中考平行线的判定与性质真题汇总[1]

合集下载

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

中考平行线的判定与性质真题汇总

中考平行线的判定与性质真题汇总

、解答填空题(共 34小题)(除非特别说明,请填准确值) 1、 如图,已知 AB//CD AE 平分/ BADDF 平分/ ADC 那么 AE 与DF 的位置关系是A E3、 如图,四边形 ABCD 中, Z A=/C=90 , BE 平分/ ABC DF 平分/ ADC ■则BE 与DF 的何位置关系•试说明理由.如图,E 、F 分别在AB CD 上, Z 仁Z D, Z2 与ZC 互余,ECLAF. 那么AB 与CD 的位置关系是5、 如图,已知Z BED Z B+Z D,试判断 AB 与CD 的位置关系6、 已知:如图Z 1=Z 2,Z E=Z F ,试说明 AB 与CD的位置关系是3CC D7、如图,ABLBC / 1+/2=90°,/ 2=/3,_则8、如图AB//DE / A=/D,则AE与DC的位置关系是9、如图,/ 1=30°,/ B=60 , ABLAC AD与BC的位置关系是如图,直线AB CD与直线EF相交于E、F,已知:/ 1=105°,/ 2=75,那么BE与DF的位置关系为10、AB与CD的位置关系是如图,AB// DC / B=55,/ 2=40°,/ 3=85°(1)/ D=度;(2) / 仁度;(3)得到DA/CB 请说明理由.女口图,若/ CAB /CED /CDE 贝U ABCD.F已知△ ABC 中,/ B=70° , CD 平分/ ACB /2=/3,则/ 仁 度.(1)/ ADC=度;(2)说明 DF//AB16、如图所示,已知/ ADE /B,/仁/2, GFLAB 那么 CD 与 AB 的位置关系为13、 12、 14、15、 DF 为/ ADC 的平分线.17、 如图,/ 1=100°,/ 2=100°,/ 3=120° 那么/4= 度.18、 附加题:已知,如图,CDLAB G H AB / B=/ADE 那么/I£2.附加题(1 )若 x > y ,则 x+2y+2.(2)完成下列推理(在题中的横线上填空)•如图, 已知:直线l 3分别丨1, 12交于A ,点,/仁£2 求证:I 1//I 2证明:1=/2,£1=/3•••/ 2=/20、 已知如图所示,/ 1=/2,£ 3=/E,/ 4=/5,试判断 AD 与BC 的位置关系,并证明你的结论.21、已知,/ 1=Z2,Z 3=70°,则/4=22、已知:如图,/ C=/3,Z 2=80°,/ 1+Z3=140°,Z A=/D,则/B=度.C 尸D23、如图,CD是/ACB的平分线,/ EDC=25,/ DCE=25,/ B=70 度•则/BDC= 度.24、如图所示,A, D, E, F四点共线,/ 1=/2,/ 3=/4,/ A=/5,则BE与CF的位置关系为已知:如图所示,/ ABD 和/BDC 的平分线交于 E , BE 交CD 于点F ,Z 1+22=90°(1) AB 与CD 的位置关系为(2)22与23的数量关系为2 2+23=度.27、 如图所示,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线\ftb■ U 28、 如图,已知 CDLAD DALAB 2仁22._则 DF 与AE 平行吗?25、 26、ADLBC 于D,点E 、A C 在同一直线上,/ DAC h EFA 延长 EF 交 BC 于 G,_KU EG 与 BC 的位2\E如图,在△ ABC中,CDLAE,垂足为D,点E在BC上,EF X AE,垂足为F.(1) CD与EF的位置关系为(2)如果/ 仁Z2,且/3=65°,那么/ ACB=度.如图,△ ABC中,CDLAB于D,FGLAB于G交BC于F,E为AC上一点,且/ 1=22. _则DE与BC的位置关系为29、30、已知:如图,四边形ABCD中, ADLDC BCLAE AE平分/ BAD CF平分/ DCB AE交CD于E,CF交AB于F,AE与CF31、.为什么?BE与AC的位置关系是F/32、233、已知:如图所示,/ 1=Z C, / 2=/4, FGLBC 于G点,(1 )/2Z3,试判断并说明理由;(2)AD与BC是否互相垂直?试判断并说明理由.34、(完形填空)已知:如下图所示,/ 1=/2,求证:/ 3+24=180°.证明:丁2 5=2 2.()又2仁22.(已知)5=21 ()/•AB// CD()/•2 3+24=180°().。

平行线的判定及性质

平行线的判定及性质

平行线的判定、性质专练
姓名:
例1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.
变式:如图所示:AB∥DC,∠A=∠C,试说明AD∥BC.
变式2:如图,点E为DF上的点,点B为AC上的点,∠1= ∠2,∠C= ∠D,求证:DF ∥AC
变式3:如图,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,试问:∠A与∠F相等吗?请说出你的理由。

变式4:如图,已知∠A=∠F,∠C=∠D,求证:BD//CE.
例2:已知AB ∥CD,GP,HQ 分别平分∠EGB, ∠EHD,判断GP 与HQ 是否平行?
变式1:如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.
F 2
A B C D Q E 1 P M N 图11
变式2:已知AB∥CD,GP,HQ分别平分∠AGF, ∠EHD,判断GP与HQ是否平行?
例3:如图,已知AB∥CD,∠1=∠2,求证∠E=∠F.
变式1:如图,已知∠E=∠F,∠1=∠2,:求证AB∥CD .
变式2:如图,已知AB∥CD,∠E=∠F,:求证∠1=∠2.
变式3:如图,已知AB∥CD, AF∥DE, :求证∠1=∠2.
变式4:如图,已知∠1=∠2, AF∥DE, :求证AB∥CD.。

专题01 平行线的判定和性质(解析版)

专题01 平行线的判定和性质(解析版)

2022-2023学年浙教版七年级数学下册精选压轴题培优卷专题01 平行线的判定和性质一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•沙坪坝区期末)如图,直线AB,CD被直线EF所截,AB∥CD,∠1=113°,则∠2的度数为( )A.23°B.67°C.77°D.113°解:∵AB∥CD,∴∠CFE=∠1=113°,∠2=180°﹣∠CFE=180°﹣113°=67°,故选:B.2.(2分)(2023春•九龙坡区校级月考)将一块三角板和一块直尺如图放置,若∠1=50°,则∠2的度数为( )A.110°B.120°C.130°D.140°解:如图,∵∠3=∠1,∴∠2=∠A+∠3=140°.故选:D.3.(2分)(2022秋•青云谱区校级期末)如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=119°,则∠EMF的度数为( )A.57°B.58°C.59°D.60°解:∵长方形ABCD,∴AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=119°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×119°=238°,∴∠FEM+∠EFM=360°﹣238°=122°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣122°=58°,故选:B.4.(2分)(2022春•殷都区校级月考)如图,AB∥CD,则图中α,β,γ三者之间的关系是( )A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AFD=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,故选:C.5.(2分)(2022•绿园区校级模拟)如图,已知锐角∠AOB,按下列步骤作图:①在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;②分别以点C,D为圆心,CD长为半径作弧,交于点M.N;③连MN,OM.则下列结论错误的是( )A.∠COM=∠COD B.若OM=MN,则∠AOB=30°C.MN∥CD D.MN<3CD解:连接ON,MD,由作法得CM=CD=DN,∴∠COM=∠COD,所以A选项正确;∵OM=ON,∴当OM=MN时,△OMN为等边三角形,∴∠MON=60°,∵∠AOB=∠MOA=∠NOB=×60°=20°,所以B选项错误;∵,∴∠MDC=∠DMN,∴MN∥CD,所以C选项正确;∵CM+CD+DN>MN,∴3CD>MN,所以D选项正确.故选:B.6.(2分)(2019秋•淮阴区期末)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为( )A.20°B.30°C.40°D.50°解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.7.(2分)(2021春•奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH =100°,则∠BEG的度数为( )A.30°B.40°C.50°D.60°解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.8.(2分)(2022•博望区校级一模)如图是一款手推车的平面示意图,其中AB∥CD,∠1=24°,∠2=76°,则∠3的度数为( )A.104°B.128°C.138°D.156°解:如图:∵AB∥CD,∠1=24°,∴∠A=∠1=24°,∵∠2=76°,∠2+∠4=180°,∴∠4=180°﹣∠2=180°﹣76°=104°,∴∠3=∠4+∠A=104°+24°=128°.故选:B.9.(2分)(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是( )A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.10.(2分)(2022春•青秀区校级期中)已知AB∥CD,点E在BD连线的右侧,∠ABE与∠CDE的角平分线相交于点F,则下列说法正确的是( )①∠ABE+∠CDE+∠E=360°;②若∠E=80°,则∠BFD=140°;③如图(2)中,若∠ABM=∠ABF,∠CDM=∠CDF,则6∠BMD+∠E=360°;④如图(2)中,若∠E=m°,∠ABM=∠CDF,则∠M=()°.A.①②④B.②③④C.①②③D.①②③④解:∵AB∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BEG+∠CDE+∠DEG=360°,即∠ABE+∠BED+∠CDE=360°,①正确,∵∠BED=80°,∠ABE+∠BED+∠CDE=360°,∴∠ABE+∠CDE=280°,∵AB∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∴∠BFD=∠BFH+∠DFH=∠ABF+∠CDF=(∠ABE+∠CDE)=140°,②正确,与上同理,∠BMD=∠ABM+∠CDM=(∠ABF+∠CDF),∴6∠BMD=2(∠ABF+∠CDF)=∠ABE+∠CDE,∴6∠BMD+∠E=360°,③正确,由题意,④不一定正确,∴①②③正确,故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•朝阳区校级期末)如图,已知AC∥BD,∠CAE=30°,∠DBE=35°,则∠AEB等于 65° .解:过点E作EF∥AC,∵AC∥BD,∴AC∥EF∥BD,∴∠AEF=∠CAE=30°,∠BEF=∠DBE=35°,∴∠AEB=∠AEF+∠BEF=65°.故答案为:65°.12.(2分)(2022秋•宛城区校级期末)如图,把一个长方形纸片沿OG折叠后,C,D两点分别落在C',D'两点处,若∠AOD':∠D'OG=4:3,则∠BGO= 54 度.解:∵∠AOD':∠D'OG=4:3,设∠AOD'=4x,则∠D'OG=3x,由翻折可知∠DOG=∠D'OG=3x∵∠AOD'+∠D'OG+∠DOG=180°,即10x=180°,解得x=18°,∵AD∥BC,∴∠BGO=∠DOG=3x=54°,故答案为:54.13.(2分)(2022秋•沙坪坝区校级期末)如图,直线GH分别与直线AB,CD相交于点G,H,且AB∥CD.点M在直线AB,CD之间,连接GM,HM,射线GH是∠AGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠BGM,∠M=∠N+∠HGN,则∠MHG的度数为 45° .解:过M作MF∥AB,过H作HE∥GN,如图:设∠BGM=2α,∠MHD=β,则∠N=∠BGM=2α,∴∠AGM=180°﹣2α,∵GH平分∠AGM,∴∠MGH=∠AGM=90°﹣α,∴∠BGH=∠BGM+∠MGH=90°+α,∵AB∥CD,∴MF∥AB∥CD,∴∠M=∠GMF+∠FMH=∠BGM+∠MHD=2α+β,∵∠M=∠N+∠HGN,∴2α+β=×2α+∠HGN,∴∠HGN=β﹣α,∵HE∥CN,∴∠GHE=∠HGN=β﹣α,∠EHM=∠N=2α,∴∠GHD=∠GHE+∠EHM+∠MHD=(β﹣α)+2α+β=2β+α,∵AB∥CD,∴∠BGH+∠GHD=180°,∴(90°+α)+(2β+α)=180°,∴α+β=45°,∴∠MHG=∠GHE+∠EHM=(β﹣α)+2α=α+β=45°,故答案为:45°.14.(2分)(2022•苏州模拟)如图,把一张长方形纸片ABCD沿EF折叠,∠1=50°,则∠FGE= 80 °.解:由折叠得∠GEF=∠DEF,∵AD∥BC∴∠DEF=∠1∴∠GEF=∠1∵∠FGE+2∠1=180°,∴∠FGE=180°﹣2×50°=80°,故答案为:80.15.(2分)(2022春•大荔县校级月考)如图,在三角形ABC中,点D、E分别在AB、BC上,连接DE,且DE∥AC,∠1=∠2,若∠B=50°,则∠BAF的度数为 130° .解:∵DE∥AC,∴∠2=∠C,∵∠1=∠2,∴∠1=∠C,∴AF∥BC,∴∠B+∠BAF=180°,∵∠B=50°,∴∠BAF=180°﹣50°=130°.故答案为:130°.16.(2分)(2022秋•新会区校级期末)如图,将长方形ABCD沿EF翻折,再沿ED翻折,若∠FEA″=105°,则∠CFE= 155 度.解:由四边形ABFE沿EF折叠得四边形A′B′FE,∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF,∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME,∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF,∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC,∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(2022春•思明区校级期末)如图,将长方形纸片ABCD沿EF折叠后,点A,B分别落在A',B'的位置,再沿AD边将∠A'折叠到∠H处,已知∠1=50°,则∠FEH= 15 °.解:由折叠可知:∠BFE=∠B'FE,∠AEF=∠A'EF,∠A'EG=∠HEG,∵∠1+∠BFE+∠B'FE=180°,∠1=50°,∴∠BFE=65°,∵AD∥BC,∴∠AEF+∠BFE=180°,∴∠AEF=115°,∴∠A'EF=115°,过B'作B'M∥AD,则∠DGB'=∠GB'M,∵AD∥BC,∴∠MB'F=∠1,∴∠1+∠DGB'=∠GB'F=90°,∴∠DGB'=90°﹣50°=40°,∴∠A'GE=∠DGB'=40°,∵∠A'=90°,∴∠HEG=∠A'EG=90°﹣40°=50°,∴∠A'EH=2×50°=100°,∴∠FEH=∠A'EF﹣∠A'EH=115°﹣100°=15°.故答案为:15.18.(2分)(2021秋•南岗区校级期中)如图,直线MN与直线AB、CD分别交于点E、F,AB∥CD,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,交MN于点Q,∠HPQ:∠QFP=3:2,则∠EHG= 30° .解:∵AB∥CD,∴∠BEF+∠EFD=180°,∵∠BEF与∠EFD的角平分线交于点P,∴∠PEF=∠BEF,∠PFE=∠EFD,∴∠PEF+∠PFE=(∠BEF+∠EFD)=90°,∵∠EPF=180°﹣(∠PEF+∠PFE)=90°,∵GH⊥EG,∴∠EGH=∠EPF=90°,∴FP∥HG,∴∠FPH=∠PHK,∠QFP=∠EHG,设∠PHK=x°,则∠FPH=∠HPK=∠PHK=x°,∠FPK=∠FPH+∠HPK=2x°,∴∠EPK=∠EPF+∠FPK=90°+2x°,∵PQ平分∠EPK,∴∠QPK=∠EPK=(90°+2x°)=45°+x°,∴∠HPQ=∠QPK﹣∠HPK=45°,∵∠HPQ:∠QFP=3:2,∴∠QFP=30°,∴∠EHG=∠QFP=30°;故答案为:30°.19.(2分)(2021秋•香坊区校级期中)已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC= 88° .解:∵AB∥CD,∴∠CAB=180°﹣∠ACD=180°﹣60°=120°,∵∠BAE:∠CAE=2:3,∴∠CAE=120×=72°,∵∠AEC=78°,∴∠ACE=180°﹣∠AEC﹣∠CAE=180°﹣78°﹣72°=30°,设∠FCE=x,则∠FCD=4x,∴∠ACF=∠ACD﹣∠FCD=60°﹣4x,∴∠ACE=∠ACF+∠ECF=60°﹣3x,∴60°﹣3x=30°,∴x=10°,∴∠ACF=60°﹣40°=20°,∴∠AFC=180°﹣∠ACF﹣∠CAE=180°﹣20°﹣72°=88°,故答案是:88°.20.(2分)(2021春•东港区校级期末)把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论:①∠C'EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°.正确的有 3 个.解:∵AC′∥BD′,∴∠C′EF=∠EFB=32°,所以①正确;∵∠C′EF=∠FEC,∴∠C′EC=2×32°=64°,∴∠AEC=180°﹣64°=116°,所以②错误;∴∠BFD=∠EFD′﹣∠BFE=180°﹣2∠EFB=180°﹣64°=116°,所以④正确;∵∠BGE=∠C′EC=2×32°=64°,所以③正确.故答案为3.三.解答题(共7小题,满分60分)21.(6分)(2022秋•长安区校级期末)如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,已知∠1+∠2=90°,且∠2:∠3=2:5.(1)求∠BOF的度数;(2)试说明AB∥CD的理由.解:(1)∵OA,OB分别平分∠COE和∠DOE,∴,,∵∠COE+∠DOE=180°,∴∠2+∠AOC=90°,∵∠COE=∠3,∴,∴,∵∠2:∠3=2:5,∴,∴,∴∠2=40°,∴∠3=100°,∴∠BOF=∠2+∠3=140°;(2)∵∠1+∠2=90°,∠2+∠AOC=90°,∴∠1=∠AOC,∴AB∥CD.22.(6分)(2022秋•市北区校级期末)如图,已知∠1+∠2=180°,∠B=∠E.(1)试猜想AB与CE之间有怎样的位置关系?并说明理由.(2)若CA平分∠BCE,∠B=50°,求∠A的度数.解:(1)AB∥CE,∵∠1+∠2=180°(已知),∴DE∥BC(同旁内角互补,两直线平行),∴∠ADF=∠B(两直线平行,同位角相等),∵∠B=∠E(已知),∴∠ADF=∠E(等量代换),∴AB∥CE(内错角相等,两直线平行).(2)∵AB∥CE,∴∠B+∠BCE=180°,∵∠B=50°,∴∠BCE=130°,∵CA平分∠BCE,∴∠ACE==65°,∵AB∥CE,∴∠A=∠ACE=65°.23.(6分)(2022秋•荆门期末)如图,在△ABC中,AD⊥BC于D,G是BA延长线上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)求证:AB=AC;(2)猜想并证明,当E在AC何处时,AF=2BD.(1)证明:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)解:当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEB(ASA),∴AF=BC=2BD.24.(10分)(2022秋•南关区校级期末)已知AM∥CN,点B在直线AM、CN之间,∠ABC=88°.(1)如图1,请直接写出∠A和∠C之间的数量关系: ∠A+∠C=88° .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 46° .解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵∠ABC=88°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=88°.故答案为:∠A+∠C=88°;(2)∠A和∠C满足:∠C﹣∠A=92°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵∠ABC=88°.∴∠ABE+∠CBE=88°.∴∠A+180°﹣∠C=88°.∴∠C﹣∠A=92°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=∠MAB.∵CH平分∠NCB,∴∠BCF=∠BCN.∵∠B=88°,∴∠BFC=88°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=88°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=92°,∴∠AGH=×92°=46°.故答案为:46°.25.(10分)(2022春•铜梁区校级月考)课题学习:平行线的“等角转化”功能.(1)阅读理解:如图1,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程.解:过点A作ED∥BC,∴∠B= ∠EAB ,∠C= ∠DAC ,∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)方法运用:如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数;(3)深化拓展:已知AB∥CD,点C在点D的右侧,∠ADC=50°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在直线AB与CD之间.①如图3,点B在点A的左侧,若∠ABC=36°,求∠BED的度数.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,求∠BED度数.(用含n的代数式表示)解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC(两直线平行,内错角相等);故答案为:∠EAB;∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D+∠FCD=180°,∵CF∥AB,∴∠B+∠FCB=180°,∴∠B+∠FCB+∠FCD+∠D=360°,∴∠B+∠BCD+∠D=360°;(3)①过E作EG∥AB,∵AB∥DC,∴EG∥CD,∴∠GED=∠EDC,∵DE平分∠ADC,∴,∴∠GED=25°,∵BE平分∠ABC,∴,∵GE∥AB,∴∠BEG=∠ABE=18°,∴∠BED=∠GED+∠BEG=25°+18°=43°;②过E作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠PED=∠EDC=25°,∵BE平分∠ABC,∠ABC=n°,∴,∵AB∥PE,∴∠ABE+∠PEB=180°,∴,∴.26.(10分)(2022春•铁东区校级月考)如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连接,若AF恰好经过点G,且B,G,C在一条直线上,若AF∥DE,∠B=∠C+9°,∠D=∠E=105°.(1)求∠F的度数.(2)计算∠B﹣∠CGF的度数是 115° .(3)连接AD,当∠ADE与∠CGF满足怎样数量关系时,BC∥AD.并说明理由,解:(1)∵AF∥DE,∴∠F+∠E=180°,∴∠F=180°﹣105°=75°;(2)延长DC交AF于K,可得:∠B﹣∠CGF=∠C+10°﹣∠CGF=∠GKC+10°=∠D+9°=114°,故答案为:114°;(3)当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.27.(12分)(2022春•江汉区校级月考)如图1,直线l分别交直线AB、CD于点EF(点在点F的右侧).若∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,点H在直线AB、CD之间,过点H作HG⊥AB于点G,若FH平分∠EFD,∠2=120°,求∠FHG的度数.(3)如图3,直线MN与直线AB、CD分别交于点M、N,若∠EMN=120°,点P为线段EF上一动点,Q 为直线CD上一动点,请直接写出∠PMN与∠MPQ,∠PQF之间的数量关系.(题中的角均指大于0°且小于180°的角)(1)证明:∵∠1+∠2=180°,∠2+∠DFE=180°,∴∠1=∠DFE(同角的补角相等),∴AB∥CD(同位角相等,两直线平行);(2)解:如图所示,过点H作HP∥AB,则HP∥AB∥CD,∵GH∥AB,即∠EGH=90°,∴∠PHG=180°﹣∠EGH=90°,∵∠2=120°,∴∠EFD=180°﹣∠2=60°,∵FH平分∠EFD,∴∠HFD=30°,∵PH∥CD,∴∠PHF=∠HFD=30°,∴∠FHG=∠PHF+∠PHG=120°;(3)解:如图3﹣1,当点Q在线段FN上时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF=∠HPQ,∴∠MPQ+∠PMN﹣∠PQF=∠MPQ﹣∠HPQ+∠PMN=∠MPH+∠PMN=∠EMP+∠PMN=∠EMN=120°;如图3﹣2,当点Q在FN的延长线上时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF=∠HPQ,∴∠MPQ+∠PMN﹣∠PQF=∠MPQ+∠PMN﹣∠HPQ=∠MPH+∠PMN=∠EMP+∠PMN=∠EMN=120°;如图3﹣3(1),当点Q在NF的延长线上且点Q在直线MP的右侧时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF+∠HPQ=180°,∴∠MPQ+∠PMN+∠PQF=∠MPQ+180°﹣∠HPQ+∠PMN=∠MPH+∠PMN+180°=∠EMP+∠PMN+180°=∠EMN+180°=300°;如图3﹣3(2),当点Q在NF的延长线上且点Q在直线MP的右侧时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP+∠MPH=180°,∠PQF=∠HPQ,∴∠MPQ﹣∠PMN﹣∠PQF=∠MPQ﹣∠PMN﹣∠HPQ=∠MPH﹣∠PMN=180°﹣∠EMP﹣∠PMN=180°﹣∠EMN=60°;综上,∠PMN与∠MPQ,∠PQF之间的数量关系为:∠MPQ+∠PMN﹣∠PQF=120°或∠MPQ+∠PMN+∠PQF=300°或∠MPQ+∠PMN﹣∠PQF=60°。

平行线的判定定理和性质题

平行线的判定定理和性质题

DCBA 21G321FE D CBA一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ;若∠ +∠ = 180°,则 ∥ .2.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( );(2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( )3、如图,EF ∥AD,∠1=∠2,∠BAC=70°.将求∠AGD 的过程填写完整.解: 因为EF ∥AD,所以∠2=____(_________________________) 又因为∠1=∠2所以∠1=∠3(______________)所以AB ∥_____(________________________) 所以∠BAC+______=180°(________________) 因为∠BAC=70° 所以∠AGD=_______.4. 如下图,直线AB,CD 相交于O 点,OM ⊥AB. (1)若∠1=∠2,求∠NOD;(2)若∠1=14∠BOC,求∠AOC 与∠MOD.5、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30 o ,求∠EAD 、∠DAC 、∠C 的度数。

6、如图所示,已知DC ∥AB,AC 平分∠DAB, 试说明∠1=∠2.7、如图,已知:EF ∥GH ,∠1+∠3=180°,试说明∠2=∠3.8.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.9.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BM E 。

求证:AB∥CD,MP∥NQ.E BAFD C图9F2A B CDQ E1P MN 图11A DCBO图5ABCE D12 3 图1MN1O A BDC2E231A B CDFGH10.如图,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.11如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.12. 在下图中,已知直线AB 和直线CD 被直线GH 所截,交点分别为E 、F ,∠AEF =∠EFD .(1)直线AB 和直线CD 平行吗?为什么?(2)若EM 是∠AEF 的平分线,FN 是∠EFD 的平分线,则EM 与FN 平行吗?为什么?13. 如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.13.如图,EB ∥DC ,∠C=∠E ,请你说出∠A=∠ADE 的理由。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

平行线的判定和性质练习题

平行线的判定和性质练习题

平行线的判定定理和性质定理一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .2.若a ⊥c ,b ⊥c ,则a b .3.如图2,写出一个能判定直线l 1∥l 2的条件: .4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ).5.如图3,若∠1 +∠2 = 180°,则 ∥ 。

6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 .7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( );(2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB ∥CD 的条件来: .10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC ∥ED ( );(2)∵∠2 =∠ (已知), ∴AC ∥ED ( ); (3)∵∠A +∠ = 180°(已知), ∴AB ∥FD ( ); (4)∵∠2 +∠ = 180°(已知),∴AC ∥ED ( ); 二、解答下列各题11.如图9,∠D =∠A ,∠B =∠FCB ,求证:ED ∥CF .A CB 4 1 2 3 5 图4 a b c d 1 2 3 图3 A BC ED 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 AF CD B E图8 E B AF D C 图9 A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME 。

中考数学总复习训练 平行线的判定与性质(含解析)(2021-2022学年)

中考数学总复习训练 平行线的判定与性质(含解析)(2021-2022学年)

平行线的判定与性质1.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有个.2.如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有()A.4对B.8对C.12对ﻩ D.16对3.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°求证:AB∥EF.4.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.5.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;ﻬ(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?6.如图所示,已知AB∥CD,EF交AB于M交CD于F,MN⊥EF于M,MN交CD于N,若∠BME=110°,则∠MND=.7.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2﹣∠3=90°,∠4=115°,那么∠3=.8.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=度.9.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.ﻬ10.如图,下列条件中,不能判断直线l1∥l2的是( )A.∠1=∠3ﻩ B.∠2=∠3ﻩ C.∠4=∠5D.∠2+∠4=180°11.已知线段AB=10cm,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有( )A.1条ﻩB.2条 C.3条D.4条12.已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是()A.①③ﻩB.②④C.①③④ﻩD.①②③④13.如图所示,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个ﻩB.5个 C.4个ﻩD.2个14.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.15.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.16.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是.17.若平面上4条直线两两相交且无三线共点,则共有同旁内角对.18.如图,已知l1∥l2,AB⊥l1,∠ABC=130°,则∠α= .19.如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.20.如图,D、G是△ABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( )A.4对ﻩ B.5对ﻩC.6对 D.7对21.如图,若AB∥CD,则( )A.∠1=∠2+∠3B.∠1=∠3﹣∠2C.∠1+∠2+∠3=180°ﻩD.∠l﹣∠2+∠3=180°22.如图:已知AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于()A.180°B.270°ﻩ C.360°ﻩ D.450°23.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( )A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°24.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.25.如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α26.平面上有7条不同的直线,如果其中任何三条直线都不共点.(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;(2)请再画出各直线之间的交点个数不同的图形(至少两个);(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,21,15?(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律?27.如图,直线CB∥OA,∠C=∠BAO=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.平行线的判定与性质参考答案与试题解析1.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有 3 个.【考点】平行线的性质;余角和补角.【分析】本题考查互余的概念,和为90度的两个角互为余角,结合图形和平行线的性质作答.【解答】解:AB∥CD,AC⊥BC,则图中与∠CAB互余的角有3个,∠CBA,∠BCD,和∠CBA的对顶角.【点评】此题属于基础题,较简单,主要记住互为余角的两个角的和为90度.2.如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有( )A.4对ﻩ B.8对 C.12对D.16对【考点】同位角、内错角、同旁内角.【专题】几何图形问题.【分析】每一个“三线八角"基本图形都有两对同旁内角,从对原图形进行分解入手可知同旁内角共有对数.【解答】解:直线AB、CD被EF所截有2对同旁内角;直线AB、CD被GH所截有2对同旁内角;直线CD、EF被GH所截有2对同旁内角;直线CD、GH被EF所截有2对同旁内角;直线GH、EF被CD所截有2对同旁内角;直线AB、EF被GH所截有2对同旁内角;ﻬ直线AB、GH被EF所截有2对同旁内角;直线EF、GH被AB所截有2对同旁内角.共有16对同旁内角.故选D.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.3.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°求证:AB∥EF.【考点】平行线的判定与性质.【专题】证明题.【分析】解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角"或作出与AB或CD平行的直线,利用平行线的性质和判定求证.【解答】解:过C点作CG∥AB,过点D作DH∥AB,则CG∥DH,∵∠B=25°,∴∠BCG=25°,∵∠BCD=45°,∴∠GCD=20°,∵CG∥HD,∴∠CDH=20°,∵∠CDE=30°,∴∠HDE=10°∴∠HDE=∠E=10°,∴DH∥EF,∴DH∥AB,∴AB∥EF.【点评】此题考查平行线的判定和性质,辅助线是常见的作法,证明过程注意选用有用的条件作为证明的依据.4.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.【考点】平行线的性质;垂线.【分析】先运用垂直于同一条直线的两直线平行,得出∠BDF=∠BCE,∠FDE=∠DEC,再根据平行线的性质得出∠DEC=∠ACE,然后利用角平分线等量代换即可得出两角的关系.【解答】解:∠EDF=∠BDF.∵CE⊥AB于E,DF⊥AB于F∴DF∥CE (垂直于同一条直线的两直线平行),∴∠BDF=∠BCE (两直线平行,同位角相等),∠FDE=∠DEC(两直线平行,内错角相等)又∵AC∥ED,∴∠DEC=∠ACE(两直线平行,内错角相等),∵CE是∠ACB的角平分线,∴∠ACE=∠ECB(角平分线的定义),∴∠EDF=∠BDF(等量代换).【点评】本题主要运用了平行线的性质和垂线的性质,解答本题的关键是熟练掌握平行线的性质:两直线平行内错角、同位角相等.ﻬ5.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?【考点】平行线的判定与性质.【分析】已知AB∥CD,连接AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.【解答】解:(1)过E作EF∥AB,则∠B=∠BEF,∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∴∠BED=∠BEF+∠DEF=∠B+∠D.(2)若∠B+∠D=∠E,由EF∥AB,∴∠B=∠BEF,∵∠E=∠BEF+∠DEF=∠B+∠D,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(3)若将点E移至图b所示位置,过E作EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∠E+∠B+∠D=360°;(4)∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B;(5)∵AB∥CD,∴∠E+∠G=∠B+∠F+∠D;(6)由以上可知:∠E1+∠E2+…+∠E n=∠B+∠F1+∠F2+…+∠Fn﹣1+∠D;【点评】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.6.如图所示,已知AB∥CD,EF交AB于M交CD于F,MN⊥EF于M,MN交CD于N,若∠BME=110°,则∠MND=20° .【考点】平行线的性质.【分析】根据对顶角相等求出∠AMF,再求出∠AMN,然后根据两直线平行,内错角相等求解即可.【解答】解:∵∠BME=110°,∴∠AMF=∠BME=110°,∵MN⊥EF于M,∴∠NMF=90°,∴∠AMN=∠AMF﹣∠NMF=110°﹣90°=20°,∵AB∥CD,∴∠MND=∠AMN=20°.故答案为:20°.【点评】本题考查了平行线的性质,对顶角相等的性质,以及垂直的定义,是基础题,熟记性质并准确识图是解题的关键.7.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2﹣∠3=90°,∠4=115°,那么∠3= 65°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1+∠3=90°,∠2﹣∠3=90°,可得∠1+∠2=180°,则可得出a∥b,根据同旁内角互补即可得出答案.【解答】解:∵∠1+∠3=90°,∠2﹣∠3=90°,∴∠1+∠2=180°,∴∠1的对顶角+∠2=180°,∴a∥b,∴∠3+∠4的对顶角=180°,∵∠4=115°,∴∠3=180°﹣∠4=65°,故答案为:65°.【点评】本题考查了平行线的判定与性质,属于基础题,关键是正确理解与运用平行线的判定与性质.8.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=40度.ﻬ【考点】平行线的性质.【专题】计算题.【分析】过点F作EF∥AB,由平行线的性质可先求出∠3与∠4,再利用平角的定义即可求出∠α.【解答】解:如图,过点F作EF∥AB,∴∠1+∠3=180°.∵∠1=100°,∴∠3=80°.∵AB∥CD,∴CD∥EF,∴∠4+∠2=180°,∵∠2=120°,∴∠4=60°.∴∠α=180°﹣∠3﹣∠4=40°.故应填40.【点评】本题的难点在于用辅助线构造平行线;关键点在于利用平行线的性质进行角的转化.9.已知两个角的两边分别平行,其中一个角为40°,那么另一角是 40或140 度.【考点】平行线的性质.【分析】两个角的两边分别平行,则两个角可能是同位角,也可能是同旁内角,所以应分情况讨论.【解答】解:当两个角是同位角时,则另一个角也等于40°;若两个角是同旁内角时,则另一个角是140°.故应填:40或140.【点评】会利用平行线性质求解角的大小,能够分析讨论一些简单的问题.ﻬ10.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3ﻩ C.∠4=∠5D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.11.已知线段AB=10cm,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有( )A.1条 B.2条ﻩ C.3条D.4条【考点】点到直线的距离.【分析】根据从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.画出图形进行判断.【解答】解:在线段AB的两旁可分别画一条满足条件的直线;作线段AB的垂线,将线段AB分成6cm,4cm两部分,所以符合条件的直线l有3条,故选C.【点评】此题主要考查了从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的定义.12.已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是( )A.①③ﻩB.②④ﻩC.①③④ D.①②③④【考点】平行线的判定;对顶角、邻补角.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:①∵∠1=∠2,∴a∥b(同位角相等,两直线平行).②∵∠3=∠6,∴a∥b(内错角相等,两直线平行).③∵∠4+∠7=180°,∵∠4=∠6(对顶角相等),∴∠6+∠7=180°,∴a∥b(同旁内角互补,两直线平行).④同理得,a∥b(同旁内角互补,两直线平行).故选D.【点评】正确识别“三线八角"中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.如图所示,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个ﻩB.5个C.4个 D.2个【考点】平行线的性质.ﻬ【分析】由AB∥EF得∠FEG=∠1,由EG∥DB可得∠DBG=∠1;设BD与EF相交于点P,由AB∥EF得到∠FPB=∠DBG=∠1,∠DPE=∠DBG=∠1,又AB∥DC可以得到∠CDB=∠DBG=∠1,由此得到共有5个.【解答】解:∵AB∥EF,∴∠FEG=∠1,∵EG∥DB,∴∠DBG=∠1,设BD与EF相交于点P,∵AB∥EF,∴∠FPB=∠DBG=∠1,∠DPE=∠DBG=∠1,∵AB∥DC,∴∠CDB=∠DBG=∠1.∴共有5个.故选B.【点评】本题主要利用了由平行得到的内错角相等以及同位角相等,注意不要漏解.14.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.【考点】平行线的性质.【专题】探究型.【分析】由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.【解答】证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).【点评】本题是先从结论出发得到需证明的条件,又从所给条件入手,得到需证明的条件.属于典型的从两头往中间证明.15.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.【考点】平行线的判定与性质.【专题】证明题.【分析】由已知易得∠1=∠BDC,则AE∥CF,所以∠EBC=∠BCD,又∠BAD=∠BCD,故∠EBC=∠BAD,可得AD∥BC,再用角平分线的定义和平行线的性质求证即可.【解答】证明:∵∠1十∠2=180°,∠1+∠EBD=180°,∴∠2=∠EBD,∴AE∥CF,∴∠FDB=∠DBE,∠BAD=∠ADF,又∵∠BAD=∠BCD,∴∠BCD=∠ADF,∴AD∥BC,∴∠DBC=∠BDA=∠FDB=∠DBE,∴BC平分∠DBE.ﻬ【点评】此题考查了平行线的判定和性质,综合利用了角平分线的定义,要充分利用已知条件.16.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是垂直.【考点】垂线;平行线.【专题】压轴题;规律型.【分析】a1与后面的直线按垂直、垂直、平行、平行每4条直线一循环.根据此规律可求a1与a2002的位置关系是垂直.【解答】解:∵a1与后面的直线按垂直、垂直、平行、平行每4条直线一循环.∴(2002﹣1)÷4=500余1,故答案为:垂直.【点评】本题难点在规律的探索,要认真观察即可得出规律.17.若平面上4条直线两两相交且无三线共点,则共有同旁内角24对.【考点】同位角、内错角、同旁内角.【专题】几何图形问题.【分析】一条直线与另3条直线相交(不交于一点),有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有3×4=12条线段.每条线段两侧各有一对同旁内角,可知同旁内角的总对数.【解答】解:∵平面上4条直线两两相交且无三线共点,∴共有3×4=12条线段.又∵每条线段两侧各有一对同旁内角,∴共有同旁内角12×2=24对.故答案为:24.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.ﻬ18.如图,已知l1∥l2,AB⊥l1,∠ABC=130°,则∠α=40°.【考点】平行线的性质.【专题】计算题.【分析】过点B作EF∥l1∥l2,再根据平行线的性质不难求得∠α的度数.【解答】解:过点B作EF∥l1∥l2∵EF∥l1∥l2,AB⊥l1∴∠ABF=90°∵∠ABC=130°∴∠FBC=40°∵EF∥l1∥l2∴∠FBC=∠α=40°故答案为:40°【点评】此题主要考查平行线的性质定理:定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.19.如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是40°.【考点】平行线的性质;三角形的外角性质;多边形内角与外角.【专题】计算题.【分析】作辅助线:延长PM、EG交于点K;PM延长线交AB于点L.利用平行线性质进行求解.【解答】解:辅助线延长PM、EG交于点K,PM延长线交AB于点L.如图:∵AB∥CD,∴∠ALM=∠LND=50°;∴∠MKG=∠BFG+∠ALM=80°.∵∠HMN=30°,∴∠HMK=150°;∵∠FGH=90°,∴∠GHM=360°﹣∠HMK﹣∠MKG﹣∠MGH=360°﹣150°﹣80°﹣90°=40°.【点评】考查了平行线的性质的应用.本题综合性较强.20.如图,D、G是△ABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( )A.4对B.5对 C.6对D.7对【考点】平行线的性质.【分析】可利用平行线内错角相等,同位角相等的性质得出图中相等的角.【解答】解:由DE∥BC,可得∠ADE=∠ABC,∠AED=∠ACB,∠EDC=∠DCB,由GH∥DC,可得∠BDC=∠BGH,∠HGD=∠ADC,∠DCB=∠GHB,∵∠EDC=∠DCB,∠DCB=∠GHB,∴∠EDC=∠BHG,∴题中共有7对相等的角.故选D.【点评】本题主要考查平行线的性质,即同位角相等,内错角相等,所以熟练掌握平行线的性质.21.如图,若AB∥CD,则( )A.∠1=∠2+∠3 B.∠1=∠3﹣∠2C.∠1+∠2+∠3=180°ﻩD.∠l﹣∠2+∠3=180°【考点】平行线的性质.【分析】先根据平行线的性质由AB∥CD得到∠3=∠4,再根据三角形外角性质得∠1=∠2+∠4,等量代换后得到∠1=∠2+∠3.【解答】解:延长BA交EC于F,如图,∵AB∥CD,∴∠3=∠4,∵∠1=∠2+∠4,∴∠1=∠2+∠3.故选A.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.22.如图:已知AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于()A.180°ﻩB.270°C.360°D.450°【考点】平行线的性质.【专题】计算题.【分析】根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF的度数即可.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,同理∠DCE+∠CEF=180°,∴∠BAC+∠ACE+∠CEF=360°;又∵EH⊥CD于H,∴∠HEF=90°,∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF﹣∠HEF=360°﹣90°=270°.故选B.【点评】本题主要考查了平行线的性质:两直线平行同旁内角互补.23.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( )A.β=α+γﻩB.α+β+γ=180° C.α+β﹣γ=90°ﻩ D.β+γ﹣α=180°【考点】平行线的性质.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.【点评】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.24.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.【考点】平行线的性质;三角形的外角性质.【分析】可过点O作OM∥CD,利用内错角相等,再通过转化即可得出结论.【解答】解:∠HOP=∠AGF﹣∠HPO,过点O作OM∥CD,如图,则∠AGF=∠HOM,∠HPO=∠POM,∠HOP=∠HOM﹣∠POM,∴∠HOP=∠AGF﹣∠HPO.【点评】本题主要考查平行线的性质,能够熟练运用平行线的性质求解角之间的关系问题.25.如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α【考点】平行线的判定与性质;多边形内角与外角.【专题】证明题.【分析】此题的关键是过点C作AB的平行线,再利用平行线的性质和判定,得出∠A+∠E=180°,∠B+∠C+∠D=360°,即可证明.【解答】证法1:∵AB∥ED,∴α=∠A+∠E=180°(两直线平行,同旁内角互补)过C作CF∥AB(如图1)∵AB∥ED,∴CF∥ED(平行于同一条直线的两条直线平行)∵CF∥AB,∴∠B=∠1,(两直线平行,内错角相等)又∵CF∥ED,∴∠2=∠D,(两直线平行,内错角相等)∴β=∠B+∠C+∠D=∠1+∠BCD+∠2=360°(周角定义)∴β=2α(等量代换)证法2:∵AB∥ED,∴α=∠A+∠E=180°(两直线平行,同旁内角互补)过C作CF∥AB(如图2)∵AB∥ED,∴CF∥ED(平行于同一条直线的两条直线平行)∵CF∥AB,∴∠B+∠1=180°,(两直线平行,同旁内角互补)又∵CF∥ED,∴∠2+∠D=180°,(两直线平行,同旁内角互补)∴β=∠B+∠C+∠D=∠B+∠1+∠2+∠D=180°+180°=360°,∴β=2α(等量代换)【点评】此题考查平行线的判定和性质,辅助线的作法很关键,也是常见作法,需掌握.26.平面上有7条不同的直线,如果其中任何三条直线都不共点.(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;(2)请再画出各直线之间的交点个数不同的图形(至少两个);(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,21,15?(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律?【考点】平行线;相交线.【专题】规律型.【分析】从平行线的角度考虑,先考虑六条直线都平行,再考虑五条、四条,三条,二条直线平行,都不平行作出草图即可看出.ﻬ从画出的图形中归纳规律即可得到答案.【解答】解:(1)如图1所示;交点共有6个,(2)如图2,3.(3)当n=6时,必须有6条直线平行,都与一条直线相交.如图4,当n=21时,必须使7条直线中的每2条直线都相交(即无任何两条直线平行)如图5,当n=15时,如图6,(4)当我们给出较多答案时,从较多的图形中,可以总结出以下规律:①当7条直线都相互平行时,交点个数是0,这是交点最少,②当7条直线每两条均相交时,交点个数为21,这是交点最多.ﻬ【点评】此题主要考查了平行线与相交线,关键是根据一定的规律画出图形,再再根据图形归纳规律.27.如图,直线CB∥OA,∠C=∠BAO=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】平行线的性质;三角形内角和定理;角平分线的性质;平移的性质.【专题】几何图形问题.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,再根据角平分线的定义求出∠EOB=∠AOC,代入数据即可得解;(2)根据两直线平行,内错角相等可得∠OBC=∠BOA,从而得到∠OBC=∠FOB,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OFC=2∠OBC,从而得解;(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣120°=60°,∵∠FOB=∠AOB,OE平分∠COF,∴∠EOB=∠AOC=×60°=30°;(2)∠OBC:∠OFC的值不会发生变化,为1:2,ﻬ∵CB∥OA,∴∠OBC=∠BOA,∵∠FOB=∠AOB,∴∠OBC=∠FOB,∴∠OFC=∠OBC+∠FOB=2∠OBC,∴∠OBC:∠OFC=1:2;(3)当平行移动AB至∠OBA=45°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵∠OEC=∠CBO+∠EOB=x+30°,∠OBA=180°﹣∠A﹣∠AOB=180°﹣120°﹣x=60°﹣x,∴x+30°=60°﹣x,∴x=15°,∴∠OEC=∠OBA=60°﹣15°=45°.【点评】本题考查了平行线的性质,平移的性质,角平分线的定义,三角形的内角和定理,图形较为复杂,熟记性质并准确识图是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、解答填空题(共34小题)(除非特别说明,请填准确值)
1、如图,已知AB∥CD,AE平分∠BAD,DF平分∠ADC,那么AE与DF的位置关系是

2、如图,已知∠A=∠C,∠1与∠2互补,则AB与CD的位置关系是

3、如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF的何位置关系
.试说明理由.
4、
如图,E、F分别在AB、CD上,∠1=∠D,∠2与∠C互余,EC⊥AF.
那么AB与CD的位置关系是

5、如图,已知∠BED=∠B+∠D,试判断AB与CD的位置关系

6、已知:如图∠1=∠2,∠E=∠F,试说明AB与CD的位置关系是

7、如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,则BE与DF的位置关系为

8、如图AB∥DE,∠A=∠D,则AE与DC的位置关系是

9、如图,∠1=30°,∠B=60°,AB⊥AC,AD与BC的位置关系是

10、
如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,那么AB与CD的位置关系是.
11、
如图,AB∥DC,∠B=55°,∠2=40°,∠3=85°
(1)∠D=
度;
(2)∠1=
度;
(3)
得到DA∥CB,请说明理由.
12、如图,若∠CAB=∠CED+∠CDE,则AB
CD.
13、如图,已知BE∥DF,∠B=∠D,则AD与BC平行吗?

14、已知△ABC中,∠B=70°,CD平分∠ACB,∠2=∠3,则∠1=
度.
15、如图,AD∥BC,∠1=60°,∠B=∠C,DF为∠ADC的平分线.
(1)∠ADC=
度;(2)说明DF∥AB.
16、如图所示,已知∠ADE=∠B,∠1=∠2,GF⊥AB,那么CD与AB的位置关系为

17、如图,∠1=100°,∠2=100°,∠3=120°那么∠4=
度.
18、附加题:已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,那么∠1
∠2.
19、
附加题
(1)若x>y,则x+2
y+2.
(2)完成下列推理(在题中的横线上填空).如图,
已知:直线l3分别l1,12交于A,点,∠1=∠2
求证:l1∥12
证明:∵∠1=∠2,∠1=∠3
∴∠2=∠
∴l1∥12
20、已知如图所示,∠1=∠2,∠3=∠E,∠4=∠5,试判断AD与BC的位置关系
,并证明你的结论.
21、已知,∠1=∠2,∠3=70°,则∠4=
度.
22、已知:如图,∠C=∠3,∠2=80°,∠1+∠3=140°,∠A=∠D,则∠B=
度.
23、如图,CD是∠ACB的平分线,∠EDC=25°,∠DCE=25°,∠B=70度.则∠BDC=
度.
24、如图所示,A,D,E,F四点共线,∠1=∠2,∠3=∠4,∠A=∠5,则BE与CF的位置关系为

25、如图,已知AD平分∠BAC,且AD⊥BC于D,点E、A、C在同一直线上,∠DAC=∠EFA,延长EF交BC于G,则EG与BC的位

26、
已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)AB与CD的位置关系为

(2)∠2与∠3的数量关系为∠2+∠3=
度.
27、如图所示,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线

28、如图,已知CD⊥AD,DA⊥AB,∠1=∠2.则DF与AE平行吗?
,为什么?
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF的位置关系为

(2)如果∠1=∠2,且∠3=65°,那么∠ACB=
度.
30、已知:如图,四边形ABCD中,AD⊥DC,BC⊥AB,AE平分∠BAD,CF平分∠DCB,AE交CD于E,CF交AB于F,AE与CF
.为什么?
31、如图、点B在DC上,BE平分∠ABD,∠DBE=∠A,BE与AC的位置关系是
,请说明理由.
32、如图,△ABC中,CD⊥AB于D,FG⊥AB于G交BC于F,E为AC上一点,且∠1=∠2.则DE与BC的位置关系为

已知:如图所示,∠1=∠C,∠2=∠4,FG⊥BC于G点,
(1)∠2
∠3,试判断并说明理由;
(2)AD与BC是否互相垂直?
试判断并说明理由.
34、
(完形填空)已知:如下图所示,∠1=∠2.
求证:∠3+∠4=180°.
证明:∵∠5=∠2.(

又∠1=∠2.(已知)
∴∠5=∠1(

∴AB∥CD(

∴∠3+∠4=180°(
).。

相关文档
最新文档