通过生活实例引入实数的概念,让学生感受数学与实际的联系。

2. 启发式教学:引导学生自主探究实数的性质,培养学生的推理能力。

3. 合作学习:鼓励学生分组讨论,培养学生的合作意识和沟通能力。

4. 及时反馈:教师在学生练习时及时给予反馈,帮助学生纠正错误,提高正确率。

五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,提问和回答问题的积极性。

2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性和解题过程的清晰度。

3. 自主学习能力:评价学生在自主探究过程中的表现,如独立思考、解决问题的能力。

4. 合作交流能力:评价学生在合作交流中的表现,如沟通、协调、合作的能力。

六、教学资源1. 教材:使用符合课程标准的数学教材,提供丰富的学习材料。

2. 课件:制作多媒体课件,生动展示实数的定义和性质。

3. 练习题:准备一些实数相关的练习题,包括基础题和拓展题。

七年级数学下《实数》教学设计

七年级数学下《实数》教学设计

七年级数学下《实数》教学设计
一、教学目标
1.知识与技能:学生能够理解实数的概念,掌握实数的性质和运算方法。

2.过程与方法:通过探究活动,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们认真思考、勇于探索的
精神。

二、教学内容与过程
1.导入:回顾有理数的概念,通过与有理数对比,引出实数的概念。

2.知识讲解:详细讲解实数的定义、性质和运算方法,强调实数与有理数的区别
与联系。

3.探究活动:设计探究活动,如比较实数的大小、进行实数的四则运算等,让学
生通过实际操作深入理解实数的性质和运算方法。

4.应用实践:引导学生运用所学知识解决实际问题,如测量长度或质量时产生的
误差等,让学生体会实数在实际生活中的应用。

5.总结与提升:总结实数的主要知识点,通过综合性题目提升学生运用知识解决
实际问题的能力。

三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。

2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更
好地理解实数的概念和性质。

四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式了解学生的学习情况,调整教学策
略。

2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。

3.测试与反馈:组织阶段性测试,检测学生对实数知识的掌握程度,及时发现问
题并进行针对性辅导。

五、作业布置
1.完成相关练习题,巩固所学知识。

2.预习下一节内容,了解无理数的基本概念。

2024年浙教版七年级数学上册32《实数》教案

2024年浙教版七年级数学上册32《实数》教案

2024年浙教版七年级数学上册32《实数》教案一、教学内容本节课选自2024年浙教版七年级数学上册第32讲,详细内容为实数的定义、性质及其运算。

教材涉及的章节为第二章第二节,主要包括实数的概念、分类、性质以及实数的四则运算。

二、教学目标1. 理解实数的定义,掌握实数的分类和性质。

2. 学会实数的四则运算,并能解决实际问题。

3. 培养学生的逻辑思维能力和数学运算能力。

三、教学难点与重点难点:实数的性质及四则运算。

重点:实数的定义、分类及其性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:数学课本、练习本、计算器。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示生活中实数的例子,如温度、长度等,引导学生思考实数的概念。

2. 知识讲解(15分钟)(1)实数的定义:讲解实数的概念,引导学生理解实数是表示物体数量的一种数学工具。

(2)实数的分类:介绍实数的分类,包括有理数和无理数。

(3)实数的性质:讲解实数的性质,如交换律、结合律、分配律等。

(4)实数的四则运算:详细讲解实数的四则运算方法。

3. 例题讲解(15分钟)选择具有代表性的例题进行讲解,引导学生掌握实数的性质和运算方法。

4. 随堂练习(10分钟)设计具有梯度的问题,让学生独立完成,巩固所学知识。

六、板书设计1. 实数的定义、分类、性质。

2. 实数的四则运算方法。

3. 具有代表性的例题及解答过程。

七、作业设计1. 作业题目:(3)已知a、b是实数,且a+b=5,ab=3,求a、b的值。

2. 答案:(1)实数:π、√2、3/2、5。

(2)2+3π、1、2。

(3)a=4,b=1。

八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,分析学生的掌握情况,调整教学方法。

2. 拓展延伸:引入复数的概念,为学生学习下一阶段的知识打下基础。

重点和难点解析1. 实数的定义及性质的教学。

2. 实数四则运算的教学。

3. 例题的选取与讲解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三课时实数
学习目标
1 了解无理数和实数的概念
2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.
能估算无理数的大小
3了解实数范围内相反数和绝对值的意义
学习重点正确理解实数的概念
学习难点理解实数的概念
问题用计算机把下列有理数写成小数的形式
,7,,,,
我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数。

那么无限不循环小数叫什么呢?
无理数:无限不循环小数叫做无理数。

通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如、、、等都是无理数,=3.1415926…也是无理数。

实数:有理数和无理数统称为实数。

依此分类实数
像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有正负之分,所以依此分类为
实数
例一、把下列各数填入相应的集合内
0.、-、0 、、 3、 0.13 、、
(1)有理数集合:{ }
(2)无理数集合:{ }
(3)整数集合:{ }
(4)分数集合:{ }
(5)实数集合:{ }
我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?
事实上,每一个无理数都可以用数轴上的一个点表示出来。

即数轴上的点有些表示有理数,有些表示无理数。

当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.
平面直角坐标系中的点与有序实数对之间也是一一对应的。

与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。

当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数。

(1)数a 的相反数是-a ,(a 表示任何实数)
(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
课堂小结
1、这节课你学到的知识有
2、这节课你的收获有
3、这节课应注意的问题有
练习题
1、若实数a 满足1-=a a
,则()
A 、0φa
B 、0πa
C 、0≥a
D 、0≤a
2、下列说法正确的是().
A.无限小数都是无理数
B.带根号的数都是无理数
C.无理数是无限小数
D.无理数是开方开不尽的数
3、和数轴上的点一一对应的是( )
A 整数
B 有理数
C 无理数
D 实数
4、绝对值等于5的数是,x -的相反数是,38-的相反数是;12-的
相反数是_________________,绝对值是. 5、如果一个实数的绝对值是73-,那么这个实数是
6、比较大小:-73
4-。

相关文档
最新文档