概率论与数理统计第四章_几种重要的分布剖析

合集下载

《概率论与数理统计》第四章考点手册

《概率论与数理统计》第四章考点手册

《概率论与数理统计》第四章 随机变量的数字特征考点33 离散型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是离散型随机变量,概率分布为P {X =x i }=p i ,i =1,2,…。

则∑∞==1)(i i ip x X E 为X 的数学期望(或均值)。

2.常用离散型随机变量的数学期望(1)两点分布:X ∼B(1,p),0<p<1,则E(X)=p 。

(2)二项分布:X ∼B(n,p),其中0<p<1,则E(X)=np 。

(3)泊松分布:X ∼P(λ),其中λ>0,则E(X)=λ。

考点34 连续型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是连续型随机变量,则称⎰∞∞-=dx x f x X E )()(为X 的数学期望。

2. 常用连续型随机变量的数学期望(1)均匀分布若X~U[a,b],即X 服从[a,b]上的均匀分布,则; 21)()(b a dx a b x dx x xf X E b a +=-==⎰⎰+∞∞- (2)指数分布若X 服从参数为λ的指数分布,则 ; /1)(0λλλ⎰+∞-==dx e x X E x 正态分布若X 服从),(2s µN ,则.)(μ=X E考点35 二维随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.二维离散型随机变量的数学期望:设二维离散型随机向量(X,Y)的概率分布为p ij ,i=1,2,⋯,j=1,2,⋯.则:.),()],([11åå¥=¥==i j ij j i p y x g Y X g E2. 二维连续型随机变量的数学期望:设二维连续型随机向量(X,Y)的密度函数为f(x,y),则:. ),(),()],([dxdy y x f y x g Y X g E òò¥¥-¥¥-=考点36 数学期望的性质(★★★一级考点,选择、填空)(1).设C 是常数,则E(C)=C;E(C)=C ×1=C(2).若k 是常数,则E(kX)=kE(X);(3).E(X+Y)=E(X)+E(Y);(4).设X,Y 相互独立,则E(XY)=E(X)E(Y);考点37 方差的概念(★★二级考点,选择、填空)1.方差的概念:设X 是一随机变量,若E [X -E (X )]2 存在,则称其为X 的方差,记成Var(X ),即Var(X )=E {[X -E (X )]2} 并称)(X Var 为X 的标准差。

概率论与数理统计正态分布4-3二维正态分布课件

概率论与数理统计正态分布4-3二维正态分布课件
对于二维正态分布的随机变量(X, Y),X和Y的边缘分布都是一维正 态分布。
二维正态分布的应用场景
金融领域
在金融领域中,二维正态分布常 用于描述股票价格或其他金融变 量的联合分布,帮助投资者进行 风险评估和投资组合优化。
自然学科
在物理、化学、生物等自然学科 中,二维正态分布可用于描述实 验数据的误差分布、气象数据的 联合概率分布等。
概率论与数理统计正态分 布4-3二维正态分布课件源自目录CONTENTS
• 二维正态分布概述 • 4-3二维正态分布特性 • 4-3二维正态分布的性质 • 4-3二维正态分布的统计推断 • 4-3二维正态分布的实际应用
01 二维正态分布概述
二维正态分布的定义
二维正态分布是概率论与数理统计中 一种重要的概率分布,描述了两个随 机变量之间相互独立且具有相同的正 态分布关系。
03
4-3二维正态分布描述了两个随机变量之间线性关系 的情况。
4-3二维正态分布的数学表达式
1
4-3二维正态分布的数学表达式为f(x1, x2) = (1 / (2πσ1σ2)) * exp(-((x1-μ1)^2/2σ1^2 + (x2μ2)^2/2σ2^2))。
2
该表达式描述了两个随机变量x1和x2的概率密度 函数,其中μ1, μ2, σ1^2 和σ2^2是常数。
方差齐性检验
通过检验各组数据的方差是否相等,判断数据是 否满足方差分析的前提条件。
方差分析表
列出各组数据的均值、方差、自由度和贡献度等 信息,用于比较不同组之间的差异。
05 4-3二维正态分布的实际 应用
在金融领域的应用
资产定价
二维正态分布可以用于资产定价模型,例如Black-Scholes模型, 以评估衍生品的价值。

海南大学《概率论与数理统计》课件 第四章 随机变量及其分布

海南大学《概率论与数理统计》课件 第四章 随机变量及其分布
例如:X 0 取出的n个产品中没有次品;
X 3 取出的n个产品中至多有3个次品;
X 3 取出的n个产品中有超过3个的次品.
8
关于随机变量的补充说明
• 引入随机变量之后, 可以更方便地表示事件。 • 随机变量的确定不仅与样本空间有关, 也与试验
的研究目的有关。 • 随机变量满足函数的单值对应关系。 • 随机变量不仅有取值的不同, 取到这些值的概率
②正则性: p( xi ) 1 . i 1
这两条性质也是随机变量分布列的充要条件。
由概率的意义和随机变量的完备性容易证明。
25
二、离散型随机变量的分布函数
由分布列可以写出其分布函数 F ( x) P( xi ) xi x
它的图形是有限(或无穷)级数的阶梯函数〔右连续 〕
F(x)
1
0
x
26
27
X的分布列为
X1 2 3 P 0.6 0.3 0.1
X的分布函数为
0, x 1; 0.6, 1 x 2; F ( x) 0.9, 2 x 3; 1 , x 3.
注意:由分布列求分布函数是概率累加的过程.
并且,总有: 当x xmin时,F ( x) 0; 当x xmax时,F ( x) 1.
解 (1) 根据分布函数的性质可知
F() 1, F() 0
依题意可得
18
F() A π B 1 2
F() A π B 0 2
联立上面两个方程可以解得 A 1,B 1 2π
(2) 随机变量 X 落在(-1,1)内的概率可以表示为
P{1 X 1} F (1 0) F (1)
P{a X b} F(b 0) F(a 0);
P{a X b} F(b 0) F(a).

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。

因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。

关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。

(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。

例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。

在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。

为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。

2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。

(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。

定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论与数理统计(茆诗松)第四章讲义

概率论与数理统计(茆诗松)第四章讲义

⎡ T eit ( X − x1 ) − eit ( X − x2 ) ⎤ e − itx1 − e − itx2 ( ) ϕ t dt E dt ⎥ = ⎢ ∫−T ∫−T it it ⎦ ⎣
T
⎡ T cos t ( X − x1 ) + i sin t ( X − x1 ) − cos t ( X − x2 ) − i sin t ( X − x2 ) ⎤ dt ⎥ = E ⎢∫ it ⎦ ⎣ −T cos t ( X − x1 ) − cos t ( X − x2 ) ⎤ ⎡ T sin t ( X − x1 ) − sin t ( X − x2 ) dt ⎥ = E ⎢∫ −i −T t t ⎦ ⎣ ⎡ T sin t ( X − x1 ) − sin t ( X − x2 ) ⎤ dt ⎥ , = E ⎢2∫ t ⎦ ⎣ 0
itx 0
+∞
−λ x
dx = ∫ λ e
0
+∞
−( λ −it ) x
e −( λ −it ) x λ ; dx = λ ⋅ = − (λ − it ) 0 λ − it
x2
+∞
1 −2 (6)标准正态分布 N (0, 1):密度函数 p ( x) = e , − ∞ < x < +∞ ,特征函数为 2π
1 1 e itx dx = ⋅ ϕ (t ) = ∫ e ⋅ a b−a b − a it
b itx b
=
a
e ibt − e iat ; it (b − a )
⎧λ e − λx , (5)指数分布 Exp(λ):密度函数 p ( x) = ⎨ ⎩0,
x > 0; x ≤ 0.

概率论与数理统计第四章

概率论与数理统计第四章

)
(
)
(
)
,
(
Y
D
X
Dபைடு நூலகம்
Y
X
Cov
xy
=
r
=4[E(WV)]2-4E(W2)×E(V2)≤0
01
得到[E(WV)]2≤E(W2)×E(V2). →(8)式得到证明.
02
设W=X-E(X),V=Y-E(Y),那么
03
其判别式
由(9)式知, |ρ xy|=1 等价于 [E(WV)]2=E(W2)E(V2). 即 g(t)= E[tW-V)2] =t2E(W2)-2tE(WV)+E(V2) =0 (10) 由于 E[X-E(X)]=E(x)-E(X) =0, E[Y-E(Y)]=E(Y)-E(Y) =0.故 E(tW-V)=tE(W)-E(V)=tE[X-E(X)]-E[Y-E(Y)]=0 所以 D(tW-V)=E{[tW-V-E(tW-V)]2}=E[(tW-V)2]=0 (11) 由于数学期望为0,方差也为0,即(11)式成立的充分必要条件是 P{tW-V=0}=1
随机变量X的数学期望是随机变量的平均数.它是将随机变量 x及它所取的数和相应频率的乘积和.
=
(1)
)
2
3
(
)
(
-
=
ò
µ
µ
-
dx
x
x
E
j
x
可见均匀分布的数学期望为区间的中值.
例2 计算在区间[a,b]上服从均匀分布的随机变量 的数学期望
泊松分布的数学期望和方差都等于参数λ.
其他
02
f(x)=
01
(4-6)
03
(4)指数分布

概率论与数理统计之正态分布

概率论与数理统计之正态分布

转化为标准正态分布
P(8100 Yn 10000)
标准化
P 2.5
Yn np np(1 p)
50
(50) (2.5) 1 0.9938 0.0062
37
例:某电站供应10000户居民用电,设在高峰时每户用电的概率为0.8 各用户用电多少是相互独立的,求:
(1)同一时刻有8100户以上用电的概率; (2)若每户用电功率为100W,则电站至少需要多少电功率才能保证以
1
z2
e 10 , z R
10
§4.4 二维正态分布
定义: 二维随机变量 (X ,Y )服从二维正态分布,记作
(
X
,Y
)
~
N(x
,
y
,
2 x
,
2 y
,
r)
其中 x, y ,x 0, y 0, r( r 1) 是参数.
26
§4.4 二维正态分布
定理1:设二维连续随机变量
(X
,Y
)
~
N(x
,
Q /100 8000 1.96
Q 807840
38
40
39
15-16,五. 设每个零件上的瑕疵点个数服从泊松分布P(1),现 随机抽取100个零件,根据中心极限定理,求100个 零件上总瑕疵点个数不多于120个的概率.
正态分布的前世今生
一、邂逅,正态曲线的首次发现 棣莫弗—拉普拉斯中心极限定理,4.5节
二、寻找随机误差分布的规律(正态分布的确立) 三、正态分布的各种推导 四、正态分布开疆扩土 五、正态魅影
正态分布性质,4.3节
§4.1 正态分布的概率密度与分布函数
定义:设随机变量 X 的概率密度为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k n k
n
n k
k 0.1,...n
n! k nk E ( ) k p (1 p) k !(n k )! k 0
n! p k (1 p)n k k 1 (k 1)!( n k )! n (n 1)! np p k 1 (1 p)(n1)( k 1) k 1 (k 1)!( n k )!
k
k
nk
, ( k 0,1,..., n)
(1.16)
(P79)定义4.1
如果随机变量ξ有概率函数,
k k nk
Pk =P{ k} C n p q
其中0<P<1,q=1-p,
, ( k 0,1,..., n)
(4.1)
则称ξ服从参数为n,p的二项分布。记作ξ~B(n,p)
P{ξ=k}的值恰好是二项式(q+px)n展开式中第 k+1项xk的系数。 ξ的分布函数为:
kn ! p k (1 p)n k k 1 ( k 1)!( n k )!
(k 1 1)n ! k p (1 p)n k k 1 ( k 1)!( n k )!
n
n
(k 1 1)n ! k p (1 p)n k k 1 ( k 1)!( n k )!
第四章几种重要的分布
4.1 4.2 4.3 4.4 4.5 4.6 二项分布 超几何分布(了解) 普哇松分布 指数分布 Γ-分布(不讲) 正态分布
4.1二项分布
主要内容: (一)随机变量ξ的分布律 (二)二项分布的期望和方差 (三)二项分布的最可能值
(一)随机变量ξ的分布律
贝努里(Bernoulli)概型与二项分布 1. (0-1)分布(p26) 若以X表示进行一次试验事件A发生的次数,则称
k n-k F(x)= Ck P q n kx
(4.2)
事件A至多出现m次的概率是
P{0 m}= C P q
k n k k=0
m
n-k
事件A出现次数不小于l不大于m的概率是
P{l m}= C P q
k n k k=l
m
n-k
例.从某大学到火车站途中有6个交通岗,假设在各个交 通岗是否遇到红灯相互独立,并且遇到红灯的概率都是 1/3. (1)设ξ为汽车行驶途中遇到的红灯数,求ξ的分布律. (2)求汽车行驶途中至少遇到5次红灯的概率. 注意:在解决这类问题时,(1)要验证是否满足贝努里 试验,如独立性;(2)由ξ的定义,分清n和p 解:(1)由题意,ξ~B(6,1/3),于是,ξ的分布律为:
,6
6
0
P 0.0002
1
2
3
0.0044 0.0330 0.1318 0.2966 0.3560 0.1780
例2 10部机器各自独立工作,因修理调整等原因, 每部机器停车的概率为0.2,求同时停车数目ξ的分布 解:ξ服从二项分布,ξ~B(10 0.2) 可用贝努里公式计算pk。 现将计算结果列成分布表如下:
X服从(0-1)分布(两点分布)
X~P{X=k}=pk(1-p)1-k, (0<p<1) k=0,1 或
X
1
p
0
pk
1 p
2.(p24)定义 设将试验独立重复进行n次,每次试
验中,事件A发生的概率均为p,则称这n次试验
为n重贝努里试验.事件A恰好发生k次的概率为
P{ k} C n p (1 p)
1 2 P{ k} C 3 3
k 6 k 6 k
k 0,1,...,6
(2) P{ 5} P{ 5} P{ 6}
13 1 2 1 C 3 3 3 729
l l n 1l 令l k 1 np Cn p (1 p ) 1 l 0 n 1
n
np
二项分布B(n, p):
k n k
E ( ) np
n k
P{ k} C p (1 p)
2 n 2
k 0.1,...n
n! E ( ) k p k (1 p)nk k !(n k )! k 0
n
n (k 1)n ! n! k nk p (1 p) p k (1 p)nk k 1 (k 1)!( n k )! k 1 ( k 1)!( n k )! n
n n! n! k nk p (1 p) p k (1 p)nk k 2 (k 2)!(n k )! k 1 (k 1)!(n k )! n
k P{ =k}=C10 (0.2)k (1 0.2)10k
k=0,1,
7 8 9
,10
10
0
1
2
Байду номын сангаас
3
4
5
6
p
0.11 0.27 0.30 0.20 0.09 0.03 0.01 0.00 0.00 0.00 0.00
例3 一批产品的废品率p=0.03,进行20次重复抽样 (有放回抽取),求出现废品的频率为0.1的概率。
l l 2 n 2 l j j 1 n 1 j n(n 1)Cn p (1 p ) nC p (1 p ) n1 2 l 0 j 0
n2
n 1
n(n 1)C
l 0
n2
l n2
p
l 2
(1 p)
5 6 5 6
例1
某工厂每天用水量保持正常的概率为3/4, 求最近6天内用水量正常的天数的分布。
解 设最近六天内用水量保持正常的天数为ξ。它服从 二项分布,ξ~B(6 0.75) 用公式(4.1)计算其概率值,得到:
k P{ =k}=C6 (0.75)k (1 0.75)6k
k=0,1,
4 5
解 令ξ表示20次重复抽取中废品出现的次数, 它服从二项分布。ξ~B(20 0.03)
2 2 18 P =0.1 =P( =2)=C20 0.03 0.97 0.0988 20
(二)二项分布的期望和方差
二项分布B(n, p)
P{ k} C p (1 p)
相关文档
最新文档