异质化磁性纳米粒子可控制备与生物活性研究
磁性纳米粒子固定化酶技术研究进展

磁性纳米粒子固定化酶技术研究进展陈静;冷鹃;杨喜爱;廖丽萍;肖爱平;刘亮亮【摘要】磁性纳米粒子因兼具磁学特性和纳米材料独特性能,被广泛应用于各个领域.就磁性纳米粒子的种类、特性、制备和表面修饰四个方面展开介绍,综述了脂肪酶、漆酶、淀粉酶及其复合酶等生物酶固定化酶技术的最新研究动态,针对磁性纳米粒子在固定化酶技术的研究应用现状进行了总结,以期为磁性纳米粒子固定化酶技术的应用研究提供参考.【期刊名称】《生物技术进展》【年(卷),期】2017(007)004【总页数】6页(P284-289)【关键词】磁性纳米粒子;脂肪酶;漆酶;淀粉酶;固定化酶【作者】陈静;冷鹃;杨喜爱;廖丽萍;肖爱平;刘亮亮【作者单位】中国农业科学院麻类研究所,长沙410205;中国农业科学院麻类研究所,长沙410205;中国农业科学院麻类研究所,长沙410205;中国农业科学院麻类研究所,长沙410205;中国农业科学院麻类研究所,长沙410205;中国农业科学院麻类研究所,长沙410205【正文语种】中文酶是具有生物催化功能的高分子物质,具有高效性、专一性、反应条件温和、无污染等特点[1],在食品加工、药学和医学等研究领域中有着巨大的应用潜力。
然而,大多数酶是蛋白质,其活性易受温度、pH等因素影响,且与底物产物的混合物不利于其回收,难以实现产物的分离纯化和连续化生产[2]。
20世纪60年代迅速发展起来的固定化酶技术很好的解决了这些问题,有效提高了酶的利用率,并实现了产业化发展。
其中,酶的固定载体和技术研究一直是酶固定化研究的核心问题,重点是寻找新的载体,确保固定后的酶保持其催化活性、催化特性和稳定性,同时,可实现高负载量和复合酶链式反应[3]。
近几年,新型载体和技术有:交联酶聚集体[4]、“点击”化学技术[5]、多孔支持物[6]和以纳米粒子为基础的酶的固定化[7]等。
纳米粒子作为酶固定化的新型载体,具有良好的生物相容性、比表面积大、颗粒直径小、较小的扩散限制、较高的载酶量及在溶液中稳定存在等优点[8]。
AgBr纳米粒子的制备及其光催化性能的研究

AgBr纳米粒子的制备及其光催化性能的研究徐瑶【摘要】通过简单的沉淀法,加入适量浓度的表面活性剂十六烷基三甲基溴化铵(CTAB)制备纳米AgBr粒子.利用XRD、SEM表征手段证明了所制得的纳米粒子纯度高、粒径小、尺寸分布窄、稳定性好.通过UV-Vis表征可以知道,沉淀法制备的纳米粒子吸收波长范围可至可见光区域.在以紫外光及自然光(太阳光)为光源的条件下,经过60 min的光催化降解反应,甲基橙(MO)的降解率可达到96%以上.与纳米二氧化钛粒子和纳米氧化锌粒子光催化性能相比,纳米溴化银不仅催化效率更高,而且在自然光照的条件下仍然可以保持很好的光催化性能.【期刊名称】《山西化工》【年(卷),期】2013(033)003【总页数】4页(P1-4)【关键词】纳米AgBr粒子;光催化性能;甲基橙;紫外光;自然光【作者】徐瑶【作者单位】西安精典石化科技有限公司,陕西西安710086【正文语种】中文【中图分类】TB383近些年来,利用半导体材料作为光催化剂氧化降解污水中有机物的方法日益受到关注[1]。
由于传统的二氧化钛光催化剂只限于对紫外光的吸收[2],对于可见光区的光并没有吸收,所以不能充分利用自然光。
另外,二氧化钛的光谱响应范围较窄、量子效率低等也限制了其进一步的发展[3]。
AgBr 不但是一种重要的光信息记录材料,而且具有非常优异的光催化性能。
AgBr 在可见光区有吸收,可以充分利用自然光来节省资源。
因此,AgBr 作为一类非常重要的半导体光催化剂有着广阔的应用前景[4-5]。
染料废水色度高﹑毒性大﹑可生化性差,是较难处理的工业废水之一[6]。
AgBr 在光照的条件下能使水分解产生高活性的羟基自由基[7],可加快环境中有机污染物的降解。
纳米AgBr 的合成方法有很多,Joo Hwan Koh等[8]采用原位修饰法制备出了AgBr 纳米粒子;Ming Yang 等[9]以存在明胶中的AgCl 为前躯体制得了多孔球形AgBr 纳米粒子;Maen Husein[10]和Monnoyer 等[11]分别在不同的微乳液体系中合成了均一的AgBr 纳米粒子;李国平等[1]利用PAMAM 树形分子模板法制备出AgBr 纳米簇。
磁场调控纳米生物催化的研究进展与生物医学应用

磁场调控纳米生物催化的研究进展与生物医学应用1. 磁场调控纳米生物催化的研究进展随着科学技术的不断发展,磁场调控纳米生物催化在生物医学领域具有广泛的应用前景。
研究人员在这一领域取得了一系列重要的研究成果,为磁场调控纳米生物催化的应用奠定了基础。
研究人员通过调控纳米材料的形貌、结构和表面性质,实现了对纳米生物催化剂性能的有效控制。
通过改变纳米材料中金属离子的种类和比例,可以调控其磁性、电导率等物理性质,从而影响纳米生物催化剂的催化活性。
通过表面修饰、功能化等手段,还可以实现对纳米生物催化剂表面活性位点的精确调控,进一步提高其催化性能。
研究人员发现磁场对纳米生物催化剂的催化活性具有显著的影响。
磁场可以通过改变纳米材料中的电子状态和运动轨迹,促进反应物分子之间的相互作用,提高反应速率和选择性。
磁场还可以通过调节纳米生物催化剂的结构和形态,实现对反应过程的精确控制。
研究人员将磁场调控纳米生物催化技术应用于实际的生物医学应用领域。
在癌症治疗中,研究人员利用磁场调控纳米生物催化剂的高活性和低毒性特点,开发了一种新型的靶向药物递送系统,有望实现对肿瘤细胞的高效杀灭和治疗效果的提高。
在环境保护领域,磁场调控纳米生物催化剂也被用于水体污染物的高效降解,为解决环境污染问题提供了新的思路。
磁场调控纳米生物催化的研究已经取得了一系列重要的成果,为未来在这一领域的深入研究和实际应用奠定了基础。
目前这一领域的研究仍存在许多挑战,如如何进一步提高纳米生物催化剂的催化活性和稳定性,以及如何将磁场调控技术应用于更广泛的生物医学应用场景等问题。
未来需要进一步加大研究力度,以期在磁场调控纳米生物催化领域取得更多的突破。
1.1 磁场对纳米颗粒的影响磁场是影响纳米颗粒行为和性能的重要因素之一,在纳米生物催化领域,磁场调控具有广泛的应用前景。
本文将介绍磁场对纳米颗粒的影响,并探讨其在生物医学领域的潜在应用。
磁场可以影响纳米颗粒的形态和大小,通过改变磁场强度、方向和时间,可以实现对纳米颗粒的精确调控。
纳米材料的特性及应用

纳米材料的特性及应用摘要系统阐述了纳米材料的特性,并重点介绍了纳米材料在陶瓷领域,医学上,皮革制品上,环境保护等方面的应用。
并对纳米材料未来的应用前景进行了展望。
关键词:纳米材料特性应用前言纳米,是一个物理学上的度量单位,1纳米是1米的十亿分之一,相当于万分之一头发丝粗细。
当物质到纳米尺度以后,大约是在1-100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。
这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料即为纳米材料[1]。
纳米材料处在原子簇和宏观物体交界的过渡区域,既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,即接近于分子或原子的临界状态。
在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。
纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。
纳米相材料跟普通的金属、陶瓷,和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
由于纳米材料从根本上改变了材料的结构,使得它成为当今新材料研究领域最富有活力、对未来经济和社会发展有着十分重要影响的研究对象[2]。
近年来,纳米材料取得了引人注目的成就。
例如,存储密度达到每平方厘米400G的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世[3]。
充分显示了纳米材料在高技术领域应用的巨大应用潜力。
纳米材料诞生多年来所取得的成就及对各个领域的影响和渗透一直引人注目。
进入90年代后,纳米材料研究的内涵不断扩大,领域逐渐拓宽。
一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。
Magneticnanoparticles磁性纳米粒子

Magneticnanoparticles磁性纳米粒子磁性纳米粒子(Magnetic Nanoparticles)是一种具有特殊物理和化学性质的纳米材料,具有广泛的应用前景。
本文将介绍磁性纳米粒子的制备方法、表征手段以及在生物医学、环境治理和能源等领域的应用。
1. 制备方法磁性纳米粒子的制备方法多种多样,常见的包括物理合成、化学合成和生物合成等。
物理合成方法包括热分解、溶胶-凝胶法和磁控溅射等,可以通过调节反应条件来控制粒子的尺寸和形貌。
化学合成方法主要通过溶液反应来合成纳米粒子,常见的包括共沉淀法、热分解法和水热法等。
生物合成方法则利用生物体内的酶、植物提取物等来合成纳米粒子,具有环境友好性和可再生性。
2. 表征手段对磁性纳米粒子的表征主要包括形貌结构、晶体结构、磁性能和表面性质等方面。
形貌结构可以通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)等观察到,可以了解粒子的形态、尺寸和分布情况。
晶体结构常常通过X射线衍射(XRD)来进行分析,可以确定晶体相和晶格参数。
磁性能可以通过振动样品磁强计(VSM)等仪器来测试,可以获得粒子的矫顽力、饱和磁化强度和磁导率等参数。
表面性质则常常通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等技术来研究,可以了解粒子表面的化学组成和功能基团等信息。
3. 生物医学应用磁性纳米粒子在生物医学领域具有广泛的应用前景。
一方面,磁性纳米粒子可以作为纳米载体,用于药物传递和基因传递等方面。
通过表面修饰可以增加纳米粒子与生物体内靶标的亲和性,实现靶向输送药物和基因,提高药物的疗效和减少副作用。
另一方面,磁性纳米粒子还可用于磁共振成像(MRI)和磁热疗法等诊断和治疗方面。
通过控制纳米粒子的磁性能和形貌,可以实现对肿瘤等异常组织的定位和治疗。
4. 环境治理应用磁性纳米粒子还可以在环境治理领域发挥重要作用。
一方面,磁性纳米粒子可以用于水处理和废水处理等方面。
通过表面修饰可以增加纳米粒子与污染物的亲和性,实现对重金属离子和有机污染物的吸附和去除。
超顺磁性Fe3O4磁性聚合物载药胶束的制备与磁靶向载药体系性能研究

超顺磁性Fe3O4磁性聚合物载药胶束的制备与磁靶向载药体系性能研究一、概述随着医学领域的深入发展,癌症治疗已成为当代医学面临的重大挑战之一。
尽管传统的手术、放疗和化疗等手段在一定程度上能够控制病情,但其对正常细胞的损伤以及药物的非特异性分布等问题仍亟待解决。
探索新型的、具有靶向性的药物传输体系成为了当前的研究热点。
超顺磁性Fe3O4磁性聚合物载药胶束作为一种新型的磁靶向载药体系,因其独特的磁响应性和生物相容性,在肿瘤治疗中显示出巨大的潜力。
超顺磁性Fe3O4纳米粒子,作为一种重要的磁性材料,具有优异的磁响应性能,能够在外部磁场的作用下实现定向移动。
与此其超顺磁性质使得粒子在去除外部磁场后能够迅速失去磁性,从而避免了对生物体的潜在危害。
将Fe3O4纳米粒子与聚合物载药胶束相结合,不仅可以实现药物的靶向输送,还能通过调控聚合物的性质和结构,优化药物在体内的释放行为。
本研究旨在制备具有优良磁靶向性能的超顺磁性Fe3O4磁性聚合物载药胶束,并对其性能进行深入研究。
我们将通过化学合成法制备出粒径均匀、磁性能稳定的Fe3O4纳米粒子。
利用聚合物反应合成不同分子量的嵌段聚合物,并通过适当的方法将Fe3O4纳米粒子与聚合物相结合,形成稳定的磁性聚合物载药胶束。
在此基础上,我们将进一步探讨载药胶束的制备工艺、药物释放行为以及磁靶向性能等关键问题。
通过本研究的开展,我们期望能够为磁靶向载药体系的设计和优化提供新的思路和方法,为癌症等重大疾病的治疗提供更为安全、有效的药物传输手段。
我们也期望通过本研究的成果,推动磁性纳米材料在生物医学领域的广泛应用,为人类的健康事业做出更大的贡献。
1. 介绍药物传输系统的重要性及磁靶向载药体系的研究背景在现代医学领域,药物传输系统的重要性日益凸显。
药物传输系统不仅关乎药物的治疗效果,更直接影响患者的生存质量。
一个高效、精准的药物传输系统能够确保药物准确到达病灶部位,发挥最大的治疗作用,同时减少药物在非病灶部位的分布,从而降低副作用,提高患者的生活质量。
AgIAgBrSiO2异质结纳米复合材料的制备及其光催化降解研究

AgI-AgBr/SiO2异质结纳米复合材料的制备及其光催化降解研究随着经济水平的不断发展,人们生活质量的不断提高,人们的健康意识也不断加深,追求健康的生存环境已经成为人们目标。
然而目前在治理水体中难以降解的有机污染物时通常采用的大部分光催化剂只有在紫外光下才具有催化活性,不能够有效利用自然界的大部分可见光,因此利用半导体技术制备具有可见光催化活性的光催化剂成为了目前研究的热点,本研究主要目的是研究一种利用可见光对水体中有机污染物进行降解的半导体光催化剂。
本研究以有序介孔SiO2为载体,首先用沉积-沉淀法制备AgBr/SiO2复合材料,利用AgI的溶度积比AgBr的小,采用简单的离子交换手段,用I-取代AgBr中的部分Br-即可在AgBr的表面生成AgI,构建AgI/AgBr异质结,制备AgI-AgBr/SiO2异质结构纳米复合材料,这样就将介孔SiO2与AgX有效的结合起来,形成了具有高比表面积及特殊性能的纳米复合颗粒。
Ag本身具有的光敏性能在与介孔二氧化硅复合后将得到进一步的继承甚至加强,这种具有新颖结构的无机复合材料在催化、吸附分离、光电、生物等领域具有更加广泛的应用。
国内外研究现状:有序介孔二氧化硅材料具有以下主要特征:(1)大的比表面积和孔道容量;(2)材料颗粒外形规则,且具有可控性;(3)孔道结构规则并且保持高度的有序性;(4)孔径均匀分布窄,并在一定纳米范围内(2nm~10nm)连续可调;(5)具有很好的水热稳定性[1,2]。
这些特性使其在催化、吸附脱附方面有很重要的应用,并且近几年逐渐发展成为一种良好的载体材料。
由于氧化硅材料具有无毒、原材料丰富、生物兼容性好并且制备技术成熟等优点使其成为目前研究开发的热点[3]。
各种新型的二氧化硅复合材料也不断的被研究出来,并且应用于各个领域。
AgX由于其独特的光敏性,目前已越来越多的被应用到光催化剂制备领域,通常通过沉积-沉淀法负载到各种载体上,形成各种复合型光催化剂。
《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《Fe3O4@SiO2磁性纳米颗粒的制备研究》篇一一、引言随着纳米科技的飞速发展,磁性纳米颗粒因其独特的物理和化学性质在生物医学、环境科学、材料科学等领域展现出广阔的应用前景。
其中,Fe3O4磁性纳米颗粒以其超顺磁性、生物相容性及易于表面修饰等特点备受关注。
为了进一步提高其稳定性和生物相容性,将Fe3O4磁性纳米颗粒表面包覆一层SiO2成为了一种常见的策略。
本文旨在研究Fe3O4@SiO2磁性纳米颗粒的制备方法,并探讨其制备过程中的关键因素和优化策略。
二、实验材料与方法1. 材料准备实验所需材料包括:四氧化三铁(Fe3O4)纳米颗粒、正硅酸乙酯(TEOS)、氨水、乙醇、去离子水等。
2. 制备方法(1)Fe3O4磁性纳米颗粒的合成:采用共沉淀法或热分解法合成Fe3O4磁性纳米颗粒。
(2)Fe3O4@SiO2磁性纳米颗粒的制备:在Fe3O4磁性纳米颗粒表面包覆SiO2。
具体步骤包括将Fe3O4纳米颗粒分散在乙醇中,加入TEOS和氨水,在一定温度下反应,使TEOS在Fe3O4表面水解生成SiO2。
三、实验过程与结果分析1. 实验过程(1)Fe3O4磁性纳米颗粒的合成:在室温下,将FeSO4和FeCl3按一定比例混合,加入氢氧化钠溶液,调节pH值,经过共沉淀或热分解反应得到Fe3O4磁性纳米颗粒。
(2)Fe3O4@SiO2磁性纳米颗粒的制备:将合成的Fe3O4磁性纳米颗粒分散在乙醇中,加入适量的TEOS和氨水,在一定温度下搅拌反应一段时间,使TEOS在Fe3O4表面水解生成SiO2。
通过控制反应条件,可以得到不同厚度的SiO2包覆层。
2. 结果分析(1)表征方法:采用透射电子显微镜(TEM)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对制备的Fe3O4@SiO2磁性纳米颗粒进行表征。
(2)结果分析:通过TEM观察,可以看到Fe3O4@SiO2磁性纳米颗粒具有明显的核壳结构,SiO2包覆层均匀地覆盖在Fe3O4核表面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Au
Fe3O4
CTAB TEOS
Au
Fe3O4
EDC NHS
Au
Fe3O4
QD
Silica NPs
拟解决的科学问题
❖ 1.合成哑铃状Fe3O4-Au,水溶性改性,进行PEG Polymer 修饰。进行动物实验探讨在生物体内的热光成像。
❖ 2.合成金包四氧化三铁Fe3O4@Au,包覆硅层,并在硅表 面修饰两种不同颜色的量子点,可以连接不同的抗体探讨 其对潜在编码系统的分析。
生物医学领域的应用及研究现状
★肿瘤磁热疗
通过将磁流体注射到肿瘤组织,然后在外加交变磁场的作用 下产生能量,再将产生的能量释放给肿瘤组织,由于肿瘤中 的血液供给不如正常组织充足,致使肿瘤细胞中热量扩散较 慢,结果造成局部温度升高(一般控制在42~46℃之间), 从而达到杀死肿瘤的目的。
生物医学领域的应用及研究现状
PEG Polymer修饰
CTAB TEOS QD
细胞 动物实验
实验进程
1
2
3
4
哑铃Fe3O4-Au 合成√Fra bibliotek水溶性改性
√
PEG Polymer 修饰
体外实验
实验进程
1
2
3
4
Fe3O4合成
√
包金
包硅 QD修饰 体外实验
实验进程
构像设计
No Image
Schematic illustration of the growth of Au-Fe3O4 DBNPs. NANO LETTERS 2005 Vol. 5, No. 2 379-382
★微乳液法 ★溶胶-凝胶法 ★热解法 ★水热法
生物医学领域的应用及研究现状
★靶向药物传输中的应用
磁性纳米粒子经过表面修饰而带有一定电荷或功能基团,可 与特异性抗体结合,作为药物载体用于药物的输运。磁控靶 向药物传输是将药物固定在生物相容性的磁性纳米颗粒或磁 性脂质体中,形成稳定的药物剂型,静脉注射后在外磁场的 导航下使药物通过血液循环到达并富集在病灶部位。这样既 可以减少药物的毒副作用,不杀死正常细胞,又可降低药物 用量,大大提高了药物的效率,因此被形象地称为“生物导 弹”技术。
a
b
No
Image
TEM images (a) and HRTEM images (b) of monodisperse iron oxide Nanocrystals,(a,b)9nm Published online: 28 November 2004;
doi:10.1038/nmat1251
研究背景
Thank You!
LOGO
然而,如何使生物分子高效稳定地结合到磁性纳米粒子 表面,一直是纳米生物领域面临的挑战之一。采用适合的方 法将磁性纳米粒子表面进行修饰、功能化,是实现生物分子 结合、固定负载乃至生物传感的必要前提与关键 。
试验流程
1
2
3
材料合 成
纳米粒子修 饰
体外验证
实验方案
1、合成哑铃状Fe3O4-Au磁性纳米粒子,使其即具有磁性, 又具有纳米金良好的光吸收和表面修饰活性。
Fe3O4纳米粒子的生物医用特性 ★优异磁性能
在外磁场的作用下进行磁分离和导向,靶向定位 ★悬浮稳定性
通过生物修饰在一定的生理环境下具有良好的悬浮稳定 性 ★良好生物相容性和可降解性
研究背景
Fe3O4磁性纳米材料的制备方法
★共沉淀法 原理: Fe2+ + 2Fe3+ + 80H- → Fe3O4 + 4H2O
异质化磁性纳米粒子可控制 备与生物活性研究
LOGO
报告内容
1. 研究背景 2. 生物医学领域应用及研究现状 3. 选题的目的与意义 4. 实验方案及计划
研究背景
四氧化三铁磁性纳米粒子
Fe3O4是一种最简单的铁氧体,也是世界上研究和应用 最早的一种非金属磁性材料,其分子式可以写成 FeO·Fe2O3
★磁共振成像 (MRI) 超顺磁性氧化铁及其复合物在体内的分布具有明显的特异性。 一般直径较大的粒子主要为肝、脾的网状内皮系统所摄入。而 较小的粒子则主要进入淋巴结组织及骨髓组织中。
选题的目的与意义
磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材 料所特有的性质如粒径小、比表面积大,又具有磁响应性及 超顺磁性,可以在恒定磁场下聚集和定位、在交变磁场下吸 收电磁波产热。利用这些特性磁性纳米颗粒被广泛应用于生 物标记与分离、核磁共振成像、组织修复、药物载体以及疾 病诊断与治疗等方面。
2、通过对其进行表面修饰,使其表面含有羧基和氨基,连接 PEG,增加在体内的长循环。 3、合成金包四氧化三铁纳米粒子( Fe3O4@Au ),对其进 行包硅,再在硅表面修饰两种不同颜色的量子点,提高其生 物特异性和高灵敏度,用于生物检测。
方案设计
哑铃状Fe3O4-Au
TEM XRD U-V
改性
Fe3O4@Au
本课题创新点
❖ 1.据文献查找, 哑铃状Fe3O4-Au较难控制粒径且水溶性改 性较难,本课题利用新型两亲Polymer对其进行改性。
❖ 2.对金包四氧化三铁的包硅量子点修饰体系尚无系统的探 讨。
实验进程安排
2013年7月-2013年8月 材料的合成 2013年9月-2013年10月 材料的改性 2013年10月-2013年11月 材料的修饰 生物实验 2013年11月-2014年1月 分析数据 补做实验 撰写论文 2014年2月-2014年4月 撰写论文 补做实验
HOOC Fe3O4 Au S-PEG-NH2
实验进程
构像设计
No Image
(A) Schematic illustration of surface coating of Fe3O4nanoparticles (i) with Au to form hydrophobic Fe3O4/Au nanoparticles (ii) and hydrophilic Fe3O4/Au nanoparticles (iii). 86989 J. AM. CHEM. SOC. 2007,129, 8698-8699