概率论中几个有趣的例子
全概率公式有趣例子

全概率公式有趣例子
1. 你知道抽奖的概率怎么算吗?就好比抽奖箱里有红、黄、蓝三种球,红的有 3 个,黄的有 2 个,蓝的有 5 个,那抽到红球的概率是多少呢?这
就可以用全概率公式啦!
2. 想想看啊,假如有好多扇门,每扇门后面有不同的东西,要你选择一扇门去打开,怎么知道自己得到好东西的概率呢?这和全概率公式很像呀!比如说有三扇门,一扇后面是大奖,其他两扇是小奖,每扇门被选中的概率不同,算大奖的概率时就可以用全概率公式,是不是很有意思?
3. 嘿,你不是喜欢玩扔骰子吗?要是有两个不一样的骰子,一个是六面的,一个是四面的,然后要算扔到某个数的总概率,这不就可以借助全概率公式嘛!比如说我们想知道扔到 3 的概率,这不就很神奇吗?
4. 哎呀呀,就像天气预报说今天下雨的概率会受到各种因素影响,比如云的多少啊、风的情况啊之类的,那要把这些因素都综合起来算最终下雨的概率,是不是和全概率公式很契合呢?
5. 你想想,你去超市买东西,不同品牌有不同的促销活动,你怎么算买到最划算东西的概率呢?这不就是全概率公式的用武之地嘛!例如有三个品牌,每个品牌打折的概率和力度都不一样,得好好算算呀!
6. 哈哈,好比你和朋友玩游戏,有不同的游戏环节和规则,每个环节成功的概率不一样,那整体赢下游戏的概率呢?全概率公式能帮你搞清楚哦!就像你要走过一段充满各种可能的路,全概率公式就是那个给你指引的明灯啊!
我觉得全概率公式就像一把神奇的钥匙,能打开很多看似复杂问题的大门,让我们清楚地看到各种可能性和概率,真的太好玩啦!。
概率论经典实例

概率论经典实例概率论的研究问题大多与现实世界联系十分密切,有的甚至引人入胜,非常值得我们探讨以便激发我们对概率论学习的兴趣,同时引导我们对生活的思考,这对我们每一个大学生思维能力的培养有着重要的意义。
下面我列举几个典型的概率实例加以说明其重要意义。
1990 年9 月9 日,美国一家报纸检阅提出一个有趣的概率问题:电视主持人指着三扇关着的门说,其中一扇后是汽车,另两扇后各有一只山羊。
你可随意打开一扇,后面的东西就归你了。
你当然想得到汽车。
当你选定一扇门,如1 号门(但未打开) ,这时主持人打开有山羊的另一个扇门,不妨说是3号门( 主持人清楚哪扇门后是汽车) ,并对你说:现在再给你一次机会,允许你改变原来的选择。
你为了得到汽车是坚持1号门还是改选2号门?问题及答案公诸于众后引发了出乎意料的轰动,编辑部收到了上万封从小学二年级的学生到大学教授的来信,给出了不尽相同的答案(当然正确的答案是唯一的),热烈讨论持续两年之久。
此时,无论是一号门还是二号门都有可能门后是汽车,看上去好像每一个都是一半的几率。
但从主持人的角度看,他不会让你轻易就得到汽车,于是打开三号门来迷惑你的思想,让你放弃一号门。
由此看出,可能一号门的几率会大一点。
若从主持人的话语中判断出他没有那种想法,则可以这样思考这个问题。
将一号门看成一部分,里面有汽车的概率为0.33,将二号门和三号门看成另一部分,里面有汽车的概率为0.67。
当发现三号门里没有汽车时,则一号门和二号门有汽车的概率分别为0.33和0.67。
因此,选择二号门比较理智。
稍加留意就会发现若利用概率统计提供的科学思维方法就会大大提高获胜的几率。
比如抛两颗均匀骰子,规定如下规则:总数之和小于6为出现小点,大于6为大点,则每局可押大点或小点,若押对了,以出现的点数为对应的奖品数目,若押不中则同样以出现的点数为惩罚品的数目。
可以这样思考,当假设骰子理论意义上是均匀的,则六面中点数少的面较重,在抛出后点数多的面朝上的可能性较大,从而抛出点数大的情况的概率应大一些,这样,即可作如下观察:(1)随机抛2颗骰子若干次,观察出现的点数,若点数大于6的次数占多数,则初步判断骰子是均匀的。
高中数学概率统计小故事

1.分赌本问题A ,B 二人赌博,各出注金a 元,每局每个人获胜的概率都是12,约定:谁先胜S 局,即赢得全部注金a 2元,现进行到A 胜1S 局、B 胜2S 局(1S 与2S 都小于S )时赌博因故停止,问此时注金a 2应如何分配给A 和B 才算公平?此问题文字最早见于1494年帕西奥利的一本著作,是对6=S ,51=S 和22=S 的情况的分析.由于对“公平分配”一词的意义没有一个公认的正确理解,在早期文献中出现过关于此问题的种种不同的解法,如今看来都不正确.例如,帕西奥利本人提出按2:S S 1的比例分配.塔泰格利亚则在1556年怀疑能找到一种数学解法的可能性,他认为这是一个应由法官来解决的问题,但他也提出了如下的解法:若2S S 1>,则A 取回自己下的注a ,并取走B 下的注的S S S 1/)(2-,这等于按)(:)(22S S S S S S 11+--+的比例瓜分注金.法雷斯泰尼在1603年根据某种理由,提出按)12(:)12(22S S S S S S 11+---+-的比例分配.卡丹诺在其1539年的著作中,通过较深的推理提出了一种解法:记1S S r -=1,22S S r -=.把注金按)1(22+r r ︰)1(11+r r 之比分给A 和B.他这个解法如今看来虽然仍不正确,但有一个重要之处,即他注意到起作用的是1S ,2S 与S 的差距,而不在其本身.这个问题的症结在于:它关乎每个人在当时状况下的期望值.从以上这些五花八门的解法中,似乎可以认为,这些作者已多少意识到这一点,但未能明确期望与概率的关系.而与此处有关的是:假定赌博继续进行下去,各人最终取胜的概率.循着这个想法问题很易解决:至多再赌121-+=r r r 局,即能分出胜负.假如A 获胜,他在这r 局中至少须胜1r 局.因此按二项分布,A 取胜的概率为r rr i A i r p -=∑⎪⎪⎭⎫ ⎝⎛=21,而B 取胜的概率为1B A p p =-.注金按B A p p :之比分配给A 和B ,因A ap 2和B ap 2是A ,B 在当时状态下的期望值.这个解是巴斯噶(B.Pascal, 1623~1662)在1654年提出的.他用了两种方法,其一是递推公式法,其二是用“巴斯噶三角”(即杨辉三角).1710年,蒙特姆特在一封信中给出了我们在前面写出的解法,且不必规定二人的获胜概率相同.后来他又把此问题推广到多个赌徒的情形.分赌本问题在概率史上起的作用,在于通过对这个在当时来说较复杂的问题的探索,对数学期望及其与概率的关系有了启示.有的解法,特别是巴斯噶的解法,使用或隐含了若干直到现在还广为使用的计算概率的工具.如组合法、递推公式、条件概率和全概率公式等.可以说,通过对这个问题的研究,概率计算从初期简单计数步入较为精细的阶段.2. 巴斯噶与费尔马的通信巴斯噶与费尔马(P. de Fermat ,1601-1665)的名字,对学习过中学以上数学的人来说,想必不陌生.巴斯噶三角,在我国称杨辉三角,中学教科书中已有提及.至于费尔马,因其“费尔马大定理”(不存在整数,,,≠xyx z y x xyz≠0和整数3≥n ,使n n n z y x =+) 于近年得到证明,名声更远播数学圈子内外.费尔马在数学上的名声主要因其数论方面的成就,其在概率史上占到一席地位,多少有些偶然,由于他与巴斯噶在1654年7~10月间来往的7封信件,其中巴致费的有3封.这几封信全是讨论具体的赌博问题.与前人一样,他们用计算等可能的有利与不利情况数,作为计算“机遇数”即概率的方法(他们没有使用概率这个名称).与前人相比,他们在方法的精细和复杂性方面大大前进了.他们广泛使用组合工具和递推公式,初等概率一些基本规律也都用上了.他们引进了赌博的值(value)的概念,值等于赌注乘以获胜概率.3年后,惠更斯改“值”为“期望” (expectation),这就是概率论的最重要的概念之一——(数学)期望的形成和命名过程.前文已指出:此概念在更早的作者中已酝酿了一段时间.这些通信中讨论的一个重要问题之一是分赌本问题,还讨论了更复杂的输光问题:甲、乙二人各有赌本a 和b 元(a ,b 为正整数),每局输赢1元,要计算各人输光的概率.这个问题拿现在的标准看也有相当的难度.由此也可看出这组通信达到的水平及其在概率论发展史上的重要性.有的学者,如丹麦概率学者哈尔德,认为巴、费2人在1654年的这些信件奠定了概率论的基础.这话相当有道理,但也应指出,这些通信的内容是讨论具体问题,没有明确陈述并提炼出概率运算的原则性内容.例如,他们想当然地使用了概率加法和乘法定理.但未将其作为一般原则凸现出来.促使巴、费2人进行这段通信的,是一个名叫德梅尔的人,他曾向巴斯噶请教几个有关赌博的问题.1564年7月29日巴斯噶首先给费尔马写信,转达了这些问题之一,请费尔马解决.所提问题并不难,但不知为何巴斯噶未亲自回答:将两颗骰子掷24次,至少掷出一个“双6”的机遇小于2/1(其值为.0)36/35(124≈-≈0.491 4).但从另一方面看,掷两颗骰子只有36种等可能结果,而24占了36的3/2,这似乎有矛盾,如何解释.现今学过初等概率论的读者都必能毫无困难地回答这个问题.巴、费通信中涉及的有关分赌本问题的解法,包含了一些在当时看很先进且直到现在仍广为使用的想法和技巧.3. 惠更斯的《机遇的规律》惠更斯是一个有多方面成就的、在当时声名与牛顿相若的大科学家.人们熟知他的贡献之一是单摆周期公式g l T /2π=.他在概率论的早期发展史上也占有重要地位,其主要著作《机遇的规律》出版于1657年,出版后得到学术界的高度重视,在欧洲作为概率论的标准教本长达50年之久.该著作的写作方式不大像一本书,而更像一篇论文.他从关于公平赌博(fair game)的值的一条公理出发,推出关于“期望”(这是他首先引进的术语)的3条定理.基于这些定理并利用递推法等工具,惠更斯解决了当时感兴趣的一些机遇博弈问题.最后,他提出了5个问题,对其中的3个给出了答案但未加证明.3条定理加11个问题,被称为惠更斯的14个命题.前3条如下述:命题1若某人在赌博中以等概率12得a ,b 元,则其期望为2/)(b a +元.命题2若某人在赌博中以等概率13得a ,b 和c 元,则其期望为3/)(c b a ++元.命题3若某人在赌博中以概率p ,)1(=+q p q 得a ,b 元,则其期望为qb pa +元.看了这些命题,现代的读者或许会感到惶惑:为何一个应取为定义的东西,要当作需要证明的定理? 答案在于,这反映了当时对纯科学的一种公认的处理方法,即应从尽可能少的“第一原理”(first principle ,即公理)出发,把其他内容推演出来.惠更斯只从一条公理出发而导出上述命题,其推理颇为别致,此处不细述.这几个命题是期望概念的一般化.此前涉及或隐含这一概念只是相当于命题3中0=b 的特例,即注金乘取胜概率,因而本质上没有超出概率这个概念的范围.惠更斯的命题将其一般化,是这个重要概念定型的决定性的一步.实际上,据惠更斯的命题不难证明:若某人在赌博中分别以概率得k a a ,,1 元,则其期望为11k k p a p a ++.这与现代概率论教科书中关于离散随机变量的期望的定义完全一致.余下的11个命题及最后的5个问题,都是在形形色色的赌博取胜约定下,去计算各方取胜的概率,其中命题4~9是关于2人和多人的分赌本问题.对这些及其他问题,惠更斯都用了现行概率论教科书中初等概率计算方法,通过列出一定的方程求解,大体上与巴斯噶的做法相似.这种方法后来被伯努利称为“惠更斯的分析方法”.最后5个问题较难一些,其解法的技巧性也较强.现举其一为例:A ,B 二人约定按ABBAABBAABB …掷两颗骰子,即A 先掷一次,然后从B 开始轮流各掷两次.若A 掷出和为6点,则A 胜;若B 掷出和为7点,则B 胜.求A ,B 获胜的概率.A 在一次投掷时掷出和为6的概率36/5=A p ,而B 在一次投掷时掷出和为7的概率6/136/6==B p .记B B A A p q p q -=-=1,1,又记i e 为在第1i -次投掷完时A ,B 都未取胜,求在这一条件下A 最终取胜的概率.利用全概率公式,并注意到约定的投掷次序,可以列出方程组:14433221,,,e q p e e q e e q e e q p e A A B B A A +===+=.由此容易得出略小于1/2.故此赌法对A 不利.机遇博弈在概率概念的产生及其运算规则的建立中,起了主导的作用.这一点不应当使人感到奇怪:虽说机遇无时不在,但要精确到数量上去考虑,在几百年前那种科学水平之下,只有在像掷骰子这类很简单的情况下才有可能.但这门学科建立后,既脱离赌博的范围又找到了多方面的应用.这也是一个有趣的例子,表明一种看似无益的活动(如赌博),可以产生对人类文明极有价值的副产物.把概率论由局限于对赌博机遇的讨论拓展出去的转折点和标志,应是1713年伯努利划时代著作《推测术》的出版,是在惠更斯的《机遇的规律》出版后56年.惠更斯这一著作,内容基本上限于掷骰子等赌博中出现各种情况的概率的计算,而伯努利这本著作不仅对以前的成果作了总结和发挥,更提出了“大数定律”这个无论从理论和应用角度看都有着根本重要性的命题,可以说其影响一直到今日而不衰.其对数理统计学的发展也有不可估量的影响,许多统计方法和理论都是建立在大数定律的基础上.有的概率史家认为,这本著作的出版,标志着概率概念漫长的形成过程的终结与数学概率论的开端.假定有一个事件A ,根据某种理论,我们算出其概率为p A P =)(.这理论是否正确呢?一个检验的方法就是通过实际观察,看其结果与此理论的推论——p A P =)(是否符合.或者,一开始我们根本就不知道)(A P 等于多少,而希望通过实际观察去估计其值.这些包含了数理统计学中两类重要问题——检验与估计.这个检验与估计概率p 的问题,是数理统计学中最常见、最基本的两个问题.要构造具体例子,最方便的做法是使用古典概率模型.拿一个缸子,里面装有大小、质地一样的球b a +个,其中白球a 个,黑球b 个.这时,随机从缸中抽出一球(意指各球有同等可能被抽出),则“抽出之球为白球”这事件A 有概率)/(b a a p +=.如果不知道a ,b 的比值,则p 也不知道.但我们可以反复从此缸内抽球(每次抽出记下其颜色后再放回缸中).设抽了N 次,发现白球出现N X 次,则用N X N /去估计p .这个估计含有一定程度不确定的误差,但我们直观上会觉得,抽取次数N 愈大,误差一般会愈小.这一点如伯努利所说:“哪怕最愚笨的人,也会经由他的本能,不需他人的教诲而理解的”.但对这个命题却无人能给出一个严格的理论证明.伯努利决心着手解决这个问题,其结果导致了以他的名字命名的大数定律的发现.这个发现对概率论和数理统计学有极重大的意义.伯努利把这一研究成果写在他的著作《推测术》的第四部分中,是该著作的精华部分.由于该书在概率统计史上的重要意义,在此对伯努利其人及此书的整个面貌先做一点介绍.4. 伯努利的《推测术》伯努利1654年出生于瑞士巴塞尔.在其家族成员中,对数学各方面做出过不同程度贡献的至少有12人,在概率论方面有5人,其中杰出的除他本人外,还有其弟弟约翰与侄儿尼科拉斯.伯努利的父亲为其规划的人生道路是神职人员.但他的爱好却是数学.他对数学的贡献除概率论外,还包括微积分、微分方程和变分法等.后者包括著名的悬链线问题.他和牛顿、莱布尼兹是同时代人,并与后者有密切的通信联系,因而非常了解当时新兴的微积分学的进展,学者们认为他在这方面的贡献,是牛、莱之下的第一人.此外,他对物理学和力学也做出过贡献.他与惠更斯长期保持通信联系,仔细阅读过惠更斯的《机遇的规律》,由此引发了他对概率论的兴趣.从他与莱布尼兹的通信中,可知他写《推测术》这一著作是在他生命的最后两年.在1705年他去世时,此书尚未整理定稿.由于家族内部的问题,整理和出版遗稿的工作,迟迟未能实现.先是其遗孀因对其弟约翰的不信任,不愿把整理和出版的事委托给他,后来又拒绝了欧洲一位富有学者捐资出版的建议.最后在莱布尼兹的敦促下,才决定由其侄儿尼科拉斯来负责这件事情.尼科拉斯也是当时重要的数学家,与欧拉和莱布尼兹保持通信联系.当时尚无科学期刊,学者的通信是学术交流的一种重要方式.《推测术》一书共239页,分四个部分.第一部分(P 2~71)对《机遇的规律》一书作了详细的注解,总量比惠更斯的原书长4倍.第二部分(P 72~137)是关于排列组合的系统的论述.第三部分(P 138~209)利用前面的知识,讨论了一些使用骰子等的赌博问题.第四部分(P 210~239)是关于概率论在社会、道德和经济等领域中的应用,其中包括了该书的精华、奠定了概率史上不朽地位的,以其名字命名的“伯努利大数定律”——大数定律的名称不是出自该书,首见于泊松1837年的一篇著作中.该书若缺了这一部分,则很可能会像某些早期概率论著作那样湮没无闻,或至多作为一本一般著作被人评价.该书最后有一长为35页的附录,用与友人通信的形式讨论网球比赛中计分问题.5. 伯努利大数定律现在我们来介绍伯努利《推测术》中最重要的部分——包含了如今被称之为“伯努利大数定律”的第四部分.回到前面的缸中抽球模型:缸中有大小、质地一样的球b a +个,其中白球a 个,黑球b 个,“抽出之球为白球”的概率为p ,则有)/(b a a p +=.假设有放回地从缸中抽球N 次,记N X 为抽到白球的次数,以N X N /估计p .这种估计法现今仍是数理统计学中最基本的方法之一.此处的条件是,每次抽取时都要保证缸中b a +个球的每一个有同等机会被抽出,但这一点在实践中并不见得容易保证.例如,产生中奖号码时可能要用复杂的装置.在实际工作中,统计学家有时用一种叫做“随机数表”的工具.这是一本很厚的书,各页按行、列排列着数字9,,2,1,0 ,它们是用据说是“充分随机”的方法产生的.在使用时,“随机地”翻到一页并随机地点到一个位置,以此处的数字确定抽出的对象.伯努利企图证明的是:用N X N /估计p 可以达到事实上的确定性——他称为道德确定性.其确切含义是:任意给定两个数0>ε和0>η,总可以取足够大的抽样次数N ,使事件{}ε>-|)/(|p N X N 的概率不超过η.这意思就很显然:ε>-|)/(|p N X N 表明估计误差未达到指定的接近程度ε,但这种情况发生的可能性可以“随心所欲地小”(代价是加大N ).为忠实于伯努利的表达形式,应指出两点:一是伯努利把ε限定于1)(-+b a ,虽然其证明对一般ε也有效.但他做这一模型限定与所用缸子模型的特殊性有关:必要时把缸中的白、黑球分别改为ra 和rb 个,则p 不变,1)(-+b a 改为1)(-+rb ra ,只须取r 足够大,便可使1)(-+rb ra 任意小.二是伯努利欲证明的是:对任给的0>c ,只要抽取次数足够大,就可使⎭⎬⎫⎩⎨⎧>->⎭⎬⎫⎩⎨⎧≤-εεp N X cP p N X P N N . (5)这与前面所说是一回事.因为由上式得.11c p N X P N +<⎭⎬⎫⎩⎨⎧>-ε (6)取c 充分大,可使(6)式右边小于η.另外要指出的是:伯努利使用的这个缸子模型使被估计的p 值只能取有理数,因而有损于结果的普遍性.但其证明对任意的p 成立,故这一细节并不重要.伯努利上述对事实上确定性数学的理解,即(5)式,有一个很值得赞赏的地方,即他在概率论的发展刚刚起步的阶段,就给出了问题的一个适当的提法.因为,既然我们欲证明的是当N 充分大时,N X N /和p 可以任意接近,则一个看来更直截了当的提法是,lim p N X N N =∞→ (7)而这不可能实现.因为原则上不能排除“每次抽到白球”的可能性,这时N X N /总为1,不能收敛到1<p .或者退一步:要求(7)式成立的概率为1,这一结论是对的,但直到1909年才由波莱尔给予证明,证明的难度比伯努利的提法大得多.设想一下,如果当时伯努利就采用该提法,他也许在有生之年不能完成这一工作.由于波莱尔的结论比伯努利的结论强,现今人们又把他们的结论分别称之为强大数定律和弱大数定律.6. 泊松公式、泊松分布与泊松大数定律泊松(Possion )的名字对学概率论与数理统计的人来说,可谓耳熟能详.原因主要在于泊松近似公式,以及更重要的是源于该近似公式的泊松分布,泊松分布的重要性和知名度在离散型分布中仅次于二项分布.泊松的另一个重要工作是把伯努利大数定律推广到每次试验中事件发生的概率可以不同的情况,现称泊松大数定律.继狄莫佛给出二项概率近似计算公式(10)之后,丹尼尔和拉普拉斯也给出了二项概率近似计算公式,但这些公式在现今的教科书上已很少提及,只有泊松近似公式则不然,其形式为,!),,(lim k e k p N b k N λλ-∞→= (11)其中Np N ∞→=lim λ,N k ,,2,1,0 =.公式(11)在教科书上通称为泊松逼近公式、泊松近似公式或泊松公式.它是泊松在1838年于《概率在法律审判的应用》一书中所引进,此公式适用于p 很小,N 很大而Np 又不很大时,这正好填补了狄莫佛公式(10)的不足,因后者只适用于p 不太接近于0和1的时候.不过,从历史上看,狄莫佛早在1712年已做出了这个结果.7. 贝叶斯及其传世之作托马斯•贝叶斯(Thomas Bayes,1701-1761)在18世纪上半叶的欧洲学术界,恐怕不能不算是一个很知名的人物.在他生前,没有发表过任何的科学论著.那时,学者之间的私人通信,是传播和交流科学成果的一种重要方式.许多这类信件得以保存下来并发表传世,而成为科学史上的重要文献,例如,前面提到的费尔马和巴斯噶的通信、伯努利与莱布尼兹的通信等.但对贝叶斯来说,这方面材料也不多.在他生前,除在1755年有一封致约翰•康顿的信(其中讨论了辛普森有关误差理论的工作)外,历史上没有记载他与当时的学术界有何重要的交往.但他曾在1742年当选为英国皇家学会会员(相当于科学院院士),因而可以想到,他必定曾以某种方式表现出其学术造诣而被当时的学术界所承认.如今,我们对这个生性孤僻、哲学气味重于数学气味的学术怪杰的了解,是因他的一篇题为“An essay towards solving a problem in the doctrine of chance(机遇理论中一个问题的解)”的遗作.此文发表后很长一个时期在学术界没有引起什么反响,但到20世纪以来突然受到人们的重视,成为贝叶斯学派的奠基石.1958年,国际权威性的统计杂志《Biometrika》(生物计量)重新刊载了这篇文章.此文也有中译本(见廖文等译《贝叶斯统计学——原理、模型及应用》的附录4,中国统计出版社1992年版).此文是他的两篇遗作之一,首次发表于1764年伦敦皇家学会的刊物《Philosophical Transactions》上.此文在贝叶斯生前已写就,为何当时未交付发表,后来的学者有些猜测,但均不足定论.据文献记载,在他逝世之前4个月,他在一封遗书中将此文及100英镑托付给一个叫普莱斯的学者,而贝叶斯当时对此人在何处也不了然.所幸的是,后来普莱斯在贝叶斯的文件中发现了这篇文章,他于1763年12月23日在皇家学会上宣读了此文,并在次年得以发表.发表时普莱斯为此文写了一个有实质内容的前言和附录.据普莱斯说,贝叶斯自己也准备了一个前言.这使人们无法确切区分:哪些思想属于贝叶斯本人,哪些又是普莱斯所附加的.贝叶斯写作此文的动机,说法也不一.一种表面上看来显然的说法是为了解决伯努利和狄莫佛未能解决的、二项分布概率p的“逆概率”问题,因为当时距这两位学者的工作发表后尚不久,有人认为他是受了辛普森误差工作的触动,想为这种问题的处理提供一种新的思想.还有人主张,贝叶斯写作此文,是为了给“第一推动力”的存在提供一个数学证明.这些说法现在都无从考证.上面提到“逆概率”这个名词.在较早的统计学著作中这个名词用得较多,现在已逐渐淡出.顾名思义,它是指“求概率这个问题的逆问题”:已知事件的概率为p,可由之计算某种观察结果出现的概率如何.反过来,给定了观察结果,问由之可以对概率p做出何种推断.推广到极处可以说,“正概率”是由原因推结果,是概率论;“逆概率”是由结果推原因,是数理统计.8. 拉普拉斯的“不充分推理原则”贝叶斯的遗作发表后很长一段时期,都没有得到学术界的注意,因而他的这种思想未能及早地发展成为一种得到广泛应用的统计推断方法.但是,也有些学者独立地朝这个方向思考,提出类似的思想并付诸实用,其中最重要的当属拉普拉斯.拉普拉斯在1774年的一篇文章中提出了所谓的“不充分推理原则”(principle of insufficient reasoning ).他的思想大致如下:如果一个问题中存在若干个不同的原因(cause) n A A A ,,,21 ,则在没有理由认为其中哪一个特别有优势时,概率应各取n /1,即认为各原因有同等机会出现.在统计问题中,这里所说的不同“cause ”n A A A ,,,21 可看作代表未知参数的不同的可能值.以E 记在这原因下可能产生的事件(例如,在某参数值之下观察到的样本),拉普拉斯提出:)|(/)|(i i A E P E A P 与i 无关. (12)用现今熟知的概率论知识很容易证明(12),但拉普拉斯在其文章中用了一个很复杂的证法.拉普拉斯的原则(12)可用于由)|(i A E P 推)|(E A P i ,这与贝叶斯的原则完全一样,也并未超出贝叶斯思想的范围.因此,现在统计学史上也把拉普拉斯视为贝叶斯统计的一个奠基者.9. 勒让德发明最小二乘法勒让德是法国大数学家,在数学的许多领域,包括椭圆、积分、数论和几何等方面,都有重大的贡献.最小二乘法最先出现在他于1805年发表的一本题为《计算彗星轨道的新方法》著作的附录中,该附录占据了这本长达80页著作的最后9页.勒让德在这本书前面几十页关于彗星轨道计算的讨论中没有使用最小二乘法,可见在他刚开始写作时,这一方法尚未在他头脑中成形.历史资料还表明,勒让德在参加测量巴黎子午线长这项工作很久以后还未发现这个方法.考虑到此书发表于1805年且该法出现在书尾的附录中,可以推测他发现这个方法应当在1805年或之前不久的某个时间.勒让德在该书72~75页描述了最小二乘法的思想、具体做法及方法的优点.他提到:使误差平方和达到最小,在各方程的误差之间建立了一种平衡,从而防止了某一极端误差(对决定参数的估计值)取得支配地位,而这有助于揭示系统的更接近真实的状态.的确,考察勒让德之前一些学者的做法,都是把立足点放在解出一个线性方程组上.这种做法对于误差在各方程之间的分布的影响如何,是不清楚的.在方法的具体操作上,勒让德指出,为实现20111()n i i ki k i x x x θθ=+++=∑最小而对各i θ求偏导数所形成的线性方程组⎪⎪⎩⎪⎪⎨⎧=====+∑∑==.,,1,,,1,0,,,,1,0110k j k r x x s k j s n i ji ri rj kr j r rj θθ (13)只涉及简单的加、乘运算,至于解线性方程组,这是当时已知的其他方法也难免的.现今我们把(13)叫做正则方程组,这是后来高斯引进的称呼.关于最小二乘法的优点,勒让德指出了以下几条:第一,通常的算术平均值是其一特例.第二,如果观察值全部严格符合某一线性方程,则这个方程必是最小二乘法的解.第三,如果在事后打算弃置某些观察值不用或增加新的观察值,对正则方程组的修改易于完成.从现在的观点看,这方法只涉及解线性方程组是其最重要的优点之一(其他的重要优点包括此法在统计推断上的一些优良性质,以及其广泛的适用性).近年发展起来的,从最小二乘法衍生出的其他一些方法,尽管在理论上有其优点,可是由于计算上的困难而影响了其应用.最小二乘法在19世纪初发明后,很快得到了欧洲一些国家的天文和地测学工作者的广泛使用.据不完全统计,自1805年至1864年的60年期间,有关这一方法的研究论文约250篇,一些百科全书,包括1837年出版的《不列颠百科全书》(第7版),都收进了有关这个方法的介绍.在研究论文中,有一些是关于。
有趣的概率问题

有趣的概率问题
概率是数学中的一个分支,它研究的是随机事件发生的可能性。
在日常生活中,我们会遇到很多有趣的概率问题,下面就介绍一些常见的概率问题:
1、掷骰子问题:如果我们掷一个六面骰子,那么每个数字出现的概率是相等的,即1/6。
那么如果我们掷两个骰子,两个骰子点数之和为7的概率是多少呢?答案是1/6,因为掷两个骰子,总共有36种可能的结果,其中只有6种结果是点数之和为7的,所以概率为
6/36=1/6。
2、生日问题:如果一个房间里有23个人,那么至少有两个人生日相同的概率是多少呢?答案是50.7%。
这个问题的解法比较复杂,需要用到排列组合的知识,有兴趣的读者可以自行搜索。
3、扑克牌问题:如果我们从一副扑克牌中随机抽取5张牌,那么这5张牌中有至少一张红桃的概率是多少呢?答案是52.5%。
这个问题的解法也比较复杂,需要用到加法原理和减法原理,有兴趣的读者可以自行搜索。
以上只是一些常见的概率问题,实际上概率问题的种类非常多,而且很多问题的解法都比较复杂,需要用到高等数学知识。
但是对于日常生活中的一些简单问题,我们可以通过简单的计算和推理来得到答案,这不仅可以锻炼我们的数学能力,还可以让我们更好地理解概率的应用。
- 1 -。
概率论中几个有趣的例子

概率论中几个有趣的例子概率论中几个有趣的例子转载】概率论中几个有趣的例子[ 2021-6-3 13:06:00 | By: Byron ]作者: ni1985 (妮子||从东方席地卷来一团野火), 原发新水木Mathematics已经酝酿很长时间的本文终于出场了。
写本文的主要目的:1 很多人看了我前面大量的历史日志后,对我的数学水平产生了怀疑;2 有高中的校友师妹咨询关于大学数学学习的问题;3 概率论是数学中一个重要而美的分支,可惜多数同学尚没有机会看到其冰山一角。
本文的读者适用范围:最低标准是学过工科专业的高等数学和概率论,最高标准不清楚(也许水平比我高的人就不屑于读了)当我跟皇上提到要写这篇文章的想法时,我提到:试图用比较短的篇幅让只要有初等概率论基础的人,也能看懂,从而对较深的概率论的研究对象和有趣的结论有一个初步的了解,激发其进一步深入学习概率论的兴趣。
皇上说:那可不容易,相当于一个毕业设计了。
我觉得,确实如此,本文是基本失败还是基本成功,还要看读者的评价。
要想引入本文的内容,首先从数学美的定义说起。
关于数学美,我比较欣赏的有两种观点,一是Birkhoff 的观点,数学美=逻辑的复杂程度/表述的复杂程度;二是Von Neumann的观点,数学的活力依赖于与它有联系的科学分支的多寡与分支的活力。
也许做应用的人更喜欢后者,但我是比较喜欢前者的。
因此,我下面的主要内容就是介绍一些概率论中的基本例子,这些例子的表述是相当简单的,但得到这些例子的手段却比较复杂。
我将试图把每个例子表述清楚,让只要有初等概率论基础的读者就知道在说什么,但对得到这些结果的证明过程则一律省略,只简要提出涉及的基本工具,但其中有些比较简单的细节会给大家留为习题。
这些例子一律来自伟大的Durrett 的著作:Probability theory and examples——我认为最优秀的概率论教材。
例1. Coupon collector问题:X1,X2,…是独立同分布,均匀的取自集合{1,…,n}的随机变量序列。
日常生活中概率论的例子

日常生活中概率论的例子
1. 你知道吗,彩票就是日常生活中概率论的一个典型例子呀!每次买彩票的时候,我们都在赌那微乎其微的中奖概率,那种期待和紧张的心情,哎呀,真的是难以言喻!就好像在黑暗中寻找那一丝光芒一样。
2. 还有啊,天气预报其实也运用了概率论呢!它说今天有 80%的概率会下雨,这不就是在告诉我们有比较大的可能要带伞嘛!我们可不就根据这个来决定要不要带伞出门,这多重要呀!
3. 咱去超市抽奖也是一样的道理呀!你抽到大奖的概率可能很小很小,但还是会满心期待呢,万一自己就是那个幸运儿呢?这就跟从一堆糖果里找到那颗特别口味的一样,不试试咋知道呢!
4. 打篮球比赛的时候,投进三分球也有概率的问题呢!有时候手感好,那进三分球的概率就感觉大大增加了,这难道不是很神奇嘛!就好像突然有了魔力一样。
5. 考试蒙对题不也是概率论嘛!有时候瞎蒙也能蒙对,那可真是让人惊喜呀!但可不能完全靠蒙哦,还是要好好学呀!
6. 等公交车的时候,等很久都不来,这也是概率在作祟呀!有时候运气好,一出门车就来了,有时候就得等好久好久,真让人无奈呀!
总之,概率论在我们日常生活中无处不在呀,就像一个调皮的小精灵,一会儿给我们惊喜,一会儿让我们无奈,真是有意思极了!。
有关概率的趣味小故事

《有关概率的趣味小故事》嘿,朋友!今天来给你讲几个有关概率的趣味小故事,可有意思啦。
有这么一个事儿,有个小镇上举办抽奖活动。
一等奖是一辆超级酷炫的汽车。
好多人都去参加,那场面可热闹了。
有个小伙子也去凑凑热闹,他心里想着,说不定自己运气好,能把汽车开回家呢。
抽奖开始了,大家都紧张得不行。
这个小伙子也在心里默默祈祷。
结果呢,他没中一等奖,不过也别灰心嘛。
这抽奖啊,概率可不大,那么多人参加,能中一等奖的那可真是幸运儿。
就像在大海里捞针一样难。
但是呢,大家还是愿意去试试,为啥?因为有那个万一呀,万一自己就是那个幸运的人呢。
还有一个故事。
有个学校要选学生代表去参加一个重要的活动。
从全校学生里选,每个班都有机会。
有个班级的同学们都很期待,大家都觉得自己有可能被选上。
这就像玩游戏,不知道幸运会降临到谁头上。
其实啊,这也是个概率问题。
全校那么多学生,能被选上的毕竟是少数。
但是大家还是充满希望,都在努力表现自己,说不定自己就是那个幸运的代表呢。
最后,虽然不是每个人都能被选上,但是大家在这个过程中也学到了很多,变得更加优秀了。
再讲一个。
有个老爷爷喜欢买彩票,他每周都去买。
他的家人就说他,别浪费钱啦,哪有那么容易中奖。
老爷爷可不这么想,他觉得自己总有一天会中奖的。
虽然中奖的概率很低,但是他享受这个期待的过程。
有一次,老爷爷真的中了个小奖,高兴得像个孩子一样。
这概率啊,有时候就是这么神奇,说不定什么时候就给你一个惊喜。
你看,概率这东西,在我们生活中到处都有。
有时候它让我们充满期待,有时候又让我们有点小失落。
但是不管怎样,这些小故事都让我们感受到了生活的趣味。
浅谈生活中有趣的数学概率问题

浅谈生活中有趣的数学概率问题作者:付强来源:《试题与研究·教学论坛》2012年第12期所谓概率,通俗点说就是有多大的可能性。
生活中这类实例是很多的,让我们先举一个简单的例子:投一枚正反两面的硬币,结果正面向上的概率是多少?不用计算就能知道,这种可能性为一半,也就是说其概率为1[]2。
当然,即便生活中的概率问题也不都是这么简单,对于较复杂点的就需要我们动动脑筋了。
下面就让我们一起来看一看现实生活中有趣的几类问题吧!一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。
买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。
如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。
很简单,只要花2元的人民币,就可以拥有这么一次尝试的机会,试一下自己的运气。
但一张彩票的中奖机会有多少呢?让我们以大英帝国彩票为例来计算一下。
大英帝国彩票的规则是49选6,即在1至49的49个号码中选6个号码。
买一张彩票,你只需要选6个号、花1英镑而已。
在每一轮,有一个专门的摇奖机随机摇出6个标有数字的小球,如果6個小球的数字都被你选中了,你就获得了头等奖。
可是,当我们计算一下在49个数字中随意组合其中6个数字的方法有多少种时,我们会吓一大跳:从49个数中选6个数的组合有13983816种方法!这就是说,假如你只买了一张彩票,六个号码全对的机会是大约一千四百万分之一,这个数小得已经无法想象,大约相当于澳大利亚的任何一个普通人当上总统的机会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转载】概率论中几个有趣的例子
[ 2007-6-3 13:06:00 | By: Byron ]
推荐
作者: ni1985 (妮子||从东方席地卷来一团野火), 原发新水木Mathematics
已经酝酿很长时间的本文终于出场了。
写本文的主要目的:1 很多人看了我前面大量的历史日志后,对我的数学水平产生了怀疑;2 有高中的校友师妹咨询关于大学数学学习的问题;3 概率论是数学中一个重要而美的分支,可惜多数同学尚没有机会看到其冰山一角。
本文的读者适用范围:最低标准是学过工科专业的高等数学和概率论,最高标准不清楚(也许水平比我高的人就不屑于读了)
当我跟皇上提到要写这篇文章的想法时,我提到:试图用比较短的篇幅让只要有初等概率论基础的人,也能看懂,从而对较深的概率论的研究对象和有趣的结论有一个初步的了解,激发其进一步深入学习概率论的兴趣。
皇上说:那可不容易,相当于一个毕业设计了。
我觉得,确实如此,本文是基本失败还是基本成功,还要看读者的评价。
要想引入本文的内容,首先从数学美的定义说起。
关于数学美,我比较欣赏的有两种观点,一是Birkhoff 的观点,数学美=逻辑的复杂程度/表述的复杂程度;二是Von Neumann的观点,数学的活力依赖于与它有联系的科学分支的多寡与分支的活力。
也许做应用的人更喜欢后者,但我是比较喜欢前者的。
因此,我下面的主要内容就是介绍一些概率论中的基本例子,这些例子的表述是相当简单的,但得到这些例子的手段却比较复杂。
我将试图把每个例子表述清楚,让只要有初等概率论基础的读者就知道在说什么,但对得到这些结果的证明过程则一律省略,只简要提出涉及的基本工具,但其中有些比较简单的细节会给大家留为习题。
这些例子一律来自伟大的Durrett的著作:Probability theory and examples——我认为最优秀的概率论教材。
例1. Coupon collector问题:X1,X2,…是独立同分布,均匀的取自集合{1,…,n}的随机变量序列。
大家把集合{1,…,n}想象为若干张扑克牌,每次我们等概率的取一张扑克牌,取完放回。
,意思就是手中取过k种不同的扑克牌所需的次数。
T(n) =t(n,n)表示取过所有扑克牌所需的次数。
X(n,k)=t(n,k)-t(n,k-1),则X(n,k)服从参数是1-(k-1)/n的几何分布(思考题!),它的期望和方差可求,且容易发现X(n,1),…,X(n,n)相互独立,从而可以求出E
T(n),Var T(n)(习题!)。
且去证明依概率趋近于0.(数学基础稍微深一些的同学都知道,L2收敛蕴含依概率收敛)最终得到一个漂亮的结论:
依概率收敛于1.
数学基础比较少的同学可以直接看这一行,我把这一行的实际意义说清楚:就是假设我们要收集的邮票有n张,而每次别人给我们提供的邮票恰恰是等概率的,那么要想把n张收集全,需要的时间依概率趋近于nlogn。
所以大家就可以发现,为什么我们想集齐比较少的邮票要比集齐多的邮票容易的多。
作为更为深层次的读者,我要说的是,在随机变量收敛性问题的研究中,独立性和矩总是常见的关注对象。
为什么我们非常喜欢方差这个概念呢?我想一个重要的性质就是:对于独立的随机变量,方差对和有分配律。
于是二阶中心矩才会成为最重要的矩。
通过对矩的估计把随机变量的收敛性问题,转化为实数序列的收敛性问题,最后完全是数学分析的东西,这种手段是屡屡使用的。
例2 非对称的简单随机游动问题:独立同分布,,
, .
对于数学基础不太好的同学,我简单介绍一下这个问题的背景,其实很好理解。
设有一个点在0时刻位于实轴的原点0处,它在每个时刻以概率p向右跳跃一个单位长度,以概率q向左跳跃一个单位长度,且跳
跃的方向与以前每次跳跃的情况是独立的。
表示的是:n时刻这个点所在的位置。
我们有如下非常精彩的结论:
1 , 的直观意思就是,这个点首次跳到x的位置的时刻。
那么对于任意
的,这里函数。
上面的这个等式的直观意义:a是负半轴上一点,b是正半轴上一点,点没到b之前先到a的概率被计算了出来。
得到这个结论最快的方法就是用鞅论。
鞅实在是一个漂亮的东西,而它的漂亮之处就在于它与停时结合在
一起后的巨大威力。
用N表示和中的较小值,则N是停时。
首先要说明的是N小于无穷大。
要得到这个结论,我掌握的有三种方法:
(1)通过EN小于无穷大,得到这个结论,这事实上是通过一个强的多的结论说明的,具体见Durrett书181页。
(2)通过鞅收敛定理,见Durrett书275页。
其中用了一个重要结论:一致有界的鞅序列必然一致可积(应该是很显然的吧,呵呵)。
(3)通过马氏链的性质:对于一个有可列状态,不可约的马氏链,用F表示状态空间的一个有限子集,设初始状态属于F,用T表示链首次离开F的时间,则一定有T小于无穷大。
(可以作为本科生三年级应用随机过程的习题,证之!)
2 即首次到达b点的平均时间是。
处理方法还是用鞅论,这里不再多说。
关于用鞅论解决马氏链问题的例子,我还推荐数学基础比较高的同学阅读Durrett书上的(1)M/G/1排队(282页,298页,309页)(2)生灭过程(295页,301页)
本来我认为这两个例子是更加漂亮的,但考虑到数学基础一般的同学的阅读水平,就不写了。
例3 遍历定理的一个应用(Benford定律)
首先提一个问题:随机选取一个正整数,它的第一位数字是1 的概率是多少?
很多同学会武断的回答:1/9.
可是你忘记了问我一个问题:你是如何随机选取的?
也许你会说:这还用问?就是等概率的选取呗。
可是不要忘记,对于可列状态的状态空间,不存在一个概率测度,使得它在任意两个单点集上的概率相同!(思考题!)
其实一个直观的想法是:我们考虑前n个正整数中(均匀分布是可能的),首位数字是1的概率记为f(n),然后把f(n)的极限作为我上面所提问题的答案。
可是随后会不幸的发现,极限是不存在的!
于是作为习题,设前n个正整数中,首位数字是1的概率记为,则的上极限是5/9,下极限
是1/9,且对于任意属于区间[1/9,5/9]的实数a,都存在的子序列,它的极限就是a。
类似的,记
前n个正整数中,首位数字是2的概率是,其上极限是10/27,下极限是1/18.(作为数学分析的习题!)
但是,当我们转而思考这样的等比序列,1,2,4,8,16,…记这个序列的前n项中首位数字是1的概率
为,则是有极限的,且极限是.一般地,对于任意一个非10的整数次幂的正整数q,
考虑以1为首项,以q为公比的等比数列,它的前n项中首位数字是k的概率为,则的极
限是. (证明不可能在这里给出了,大家只管从结论中去欣赏概率论之美吧!)
这个结论是非常漂亮的!叙述是非常简单的,意义是非常直观的,但并不是容易猜到的,证明所需的背景——遍历定理又是极其深刻的。
读来畅快淋漓!
今年春天,陈大岳教授(陈大岳教授的书目和学习指南)对我说,在现代概率论的研究中,遍历定理显现
的越发重要。
当看到上面这个结论后,我初步认识到遍历定理内涵的深刻和丰富。
以上仅选取三个概率论的基本例子,它们的结论的直观易懂与其所需理论背景的负责程度形成了鲜明的对比,体现了概率论作为一个数学分支的美妙。
管中窥豹,可见一斑,希望能以此激发大家深入学习概率论的兴趣,使不同数学基础的同学都能有所收获。