太阳能板蓄电池容量的计算.doc

太阳能板蓄电池容量的计算.doc
太阳能板蓄电池容量的计算.doc

太阳能电板、蓄电池的容量计算方法

蓄电池组

采用上述电池浮充供电方式时,蓄电池的性能是关键。在各种蓄电池中,性能最优者属碱性蓄电池,它的低温特性和过量充电性能较好,自动放电小,但价格较高,容量不大,一般的非密封酸性蓄电池电解液容易挥发,不宜在水情自动测报系统中使用。免维护密封酸性蓄电池具有良好的性能价格比,故目前使用较多。

根据我们长期从事水情遥测系统设计的经验,通过经费核算及考虑防雷要求,遥测站使用太阳能电池和蓄电池组合的浮充供电系统。铅酸全密封酸性蓄电池具有良好的低温特性和充电特性,而且免维护,因而遥测设备用它供电是理想的,为保证最长连续无日照期间也能供电,必须选择蓄电池的容量。在广东地区一般定为满足30天的需要。

在本系统中采用胶状电解质全密封免维护铅酸蓄电池作为系统的直流电源。可选的品牌很多,如进口产品汤浅、大力神等。

超短波测站太阳能浮充供电的蓄电池容量的计算

工作电压:12.5V

静态电流:2mA

发射电流:6A(25W电台),发射时间t=1秒

月发送时间:以月发送1200次计算,合计发送20分,则可计算出日耗电量

Q L≈日发送时间?耗电量+静态电流?24小时=0.1Ah

最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时间为30天。

容量修正系数:考虑蓄电池容量周期性的降落和它的老化,通常选为0.8。

因此蓄电池容量

C =日耗电量?最大的连续无日照时间/容量修正系数

=0.1Ah?30÷0.8

=3.75Ah

考虑到蓄电池要能提供6A的电流,应采用容量大于10Ah的蓄电池。

因此,本系统雨量遥测站(25W电台)需采用12Ah的蓄电池。

超短波水位雨量测站太阳能浮充供电的蓄电池容量的计算工作电压:12.5V

静态电流:2mA

发射电流:6A(25W电台),发射时间t=1秒

24小时发送时间:以发送300次计算,合计发送5分钟时间,则可计算出日耗电量

Q L≈日发送时间×耗电量+静态电流×24小时=0.61Ah

最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时间为30天。

容量修正系数:考虑蓄电池容量周期性的降落和它的老化,通常选为0.8。

因此蓄电池容量

C =日耗电量×最大的连续无日照时间/容量修正系数

=0.61Ah?30÷0.8

=23Ah

因此,本系统遥测站(25W电台)需用24Ah的蓄电池。

超短波双水位测站太阳能浮充供电的蓄电池容量的计算工作电压:12.5V

静态电流:2mA

发射电流:6A(25W电台),发射时间t=1秒

24小时发送时间:以发送600次计算,合计发送10分钟时间,则可计算出日耗电量

Q L≈日发送时间×耗电量+静态电流×24小时=1.048Ah

最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时间为30天。

容量修正系数:考虑蓄电池容量周期性的降落和它的老化,通常选为0.8。

因此蓄电池容量

C =日耗电量×最大的连续无日照时间/容量修正系数

=1.048Ah?30÷0.8

=39.3Ah

因此,本系统遥测站(25W电台)需用38Ah的蓄电池。

太阳能电池板

硅太阳能电池是将光能直接转换成电能的半导体器件。具有体积小、可靠性高、寿命长、无环境污染、使用维护方便等特点。它可以单独使用,也可以多个连接起来组成在方阵使用,与蓄电池配合可作为直流电源供昼夜、阴雨天连续使用。水文遥测系统中使用极为广泛。

硅太阳能电池按制造工艺的不同主要分为单晶硅和非晶硅太阳能电池.

非晶硅太阳能电池组合板是应用克罗拉标准工艺在玻璃基板上沉积制成的非晶薄膜器件。其外部采用玻璃密封保护。由于其生产技术和工艺特点,成本较低。深圳宇康太阳能有限公司生产的非晶硅太阳能电池虽然价格低,但结构不牢固,无安装支架,使用很不方便。而且使用寿命短也比单晶硅太阳能电池短。

单晶硅太阳能电池是利用P-N结的光生伏特效应将太阳能直接转换成电能的一种半导体器件。根据工作电压和工作电流的需要可将单晶硅太阳能电池串联或并联成组合板并加以封装。这种太阳能电池结构牢固,其使用寿命长达二十年以上。是一种理想的永久性可再生能源,非常适合在水文遥测系统中使用。

目前,在遥测系统中使用最广泛的是宁波太阳能电源厂生产的日地牌单晶硅太阳能电池,其主要技术指标:

使用温度:-45~90?C

光谱响应范围与峰值波长:0.40~1.10μm 0.80~0.95μm

伏安特性:见图3.6

对单晶硅太阳能电池而言,常用的充12V电池的太阳能电池的最大功率(P m)点的电压V OC为16.8V ,因此1W的太阳能电池的I SC为60mA。由于12V蓄电池的工作电压12.5V ,太阳能电池充电电流一般为70mA左右。

太阳能供电系统主要由硅太阳能电池方阵、充电控制器、蓄电池组以及防反充二极管组成,如图3.7所示:

图3.7 太阳能充电系统方框图

按照使用要求,将太阳能电池组件串联或并联组成太阳能电池方阵。蓄电池是太阳能电池方阵的储能装置。充电控制器通常由电子线路和电子开关组成。其作用如下:

1.当蓄电池过充电或过放电时,可以报警或自动切断线路,保护蓄电池

2.按需要给出高精度的恒电压或恒电流

3.当负载短路时,可以自动断开

4.当蓄电池有故障时可以自动切换,接通备用蓄电池,以保证负载正常用电

5.防反冲二极管的作用是避免太阳能电池方阵欠压时,蓄电池通过太阳能电池

放电。要求能承受足够大的电流,且正向压降小,反向饱和电流也小。

新一代的遥测数传仪已经具备了以上大部分的功能,对于采用这种数传仪的遥测站,可以不再选用充电控制器。

遥测站太阳能电源系统的设计,由于无人值守,且要求连续不间断供电,需要考虑因素多而且复杂。

首先计算负载的日用电量Q L(Ah)

Q L=负载电压(值守电流×24+发射电流发射次数×每次发射时间)

然后计算太阳能电池容量。

太阳能电池容量的计算与当地的地理位置、太阳辐射、气侯等因素有关。首先计算标准辐照度下当地的年平均日照时数H(h)

H =年辐射总量(kcal/cm2)×1.63(Wh/kcal)

365×0.1(W/cm2)

式中0.1W/cm2是25℃,AM1.5光谱时的辐照度,也是太阳能电池的标准测试条件。

各类地区的年辐射总量见表3.1

表3.1 我国各类地区太阳能年辐射量

为了接收较强的太阳辐射,各类地区的太阳能电池的安装角度有所不同。一般情况下,安装角度等于当地的纬度。

在标准状态下,每瓦的太阳能电池输出电流为70mA ,则太阳能电池的功率P 由下式决定:

P =日用电量(Ah)×工作电压(V)×太阳能电池修正系数0.07(A/W)×H(h)×12.5(V)×蓄电池放电深度

太阳能电池修正系数是考虑灰尘、气候、蓄电池特性等方面的影响,一般取1.2 ,蓄电池放电深度为80%。

超短波测站(水位雨量站)太阳能电池的功率

对广东地区可以计算出

H=4.46h。

Q L=0.61Ah

因此,采用25W电台的水位雨量站所需的太阳能电池的功率为

P=2.9W。

由于太阳能电池具有负电功率温度系数,对高温地区的使用量还应增加一些,一般可采用5W的太阳能电池板。

超短波测站(双水位站)太阳能电池的功率

对广东地区可以计算出

H=4.46h。

Q L=1.048Ah

因此,采用25W电台的水位雨量站所需的太阳能电池的功率为

P=5.1W。

由于太阳能电池具有负电功率温度系数,对高温地区的使用量还应增加一些,一般可采用10W的太阳能电池板。

太阳能电池方阵及蓄电池容量计算的一般方法

太阳能电池供电系统设计步骤 ⑴列出基本数据 ①确定所有负载功率及连续工作时间 ②确定地理位置:经、纬度及海拔高度 ③确定安装地点的气象资料: ★年(或月)太阳辐射总量或年(或月)平均日照时数 ★年平均气温和极端气温 ★最长连续阴雨天数 ★最大风速及冰雹等特殊气候资料 ⑵确定负载功耗:Q=ΣI2H 其中:I-负载电流,H-负载工作时间(小时) ⑶确定蓄电池容量:C = Q X d X 1.3 式中:d-连续阴雨天数 C-蓄电池标称容量(10小时放电率) C = (10~20)3Cr /(1-d) ⑷确定方阵倾角:推荐方阵的倾角与纬度的关系 ⑸计算方阵β倾角下的辐射量: Sβ= S3sin(α+β)/sinα 式中:Sβ—β倾角方阵太阳直接辐射分量 α—中午时太阳高度角 S 其它:α=90°-Φ±δ 式中:Φ—纬度 δ—太阳赤纬度(北半球取+号)地面即:α=90°-Φ+δ δ=23.45°sin[(284+n)3360/365] 式中:n—从一年开头算起第n天的纬度 那么 Rβ=S3sin(α+β)/sinα+D 式中 Rβ—β角方阵面上的太阳总辐射量 D—散射辐射量(查阅气象资料) ⑹计算方阵电流: Tm = (Rβ3mwH/cm2)/(100mw/cm2) 式中:Tm—为平均峰值日照时数 Imin = Q/(Tm3η13η2) 式中:Imin—方阵最小输出电流η1—蓄电池充电效率 η2—方阵表面灰尘遮散损失 Imax = Q/(Tmin3η13η2) ⑺确定方阵电压: V = Vf+Vd 式中:Vf—蓄电池浮充电压(25‵)Vd—线路电压损耗 ⑻确定方阵功率: F=Im3V/(1-α(Tmax-25)) 式中:α—一般取α=0.5% Tmax—太阳电池最高工作温度 ⑼根据蓄电池容量、充电电压、环境极限温度、太阳电池方阵电压及功率要求,选取适

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式(图) 太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W÷12V=5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池=5A×7h×(5+1)天=5A×42h=210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A×7h×120%)÷4.5h WP÷17.4V=9.33 WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC、110VAC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。 光伏系统的设计包括两个方面:容量设计和硬件设计。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 蓄电池的设计包括蓄电池容量的设计计算和蓄电池组的串并联设计。首先,给出计算蓄电池容量的基本方法。 (1)基本公式

蓄电池容量计算方法

蓄电池容量计算部分 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中Cc—事故放电容量; Kcc—蓄电池容量系数; Krel—可靠系数,一般取1.40 对于阶梯型负荷,可采用分段计算法计算。以东直门车站为例,各阶段负荷分布如下图所示: 图中: I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 80 .1 108 220 885 .0 = ? = Ud cc s rel c K C K C=

在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 mi i mi t I C =n a a i mi sa C C ...2,11 |==∑=n a Kcca KrelCsa Cca ...2,1|== Cca n a Cc max 1 =≥10 tC KrelCs K =

太阳能电池计算完整版

太阳能电池计算 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板 拍前请确认货期。 详细参数: 多晶硅太阳能板100W可充12V/24V 净重:11KGS 工作电压: 工作电流: 开路电压: 短路电流: 蓄电池:24V/12V 二、产品特点: 采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光响应性能,符合IEC61215和电气保护II级标准。太阳能电池转换效率高。而且太阳能电池板阵列一次性性能佳。 太阳能电池板阵列的表面采用高透光绒面钢化玻璃封装,气密性、耐候性好,抗腐蚀。 阳极氧化铝边框:机械强度高,具有良好的抗风性和防雹性,可在各种复杂恶劣的气候条件下使用,便于安装。 太阳能电池板在制造时,先进行化学处理,表面做成了一个象金字塔一样的绒面,能减少反射,更好地吸收光能。 采用双栅线,使组件的封装的可靠性更高。 太阳能电池板阵列抗冲击性能佳,符合IEC国际标准。 太阳能电池板阵列层之间采用双层EVA材料以及TPT复合材料,组件气密性好,抗潮,抗紫外线好,不容易老化。 直流接线盒:采用密封防水、高可靠性多功能ABS塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头,使用安全、方便、可靠。 带有旁路二极管能减少局部阴影而引起的损害。 工作温度:-40℃~+90℃ 使用寿命可达20年以上,衰减小于20%。 三、问题集锦: 1、什么是太阳能电池 答:太阳能电池是基于半导体的光伏效应将太阳辐射直接转换为电能的半导体器件。现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。 晶体硅(单晶、多晶)太阳能电池需要高纯度的硅原料,一般要求纯度至少是%,也就是一千万个硅原子中最多允许2个杂质原子存在。硅材料是用二氧化硅(SiO2,

计算电池剩余容量的常用方法

计算电池剩余容量的常用方法 阅读次数:105 我要发表评论 作者:optimumchina发表时间:2010-10-13 本文将讨论尽可能精确计算剩余电池电量的重要性。令人遗憾的是,仅通过测量某些数据点甚至是电池电压无法达到上述目的。温度、放电速率以及电池老化等众多因素都会影响充电状态。本文将集中讨论一种专利技术,该技术能够帮助设计人员测量锂电池的充电状态以及剩余电量。现有的电池电量监测方法 目前人们主要使用两种监测方法:一种方法以电流积分(current integration)为基础;而另一种则以电压测量为基础。前者依据一种稳健的思想,即如果对所有电池的充、放电流进行积分,就可以得出剩余电量的大小。当电池刚充好电并且已知是完全充电时,使用电流积分方法效果非常好。这种方法被成功地运用于当今众多的电池电量监测过程中。 但是该方法有其自身的弱点,特别是在电池长期不工作的使用模式下。如果电池在充电后几天都未使用,或者几个充、放电周期都没有充满电,那么由内部化学反应引起的自放电现象就会变得非常明显。目前尚无方法可以测量自放电,所以必须使用一个预定义的方程式对其进行校正。不同的电池模型有不同的自放电速度,这取决于充电状态(SOC)、温度以及电池的充放电循环历史等因素。创建自放电的精确模型需要花费相当长的时间进行数据搜集,即便这样仍不能保证结果的准确性。 该方法还存在另外一个问题,那就是只有在完全充电后立即完全放电,才能够更新总电量值。如果在电池寿命期内进行完全放电的次数很少,那么在电量监测计更新实际电量值以前,电池的真实容量可能已经开始大幅下降。这会导致监测计在这些周期内对可用电量做出过高估计。即使电池电量在给定温度和放电速度下进行了最新的更新,可用电量仍然会随放电速度以及温度的改变而发生变化。 以电压为基础的方法属于最早应用的方法之一,它仅需测量电池两级间的电压。该方法基于电池电压和剩余电量之间存在的某种已知关系。它看似直接,但却存在难点:在测量期间,只有在不施加任何负载的情况下,才存在这种电池电压与电量之间的简单关联。当施加负载时(这种情况发生在用户对电量感兴趣的多数情况下),电池电压就会因为电池内部阻抗所引起的压降而产生失真。此外,即使去掉了负载,发生在电池内部的张持过程(relaxation processe)也会在数小时内造成电压的连续变化。由于多种原因的存在,基于电池阻抗知识的压降校正方法仍存在问题,本

有关太阳能电池板的数据计算(1)

一,太阳能光电产品计算 下面以1kW输出功率,每天使用6个小时为例,介绍一下计算数据: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 通常逆变器的转换效率为90%(国内企业研制的大功率光伏逆变器最高转换率 已达98.8%),则当输出功率为P 1=1kW时,则实际需要输出功率应为P 2 =1kW/90% =1.11kW;若按每天使用6小时,则耗电量为W 1 =1.11kW*6小时=6.66kWh。 2.蓄电池的选择: 按照蓄电池一次充满后连续放电(非浮充状态下)可供负载一天(6小时)使用 蓄电池采用规格: 2400WH/12V。 蓄电池容量:2400WH/12V=200AH,蓄电池每日放电量 6.66kw/12v=555Ah,即每天(6小时使用时间)的用电量为12V555Ah。蓄电池的最大放电深度最好保持在70%以内, 所以输入应为:W 2 =W 1 /0.7=6.66kwh/0.7=9.51kWh。 总共容量的计算:555Ah/0.7=792.85Ah≈800Ah,实际没有800AH的容量,可以用200AH四组就可以了. 3.太阳能电池容量的计算与当地的地理位置、太阳辐射、气侯等因素有关。首先计算标准辐照度下当地的年平均日照时数H(h) H=年辐射总量(kcal/cm2)×1.63(Wh/kcal) 365×0.1(W/cm2) 式中0.1W/cm2是25℃,AM1.5光谱时的辐照度,也是太阳能电池的标准测试条件。 表1 我国各类地区太阳能年辐射量 将年总辐射量代入公式,可得到各地区标准辐照度下当地的年平均日照时数H (h),结果如表1 按每日有效日照时间为H小时计算,再考虑到充电效率和充电过程中的损耗,充电过程中,太阳能电池板的实际使用功率为70%。 太阳能电池板的输出功率应为P 3 =9.51kWh/H/70%=13.585/H(W)。 太阳能峰值功率WP是在标准条件下:辐射强度1000W/m2,大气质量AM15,电池温度25℃条件下,太阳能电池的输出功率。太阳能电池的额定输出功率与转换效率有关,一般来讲,单位面积的电池组件,转换效率越高,其输出功率越大。太阳能电池目前的转换效率一般在14-17%之间,每平方米的太阳能电池组件输出功率约140-170WP. 面积功率*面积=功率 我们按照面积电池(m2)光电转换效率为15%计算,假设此时太阳光的总功率为 1000W/m2组件的功率为P 3 =13.585/H(kW)

光伏电站蓄电池容量的计算方法

光伏电站蓄电池容量的计算方法 在确定蓄电池容量时,并不是容量越大越好,一般以20%为限。因为在日照不足时,蓄电池组可能维持在部分充电状态,这种欠充电状态导致电池硫酸化增加,容量降低,寿命缩短。不合理地加大蓄电池容量,加大蓄电池容量,将增加光伏系统的成本。 在独立光伏发电系统中,对蓄电池的要求主要与当地气候和使用方式有关,因此各有不同。例如,标称容量有5h 率、24h 率、72h 率、100h 率、240h 率以及720h 率。每天的放电深度也不相同,南美的秘鲁用于“阳光计划”的蓄电池要求每天40%~50%的中等深度放电,而我国“光明工程”项目有的户用系统使用的电池只进行20%~30%左右的放电深度,日本用于航标灯的蓄电池则为小电流长时间放电。蓄电池又可分为浅循环和深循环两种类型。因此选择太阳能用蓄电池应既要经济又要可靠,不仅要防止在长期阴雨天气时导致电池的储存容量不够,达不到使用目的;又要防止电池容量选择过小,不利于正常供电,并影响其循环使用寿命,从而也限制了光伏发电系统的使用寿命;又要避免容量过大,增加成本,造成浪费。确定蓄电池容量的公式为: a K U L P F D C ????=0 C -蓄电池容量,kW ·h (Ah );D -最长无日期间用电时数,h ;F —蓄电池放电效率的修正系数,(通常取1.05);PO -平均负荷容量,kW ;L为蓄电池的维修保养率,(通常取0.8);U 为蓄电池的放电深度(通常取0.5);Kα为包括逆变器等交流回路的损耗率(通常取0.7~0.8)。上式可简化为: C =3.75× D ×P0 这是根据平均负荷容量和最长连续无日照时的用电时数算出的蓄电池容量的简便公式。由于蓄电池容量一般以安时数表示,故蓄电池容量应该为: V Wh C Ah C )(1000)(?=' H I Ah C ?=')( C '为蓄电池容量,A ·h;V 为光伏系统的电压等级(系统电压),通常为12V 、24V 、48V 、110V 或220V 。 例如,按宁波太阳能电源有限公司提供的晶体电池组件,对浙江南都电源动力股份有限公司的阀控式密封铅酸蓄电池进行选型。基本要求为:可为400W 的负载连续5天阴雨天的

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W-12V= 5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00 开启,夜11:30 关闭1 路,凌晨4:30 开启2 路,凌晨5:30 关闭) 需要满足连续阴雨天5 天的照明需求。(5 天另加阴雨天前一夜的照明,计6 天) 蓄电池=5A X7h X(5 + 1)天=5A X42h= 210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为小时(h) ; 最少放宽对电池板需求20%的预留额。 W- = (5A X7h X120%— WP-= WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MV级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保 护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC 110VAC的交流电源。由于太阳能的直接输出一般 都是12VDC 24VDC 48VDC为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电 能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。光伏系统的设计包括两个方面:容量设计和硬件设计。

蓄电池容量计算方法之令狐文艳创作

蓄电池容量计算部分 令狐文艳 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中 Cc —事故放电容量; Kcc —蓄电池容量系数; Krel —可靠系数,一般取1.40 80.1108 220885.0=?=Ud cc s rel c K C K C =

I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者 mi i mi t I C =n

选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 ①事故放电初期,电压水平的校验 事故放电初期的冲击系数为 (4-8) 式中,Krel —可靠性系数,一般取1.1 I ch0—事故放电初期的放电电流,(A) 10 tC KrelCs K

太阳能电池板日发电量简易计算方法

太阳能电池板日发电量简易计算方法 太阳能电池板日发电量 简易计算方法 太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。太阳能发电系统的设计需要考虑如下因素: Q1、太阳能发电系统在哪里使用?该地日光辐射情况如何? Q2、系统的负载功率多大? Q3、系统的输出电压是多少,直流还是交流? Q4、系统每天需要工作多少小时? Q5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天? 下面以(负载)100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1. 首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用6小时,则耗电量为111W*6小时=666Wh,即0.666度电。 2. 计算太阳能电池板: 按每日有效日照时间为5小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为666Wh÷5h÷70% =190W。其中70%是充电过程中,太阳能电池板的实际使用功率。 3. 180瓦组件日发电量 180×0.7×5=567WH=0.63度 1MW日发电量=1000000×0.7×5=3500,000=3500度 例2:安10w灯,每天照明6小时,3个连雨天,如何计算太阳能电池板wp?以及12V 蓄电池ah? 每天的用电量: 10W X 6H= 60WH, 计算太阳能电池板: 假设你安装点的平均峰值日照时数为4小时. 则:60WH/4小时, = 15WP 太阳能电池板. 再计算充放电损耗, 以及每天需要给太阳能电池板的补充: 15WP/0.6= 25WP, 也就是一块25W的太阳能电池板就够了. 再计算蓄电池. 60WH/12V=5AH. 每天要用12V5AH的电量. 三天则为12V15AH.

UPS容量和蓄电池容量计算方法

UPS容量和蓄电池容量计算方法 UPS容量和蓄电池容量计算方法 蓄电池的放电时间定义为:当蓄电池以规定的放电电流进行恒流放电时,蓄电池的端电压下降到所允许的临界电压(终了电压)时所经过的时间。 UPS容量计算 P入=P出/(COSφ×ц) COSφ----功率因数(一般取0.8) P出-------额定输出功率(KVA) (注:计算时负载多为W) P入-------输入功率(KVA)(UPS容量) ц--------保险系数(一般取0.8) UPS蓄电池容量计算 电池放电电流计算: I=(S×COSφ)/(n×V×ц逆) S----------UPS额定输出容量(或实际或预期负载)(VA) ц逆-------逆变器效率(一般取0.8~0.85) n----------蓄电池只数 V---------蓄电池放电终止电压(2V电池对应1.8V;12V电池对应10.8V)COSφ---- UPS (或负载)功率因数(1~20 kVA为0.7,20~120 kVA为0.8) 艾默生UH31系列(10-20KVA)UPS电池电压240VDC(2组)20节(2组) 艾默生UL33系列(20-60KVA)UPS电池电压360VDC 12V电池30节 蓄电池容量计算 1、普通蓄电池计算(与华为计算方法相同) Q:蓄电池容量(Ah); K:安全系数; I:负荷电流(A); T:放电小时数(h); η:放电容量系数; t:实际电池所在地的最低环境温度数值,有采暖设备时,按15℃考虑;无采暖设备时,按5℃考虑; α:电池温度系数,电解液温度以25℃为标准时,放电小时率≥10时,取0.006;10>放电小时率≥1时,取0.008;<1时,取0.01 以上公式可以简化成:

太阳能电池片功率计算公式

太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压Voc;最大功率点电压Vap;最大功率点电流Iap;最大功率Pmpp; 转换效率Eff等。标准测试条件下,最大功率Pmpp 与转换效率之间有如下关系: Pmpp = 电池面积(m2)*1000(W/m2)*Eff 举例如下: 产品类型转化效率(%) 功率(W) 单晶125*125 15 单晶156*156 15 多晶125*125 15 多晶156*156 15 注1:测试条件符合太阳光谱的辐照强度1000W/m2,电池温度25℃,测试方法 符合IEC904-1,容许偏差Efficiency ±5% REL。 注2: AM是air mass的简称,意思是大气质量。 是一种条件,它描述太阳光入射于地表之平均照度,其太阳总辐照度为1000W/m2;太阳电池的标定温度为25±1℃。 注3:IEC904-1 IEC:国际电工委员会,international electrotechnical commission。 IEC904等同于GB/T6495。 注4:REL :rate of energy loss 能量损耗率

太阳能电池功率 一:首先计算出电流: 如:12V蓄电池系统;30W的灯2只,共60瓦。 电流= 60W÷12V= 5 A 二:计算出蓄电池容量需求: 如:路灯每夜照明时间小时,实际满负载照明为 7小时(h); 例一:1 路 LED 灯 (如晚上7:30开启100%功率,夜11:00降至50%功率,凌晨4:00后再100%功率,凌晨5:00 关闭) 例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等) (如晚上7:30两路开启,夜11:00关闭1路,凌晨4:00开启2路,凌晨5:00关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)蓄电池= 5A× 7h×( 5+1)天= 5A× 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。 所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A的基础上增加15%-25%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为小时(h); 最少放宽对电池板需求20%的预留额。 WP÷=(5A× 7h× 120%)÷ WP÷= WP = 162(W) ★:每天光照时间为长江中下游附近地区日照系数。

太阳能电池计算(苍松参考)

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板 拍前请确认货期。 详细参数: 多晶硅太阳能板100W 可充12V/24V 净重:11KGS 工作电压:33.5V 工作电流:2.99A 开路电压:41.5V 短路电流:3.57A 蓄电池:24V/12V 二、产品特点: ●采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光 响应性能,符合IEC61215和电气保护II级标准。太阳能电池转换效率高。 而且太阳能电池板阵列一次性性能佳。 ●太阳能电池板阵列的表面采用高透光绒面钢化玻璃封装,气密性、耐候性好, 抗腐蚀。 ●阳极氧化铝边框:机械强度高,具有良好的抗风性和防雹性,可在各种复杂 恶劣的气候条件下使用,便于安装。 ●太阳能电池板在制造时,先进行化学处理,表面做成了一个象金字塔一样的 绒面,能减少反射,更好地吸收光能。 ●采用双栅线,使组件的封装的可靠性更高。 ●太阳能电池板阵列抗冲击性能佳,符合IEC国际标准。 ●太阳能电池板阵列层之间采用双层EVA材料以及TPT复合材料,组件气密性 好,抗潮,抗紫外线好,不容易老化。 ●直流接线盒:采用密封防水、高可靠性多功能ABS塑料接线盒,耐老化防水 防潮性能好;连接端采用易操作的专用公母插头,使用安全、方便、可靠。 ●带有旁路二极管能减少局部阴影而引起的损害。 ●工作温度:-40℃~+90℃ ●使用寿命可达20年以上,衰减小于20%。 三、问题集锦: 1、什么是太阳能电池 答:太阳能电池是基于半导体的光伏效应将太阳辐射直接转换为电能的半导体器件。现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。

蓄电池容量的计算方法

蓄电池容量的计算方法 1.蓄电池容量的计算方法 蓄电池的容量必须是以所定的电压、所定的时间可向负载提供的容量。 以下就容量计算方法进行说明: 1、计算容量的必要条件 A、放电电流 有必要明确放电过程中负载电流的增减变化和其随时间变化情况。 B、放电时间 可预期的负载的最大时间。 C、最低蓄电池温度 预先推定蓄电池放置场所的温度条件,决定蓄电池温度最低值。一般设置在室内时为50C,设置在特别寒冷地区室内时为-50C。用空调保证室内温度时按实际温度作为最低温度。 D、允许的最低电压 单格允许的最低电压(V/单格)=(负载所允许的最低电压+导线的电压损失)/串联格数 2、容量的计算公式 C= 1*[K1I1+K2(I2-I1)、、、、、、、KN(IN-IN-1)]/L

C:250C的额定放电率换算容量(AH)、、、、、、UXL电池是10HR容量。 L:对因维护系数、使用年数、使用条件的变化而引起的容量变化而使用的修正值。一般L值采用0.8。 K:由放电时间T、电池的最低使用温度、允许的最低电压而决定的容量换算时间。 I:放电电流 下标1、2、、、、N:按放电电流变化顺序依次加给T、K、I 3、容量的计算举例 A、放电电流 140A(一定) B、放电时间 30分 C、最低蓄电池温度 -550C D、允许的最低电压 1.6V/单格 按上述条件,得出K=1.1 C= 1 X1.1X140=192(AH/10HR)/0.8 所以,可使用UXL220-2。 注:上述例子是针对放电电流一定的简单的负载类型电池容量的计算。其他负载类型的计算请参考日本蓄电池工业标准[SBA6001]。 2.关于UPS容量的计算举例 计算机设备应该加装不间断电源保护,其有两个主要作用: 一是在市电中断时重要用电设备有干净纯洁的电源使用;

UPS电池容量计算

在用户和厂商的交流中,常常提到这样的情况:根据UPS的输出容量和所要求的后备时间,需快速、粗略地给出相关电池的配置。此时可用UPS电池容量的简便计算方法迅速做出。 1、对于109Ah?块/kVA设计寿命10年的UPS电池容量的算法 使用时按下列公式计算: 所需电池容量(Ah)= UPS容量(KVA)×109(Ah.块)/KVA/每组电池块数 例如:一台120kVA的UPS,每组电池32块,要求后备时间60min(即1h)。则所需电池容量为 120kVA×109Ah?块/kVA=13080Ah?块,13080Ah?块/32块=409(Ah),即可选12V,100Ah电池4组(32块/组)。注意:实际后备时间不足60min(欠缺一点)。 如果每组33块,则13080/33=396Ah,同样可选12V、100Ah电池4组(33块/组)。注意:实际后备时间超过60min(超出一点)。 如果要求后备时间为30min,则109×120=13080Ah?块,13080/32=409Ah,409/2=205Ah。由于电池的放电功率与放电时间不是线性的,即不能只简单除以2,还需乘以修正系数,见表1,因此205×1.23=252Ah。即可选12V、65Ah电池4组(32块/组)。注意:实际后备时间超过30min(超出一点)。 如果要求后备时间20min,则409/3=136Ah,还需乘以修正系数,见表1,136×1.41=192Ah,即可选12V、65Ah电池3组(32块/组)。注意:实际后备时间超过20min(超出一点)。 其它情况,以此类推。 2、对于126Ah?块/kVA设计寿命五年的UPS电池容量的算法 计算方法和需乘以修正系数与前述完全一样,只是要把上式中的109换成126。 如果计算时间是一小时以上,要在按上述计算后再除以一个修正系数,见表2。

太阳能路灯蓄电池容量计算方法

太阳能路灯蓄电池容量计算方法.

太阳能路灯蓄电池容量计算方法 随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能照明在短短的数年时间内已发展成为成熟的朝阳产业。 1:目前制约太阳能发电应用的最重要环节之一是价格,以一盏双火的太阳能路灯为例,两路负载共为60瓦,(北京地区有效光照3.5-4.5h/天、每夜放电8小时、增加电池板20%预留额计算)其电池板就需要200W左右,按每瓦10元计算,电池板的费用就要2000元,再加上200AH左右的蓄电池组费用也接近1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。

2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到40%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:因为LED灯的寿命较长、且可以通过夜间分时段调低功率工作,一般工程商都会选用LED路灯做为太阳能光照度。所以一定要选择光衰50%半年就有可能衰减LED路灯的质量层差不齐,光衰严重的LED 路灯的照明,但是 较慢的LED路灯,LED路灯最主要的要做好散热与恒流问题,恒流可以通过另加恒流驱动或者使用控制器恒流,散热就必需依靠铝板来散热,最好是在铝板下面增加铜片或铜管来更有效的散热,控制好温度,

LED的寿命才会更长。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在80-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本。 一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在5毫安以下的控制器。 二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。 三:应选择具有调节功率的控制器,具有功率调节的控制器已被广泛推广,可以在夜间行人稀少时段自动调低LED灯的工作电流,节约用电,同时也节省了电池板的配置比例。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控,防止蓄电池过放,蓄电池的过充、过放都会降低使用寿命。11.1V制器欠压保护值时,尽量把欠压保护值调在 ≥.

太阳能电池计算

太阳能电池计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板拍前请确认货期。 详细参数: 多晶硅太阳能板100W 可充12V/24V 净重:11KGS 工作电压: 工作电流: 开路电压: 短路电流: 蓄电池:24V/12V 二、产品特点: 采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光响应性能,符合IEC61215和电气保护II级标准。太阳能电池转换效率高。而且太阳能电池板阵列一次性性能佳。 太阳能电池板阵列的表面采用高透光绒面钢化玻璃封装,气密性、耐候性好,抗腐蚀。 阳极氧化铝边框:机械强度高,具有良好的抗风性和防雹性,可在各种复杂恶劣的气候条件下使用,便于安装。 太阳能电池板在制造时,先进行化学处理,表面做成了一个象金字塔一样的绒面,能减少反射,更好地吸收光能。

采用双栅线,使组件的封装的可靠性更高。 太阳能电池板阵列抗冲击性能佳,符合IEC国际标准。 太阳能电池板阵列层之间采用双层EVA材料以及TPT复合材料,组件气密性好,抗潮,抗紫外线好,不容易老化。 直流接线盒:采用密封防水、高可靠性多功能ABS塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头,使用安全、方便、可靠。 带有旁路二极管能减少局部阴影而引起的损害。 工作温度:-40℃~+90℃ 使用寿命可达20年以上,衰减小于20%。 三、问题集锦: 1、什么是太阳能电池 答:太阳能电池是基于半导体的光伏效应将太阳辐射直接转换为电能的半导体器件。现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。 晶体硅(单晶、多晶)太阳能电池需要高纯度的硅原料,一般要求纯度至少是%,也就是一千万个硅原子中最多允许2个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子)作为原料,将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片,涉及多个生产工艺和过程,一般大致分为:二氧化硅—>冶金级硅—>高纯三氯氢硅—>高纯度多晶硅—>单晶硅棒或多晶硅锭—>硅片—>太阳能电池片。

太阳能电池板功率计算

太阳能电池板功率计算 1.0绪论 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。本文将简要介绍光伏系统结构,并重点介绍其功率计算方法。 2.0光伏系统组成 图1是一个典型的供应直流负载的光伏系统示意图。 图1 直流负载光伏系统 图2 光伏发电系统原理方框图 光伏系统中的几个主要部件: 1.光伏组件方阵:由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。

2.蓄电池:将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。 3.控制器:它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。 4.逆变器:在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。 太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。 3.0太阳能电池组件功率计算方法 硅太阳能发电板容量是指平板式太阳能板发电功率WP。太阳能发电功率量值取决于负载24h所能消耗的电力H(WH),由负载额定电源与负载24h所消耗的电力,决定了负载24h 消耗的容量P(AH),再考虑到平均每天日照时数及阴雨天造成的影响,计算出太阳能电池阵列工作电流IP(A)。 由负载额定电源,选取蓄电池公称电压,由蓄电池公称电压来确定蓄电池串联个数及蓄电池浮充电压VF(V),再考虑到太阳能电池因温度升高而引起的温升电压VT(v)及反充二极管P-N结的压降VD(V)所造成的影响,则可计算出太阳能电池阵列的工作电压VP(V),由太阳电池阵列工作电源IP(A)与工作电压VP(V),便可决定平板式太阳能板发电功率WPW,从而设计出太阳能板容量,由设计出的容量WP与太阳能电池阵列工作电压VP,确定硅电池平板的串联块数与并联组数。 太阳能电池阵列的具体设计步骤如下: 1.计算负载24h消耗容量P。 P=H/V H——负载24小时消耗的电力(WH,瓦˙时)

太阳能光伏电池板安装计算攻略

太阳能电池板方阵安装角度怎样计算? 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为 60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1. 方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)—12)X 1$ (经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2. 倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制 条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑

相关文档
最新文档