八年级因式分解专题(内部资料)
八年级数学因式分解专题

八年级数学因式分解专题一、提公因式法1. 分解因式:6x^2 3x解析:公因式为3x,原式= 3x(2x 1)2. 分解因式:8a^3b^2 + 12ab^3c解析:公因式为4ab^2,原式= 4ab^2(2a^2 + 3bc)3. 分解因式:3(x y)^2 6(y x)解析:将(y x)变形为-(x y),公因式为3(x y),原式= 3(x y)(x y + 2)二、公式法4. 分解因式:x^2 4解析:使用平方差公式 a² b² = (a + b)(a b),原式=(x + 2)(x 2) 5. 分解因式:9 y^2解析:原式=(3 + y)(3 y)6. 分解因式:4x^2 12x + 9解析:使用完全平方公式 (a b)² = a² 2ab + b²,原式=(2x 3)^2 三、分组分解法解析:原式=(am + an) + (bm + bn) = a(m + n) + b(m + n) = (m + n)(a + b) 8. 分解因式:x^2 y^2 + ax + ay解析:原式=(x + y)(x y) + a(x + y) = (x + y)(x y + a)9. 分解因式:2ax 10ay + 5by bx解析:原式=(2ax bx) + (-10ay + 5by) = x(2a b) 5y(2a b) = (2a b)(x 5y)四、十字相乘法10. 分解因式:x^2 + 3x + 2解析:1×2 = 2,1 + 2 = 3,原式=(x + 1)(x + 2)11. 分解因式:x^2 5x + 6解析:(-2)×(-3) = 6,-2 + (-3) = -5,原式=(x 2)(x 3)12. 分解因式:2x^2 5x 3解析:2×(-1) = -2,2×3 = 6,6 + (-1) = 5,原式=(2x + 1)(x 3)五、综合运用13. 分解因式:3x^3 12x^2 + 12x解析:公因式为3x,原式= 3x(x^2 4x + 4) = 3x(x 2)^2解析:将4(x + y 1)变形为4[(x + y) 1],原式=(x + y)^2 4(x + y) + 4 = (x + y 2)^215. 分解因式:(a^2 + 1)^2 4a^2解析:使用平方差公式,原式=(a^2 + 1 + 2a)(a^2 + 1 2a) = (a + 1)^2(a 1)^216. 分解因式:x^4 18x^2 + 81解析:原式=(x^2 9)^2 = [(x + 3)(x 3)]^2 = (x + 3)^2(x 3)^217. 分解因式:a^4 2a^2b^2 + b^4解析:原式=(a^2 b^2)^2 = [(a + b)(a b)]^2 = (a + b)^2(a b)^218. 分解因式:(x^2 + 4)^2 16x^2解析:使用平方差公式,原式=(x^2 + 4 + 4x)(x^2 + 4 4x) = (x + 2)^2(x 2)^219. 分解因式:x^2 4xy + 4y^2 9解析:前三项使用完全平方公式,原式=(x 2y)^2 9 = (x 2y + 3)(x 2y 3)20. 分解因式:4x^2 4xy + y^2 z^2解析:前三项使用完全平方公式,原式=(2x y)^2 z^2 = (2x y + z)(2x y z)。
八年级上册因式分解100题及答案

八年级上册因式分解100题及答案一、提取公因式(1)(21)(43)(21)(61)(21)(73)+-+++-++--m n m n m n(2)23323+-686x y x z x y(3)(51)(41)(52)(51)+-++-+x x x x(4)24+b abc217(5)(65)(83)(65)(42)+-++-a b a b(6)(75)(34)(63)(75)+-+++m n n m(7)32-a x ax y2515(8)(94)(21)(94)(33)+--+++x x x x(9)(2)(94)(2)(93)x y x y ++++-(10)34233151525xy x z xy z --(11)323342184527x y z x y z x yz --(12)(43)(43)(43)(74)m x m x +--++(13)(81)(92)(81)(81)x y x y +-++++(14)221220xy x +(15)(31)(3)(54)(31)a b b a ------(16)(34)(65)(34)(75)m x m x --++-+(17)423721a x ax y-(18)42+xy z4518(19)(21)(1)(94)(21)+-+-++m n n m (20)342224+-x y x y z xy404016二、公式法(21)2x-2564(22)22-m n784784(23)2-+x x7291512784(24)22++m mn n121286169(25)2x-6254(26)216920864x x ++(27)2576841x -(28)2278428025x xy y ++(29)224841188729a ab b ++(30)264144x -三、分组分解法(31)22277330x z xy yz zx+-+-(32)72649080ax ay bx by+++(33)221220810a c ab bc ca-++-(34)22x z xy yz zx-+++48316610 (35)56483530-+-+xy x y(36)20100420xy x y--++(37)410820+++ab a b(38)22-+--x y xy yz zx92744 (39)22--+-4542193630a b ab bc ca(40)2149614--+xy x y(41)73146-+-ab a b(42)22++++54491054236a b ab bc ca(43)222141926a b ab bc ca++++(44)224533576a c ab bc ca----(45)22375510a c ab bc ca+--+(46)525840ax ay bx by--+(47)227522028x y xy yz zx--++(48)2292744a b ab bc ca-+--(49)224510431527x y xy yz zx+--+(50)261442ax ay bx by--+四、拆添项(51)4224496281a a b b ++(52)22364960569a b a b --++(53)42243614849m m n n -+(54)42246414425x x y y -+(55)422442149x x y y -+(56)22362243m n m n -+--(57)224925615a b a b ----(58)2281491621480m n m n --++(59)224916565633a b a b -++-(60)4224x x y y++9525五、十字相乘法(61)22-++-x xy y x y4073303542 (62)222++-+-x y z xy yz xz40208572636 (63)22m mn n m n++++-14311526174 (64)222++-+-a b c ab bc ac30282591516 (65)222x y z xy yz xz+-+++42124461317 (66)22m mn n m n+++--145728251525 (67)22++++182931421x xy y x y(68)222x y z xy yz xz--+++821624522 (69)22--++251015159m mn n m n (70)228213836+-+-x xy x y(71)22+---+151********x xy y x y (72)222+-+++21128331022a b c ab bc ac(73)222--++-x y z xy yz xz46652023(74)222a b c ab bc ac+--++46225112 (75)222x y z xy yz xz--+-+ 211224364410 (76)222+++++20725334045x y z xy yz xz(77)23442-+--x xy x y(78)2++++a ab a b56782530 (79)22-+-++m mn n m n5127364836 (80)22---++x xy y x y43925六、双十字相乘法(81)2-++-a ab a b2432212 (82)22m mn n m n+--+-35271855130 (83)22x xy y x y-++-+ 12144402525 (84)22-----72525225024x xy y x y(85)2229712622533x y z xy yz xz-----(86)218366547x xy x y ++++(87)22248152544x y z xy yz xz+--+-(88)222124152163x y z xy yz xz---+-(89)22224430351433x y z xy yz xz+----(90)2220114462024m mn n m n +---+七、因式定理(91)32694x x x +--(92)32314163x x x +++(93)325243112x x x -+-(94)322361x x x +-+(95)3223318x x x ---(96)32635489x x x -++(97)323768x x x -+-(98)3210176x x x +-+(99)32322x x x --+(100)324151415x x x -+-八年级上册因式分解100题答案一、提取公因式(1)(21)(51)m n +--(2)2332(343)x y xz y +-(3)(51)(1)x x +-(4)47(3)b b ac +(5)(65)(125)a b +-(6)(75)(91)m n +-(7)25(53)ax a xy -(8)(94)(2)x x ++(9)(2)(181)x y ++(10)332335(335)x y x z y z --(11)329(253)x yz y y xz --(12)(43)(37)m x -++(13)(81)(3)x y -+-(14)24(35)x y x +(15)(31)(61)a b ---(16)(34)(10)m x -+(17)237(3)ax a xy -(18)429(52)xy z +(19)(21)(103)m n -++(20)222228(552)xy x y xz y +-二、公式法(21)(58)(58)x x +-(22)(2828)(2828)m n m n +-(23)2(2728)x -(24)2(1113)m n +(25)(252)(252)x x +-(26)2(138)x +(27)(2429)(2429)x x +-(28)2(285)x y +(29)2(2227)a b +(30)(812)(812)x x +-三、分组分解法(31)(97)(3)x y z x z ---(32)2(45)(98)a b x y ++(33)(45)(324)a c a b c ++-(34)(62)(83)x y z x z +-+(35)(85)(76)x y -+-(36)4(51)(5)x y --+(37)2(2)(25)a b ++(38)(924)()x y z x y --+(39)(976)(56)a b c a b+--(40)(72)(37)x y--(41)(2)(73)a b+-(42)(67)(976)a b a b c+++(43)(3)(742)a b a b c+++(44)(5)(973)a c ab c+--(45)()(357)a c ab c+-+(46)(58)(5)a b x y--(47)(4)(75)x y z x y-++(48)(924)()a b c a b--+(49)(523)(95)x y z x y-+-(50)2(7)(3)a b x y--四、拆添项(51)2222(789)(789)a ab b a ab b++-+(52)(679)(671)a b a b+---(53)2222(687)(687)m mn n m mn n+---(54)2222(885)(885)x xy y x xy y+---(55)2222(277)(277)x xy y x xy y++-+ (56)(63)(61)m n m n++--(57)(73)(75)a b a b++--(58)(9710)(978)m n m n+---(59)(743)(7411)a b a b+--+(60)2222(355)(355)x xy y x xy y++-+五、十字相乘法(61)(56)(857)x y x y--+(62)(542)(854)x y z x y z----(63)(234)(751)m n m n+++-(64)(672)(54)a b c a b c----(65)(64)(734)x y z x y z+-++ (66)(745)(275)m n m n+-++ (67)(97)(23)x y x y+++(68)(236)(47)x y z x y z-++-(69)(553)(53)m n m n-++(70)(436)(71)x y x+-+(71)(525)(342)x y x y--+-(72)(334)(742)a b c a b c+++-(73)(26)(43)x y z x y z+--+(74)(42)(6)a b c a b c---+(75)(726)(364)x y z x y z--++ (76)(575)(45)x y z x y z++++ (77)(342)(1)x y x--+(78)(86)(75)a b a+++(79)(6)(576)m n m n----(80)(1)(435)x y x y--+-六、双十字相乘法(81)(32)(86)a a b--+ (82)(565)(736)m n m n+--+ (83)(645)(25)x y x y-+-+ (84)(954)(856)x y x y++--(85)(93)(74)x y z x y z++--(86)(247)(91)x y x+++ (87)(63)(852)x y z x y z-+--(88)(425)(323)x y z x y z+--+ (89)(85)(346)x y z x y z-+--(90)(544)(46)m n m n+---七、因式定理(91)(1)(34)(21)x x x+-+ (92)2(3)(351)x x x+++ (93)(1)(54)(3)x x x---(94)2(1)(251)x x x-+-(95)2(3)(236)x x x-++ (96)2(3)(61)x x-+(97)2(2)(34)x x x--+ (98)(1)(52)(23)x x x--+ (99)2(1)(42)x x x+-+ (100)2(3)(435)x x x--+。
专题4.2 因式分解(十字相乘法与分组分解法)(学生版)

专题4.2 因式分解(十字相乘法与分组分解法)1.理解十字相乘法的原理,并能用十字相乘法分解因式(二次三项式);2.能熟练使用分组分解法分解因式(四项及以上);3.能灵活使用因式分解的四种方法,并能解决一些实际问题。
知识点01 因式分解的方法(三)十字相乘法【知识点】③十字相乘法:a 2+(p+q )a+pq=(a+p )(a+q )注意:对于二次三项式的因式分解中,当公式法不能匹配时,十字相乘就是我们的首选方法。
【知识拓展1】十字相乘法分解因式例1.(2022·成都市初二课时练习)运用十字相乘法分解因式:(1)232x x --;(2)210218x x ++;(3)22121115x xy y --;(4)2()3()10x y x y +-+-.【即学即练】1.(2020·四川内江·中考真题)分解因式:4212b b --=_____________2.(2022·湖南岳阳·八年级期末)阅读理解题由多项式乘法:()()()2x a x b x a b x ab ++=+++,将该式从右到左使用,即可进行因式分解的公式:()()()2x a b x ab x a x b +++=++.示例:分解因式:()()()2256232323x x x x x x ++=+++´=++.分解因式:()()()()222121212x x x x x x --=++-+´-=+-éùéùëûëû.多项式()2x a b x ab +++的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和.(1)尝试:分解因式:268x x ++=(x +______)(x +______);(2)应用:请用上述方法将多项式:256x x -+、256x x --进行因式分解.【知识拓展2】先换元再十字相乘例2.(2022·广西象州·八年级期中)下面是小明同学对多项式进行因式分解的过程:解:设,则(第一步)原式(第二步)(第三步)把代入上式,得原式(第四步)我们把这种因式分解的方法称为“换元法”,请据此回答下列问题:(1)该同学因式分解的结果(填“彻底”或“不彻底”),若不彻底,请你直接写出因式分解的最后结果: ;(2)请你仿照上面的方法,对多项式进行因式分解.【即学即练】1.(2022·陕西金台·八年级期末)阅读下列材料:材料1:将一个形如x ²+px +q 的二次三项式因式分解时,如果能满足q =mn 且p =m +n 则可以把x ²+px +q 因式分解成(x +m )(x +n ),如:(1)x 2+4x +3=(x +1)(x +3);(2)x 2﹣4x ﹣12=(x ﹣6)(x +2).材料2:因式分解:(x +y )2+2(x +y )+1,解:将“x +y 看成一个整体,令xy =A ,则原式=A ²+2A +1=(A +1)²,再将“A ”还原得:原式=(x +y +1)²上述解题用到“整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题:()()2252564x x x x -+-++25x x y -=(2)(6)4y y =+++22816(4)y y y =++=+25x x y -=()2254x x =-+()()223344a a a a --++(1)根据材料1,把x 2+2x ﹣24分解因式;(2)结合材料1和材料2,完成下面小题;①分解因式:(x ﹣y )²﹣8(x ﹣y )+16;②分解因式:m (m ﹣2)(m ²﹣2m ﹣2)﹣3知识点02 因式分解的方法(四)分组分解法【知识点】④分组分解法:ac+ad+bc+cd=a(c+d)+b(c+d)=(a+b)(c+d)一般地,分组分解分为三步:1)将原式的项适当分组;2)对每一组进行处理(因式分解)3)将经过处理后的每一组当作一项,再进行分解。
八年级因式分解的知识点

八年级因式分解知识点总结因式分解是数学中一个重要的知识点,不仅在初中阶段就开始学习,还贯穿了高中乃至大学的数学学习。
因此,掌握好八年级的因式分解知识点,对于后续数学学习的顺利进行具有重要的作用。
本文将就八年级因式分解的知识点进行总结,希望对于大家的学习有所帮助。
一、公因数与最大公因数公因数是指同时能够整除两个或多个数的因数,在因式分解中有着重要的作用。
求两个或多个数的最大公因数的方法,可以通过列举其公因数,然后筛选出最大的一个。
例如,求两个数72和96 的最大公因数。
首先列出它们的公因数,有1、2、3、4、6、8、12、24 八个数,在这个基础上,筛选能够整除72 和96 的最大整数,即24,因此,72 和96 的最大公因数为24。
二、公式在因式分解中,常用到一些公式,例如差平方公式、和平方公式等。
这些公式的掌握对于因式分解的顺利进行具有非常重要的作用。
1. 差平方公式$(a+b)\cdot(a-b)=a^2-b^2$2. 和平方公式$(a+b)^2=a^2+2ab+b^2$$(a-b)^2=a^2-2ab+b^2$三、因式分解在因式分解中,一个重要的概念是质因数分解。
质因数分解是指将一个正整数分解成若干个质数的积的形式。
例如,24=2×2×2×3,即24的质因数分解为$2^3\cdot3$。
在因式分解中,常用到一些方法,例如提公因式、分组、取因式等。
这些方法的运用可以简化计算过程,提高计算效率。
四、例题下面列举两个例题,帮助大家更好地理解因式分解的知识点。
1. $6x^2+5x-6$的因式分解式是解:先求出这个多项式的根,即$x_1=\frac{-5+\sqrt{5^2+4\cdot6\cdot6}}{2\cdot6}=-\frac{2}{3}$,$x_2=\frac{-5-\sqrt{5^2+4\cdot6\cdot6}}{2\cdot6}=1$。
因此,将原式分解成$(2x+3)(3x-2)$。
初二数学因式分解知识点经典总结

整式乘除与因式分解概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。
分解因式与整式乘法互为逆变形。
因式分解的方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
八年级上册数学因式分解专题训练(附答案)

14.3 因式分解专题训练(附答案)1.因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.2.因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.3.分解因式:(1)mn﹣2n;(2)4x2﹣36;(3)(a2+b2)2﹣4a2b2.4.分解因式:(1)8m2n+2mn;(2)2a2﹣4a+2;(3)3m(2x﹣y)2﹣3mn2;(4)x4﹣2x2+1.5.因式分解:(1)9x2﹣81.(2)m3﹣8m2+16m.6.分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.7.计算与因式分解:(1)a3﹣4a2+4a;(2)x4﹣16.8.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.(1)2m2﹣2n2;(2)a3b﹣4a2b+4ab.10.分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).11.分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.12.在实数范围内因式分解:(1)4y2+4y﹣2;(2)3x2﹣5xy﹣y2.13.分解因式:(1)3ab3﹣30a2b2+75a3b;(2)a2(x﹣y)+16(y﹣x).14.因式分解:(1)9abc﹣6a2b2+12abc2.(2)3x2(x﹣y)+6x(y﹣x).15.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)+b2(y﹣x).16.分解因式:(1)(x+3)2﹣25;(2)﹣x3y+6x2y﹣9xy.17.分解因式:(1)8a﹣2a3;(2)(x2+1)2﹣4x2.(1)(x﹣y)m﹣(y﹣x).(2)2x3y﹣4x2y2+2xy3.19.分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).20.把下面各式分解因式(1)x2﹣4xy+4y2;(2)4x2(x﹣y)+(y﹣x).21.因式分解:(1)x3y﹣2x2y2+xy3;(2)2a3﹣18a.22.因式分解:(1)x2﹣4;(2)6ab2﹣9a2b﹣b3.23.因式分解:(1)12m3n﹣3mn;(2)(x+y)2﹣2(x+y)+1.24.把下列各式分解因式:(1)a2b﹣4ab+4b;(2)x4﹣8x2y2+16y4.25.把下列多项式因式分解.(1)m(m﹣2)﹣3(2﹣m);(2)n4﹣2n2+1.26.分解因式:(1)m3(x﹣2)+m(2﹣x);(2)4(a﹣b)2+1+4(a﹣b).27.因式分解:(1)2(x+2)2+8(x+2)+8;(2)﹣2m4+32m².28.因式分解:(1)﹣a2+2a3﹣a4;(2)(m2﹣5)2+8(m2﹣5)+16.29.分解因式:(1)a3﹣2a2+a;(2)(2x+y)2﹣(x+2y)2.30.因式分解:(1)x2y﹣2xy2+y3;(2)(x²+y2)2﹣4x2y2.参考答案1.解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.2.解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.3.解:(1)mn﹣2n=n(m﹣2);(2)4x2﹣36=4(x2﹣9)=4(x+3)(x﹣3);(3)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.4.解:①原式=2mn(4m+1);②原式=2(a2﹣2a+1)=2(a﹣1)2;③原式=3m[(2x﹣y)2﹣n2]=3m(2x﹣y+n)(2x﹣y﹣n);④原式=(x2﹣1)2=(x+1)2(x﹣1)2.5.解:(1)9x2﹣81=9(x2﹣9)=9(x+3)(x﹣3);(2)m3﹣8m2+16m=m(m2﹣8m+16)=m(m﹣4)2.6.解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.7.解:(1)原式=(x+y)2﹣12=x2+2xy+y2﹣1;(2)原式=a(a2﹣4a+4)=a(a﹣2)2;(3)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).8.解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).9.解:(1)2m2﹣2n2=2(m2﹣n2)=2(m+n)(m﹣n);(2)a3b﹣4a2b+4ab=ab(a2﹣4a+4)=ab(a﹣2)2.10.解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).11.解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.12.解:(1)原式=(2y)2+2•2y•1+12﹣3=(2y+1)2﹣()2=(2y+1+)(2y+1﹣);(2)=3(x﹣y)(x﹣y).13.解:(1)3ab3﹣30a2b2+75a3b=3ab(b2﹣10ab+25a2)=3ab(b﹣5a)2;(2)原式=a2(x﹣y)﹣16(x﹣y)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4).14.解:(1)9abc﹣6a2b2+12abc2=3ab(3c﹣2ab+4c2);(2)3x2(x﹣y)+6x(y﹣x)=3x2(x﹣y)﹣6x(x﹣y)=3x(x﹣y)(x﹣2).15.解:(1)原式=(4x﹣y)2;(2)原式=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(a+b)(a﹣b)(x﹣y).16.解:(1)原式=(x+3﹣5)(x+3+5)=(x+8)(x﹣2);(2)原式=﹣xy(x2﹣6x+9)=﹣xy(x﹣3)2.17.解:(1)原式=2a(4﹣a2)=2a(2+a)(2﹣a);(2)原式=(x2+1﹣2x)(x2+1+2x)=(x﹣1)2(x+1)2.18.解:(1)原式=(x﹣y)m+(x﹣y)=(x﹣y)(m+1);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.19.解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).20.解:(1)原式=x2﹣2×x×2y+(2y)2=(x﹣2y)2;(2)原式=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1).21.解:(1)原式=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)原式=2a(a2﹣9)=2a(a+3)(a﹣3).22.解:(1)x2﹣4=(x+2)(x﹣2);(2)6ab2﹣9a2b﹣b3=﹣b(9a2﹣6ab+b2)=﹣b(3a﹣b)2.23.解:(1)12m3n﹣3mn=3mn(4m2﹣1)=3mn(2m﹣1)(2m+1);(2)(x+y)2﹣2(x+y)+1=(x+y﹣1)2.24.解:(1)原式=b(a2﹣4a+4)=b(a﹣2)2;(2)原式=(x2﹣4y2)2=[(x+2y)(x﹣2y)]2=(x+2y)2(x﹣2y)2.25.解:(1)原式=m(m﹣2)+3(m﹣2)=(m﹣2)(m+3);(2)原式=(n2﹣1)2=(n+1)2(n﹣1)2.26.解:(1)m3(x﹣2)+m(2﹣x)=m3(x﹣2)﹣m(x﹣2)=m(x﹣2)(m2﹣1)=m(m+1)(m﹣1)(x﹣2);(2)4(a﹣b)2+1+4(a﹣b)=[2(a﹣b)+1]2=(2a﹣2b+1)2.27.解:(1)2(x+2)2+8(x+2)+8=2[(x+2)2+4(x+2)+4]=2(x+2+2)2=2(x+4)2;(2)﹣2m4+32m2=﹣2m2(m2﹣16)=﹣2m2(m+4)(m﹣4).28.解:(1)原式=﹣a2(1﹣2a+a2)=﹣a2(1﹣a)2;(2)原式=[(m2﹣5)+4]2=(m2﹣1)2=(m+1)2(m﹣1)2.29.(1)原式=a(a2﹣2a+1)=a(a﹣1)2;(2)原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y).30.解:(1)原式=y(x2﹣2xy+y2)=y(x﹣y)2;(2)原式=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.。
人教版八年级下册数学专题复习及练习(含解析):因式分解

专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。
人教版八年级数学上册因式分解(含知识点)

因式分解 同步练习一、选择题:1.若(2x)n −81 = (4x 2+9)(2x+3)(2x −3),那么n 的值是( )A .2B . 4C .6D .82.若9x 2−12xy+m 是两数和的平方式,那么m 的值是( )A .2y 2B .4y 2C .±4y 2D .±16y 23.把多项式a 4− 2a 2b 2+b 4因式分解的结果为( )A .a 2(a 2−2b 2)+b 4B .(a 2−b 2)2C .(a −b)4D .(a+b)2(a −b)24.把(a+b)2−4(a 2−b 2)+4(a −b)2分解因式为( )A .( 3a −b)2B .(3b+a)2C .(3b −a)2D .( 3a+b)25.计算:(−21)2001+(−21)2000的结果为( ) A .(−21)2003 B .−(−21)2001 C .21 D .−21 6.已知x ,y 为任意有理数,记M = x 2+y 2,N = 2xy ,则M 与N 的大小关系为( ) A .M>N B .M≥N C .M≤N D .不能确定7.对于任何整数m ,多项式( 4m+5)2−9都能( )A .被8整除B .被m 整除C .被(m −1)整除D .被(2n −1)整除8.将−3x 2n −6x n 分解因式,结果是( )A .−3x n (x n +2)B .−3(x 2n +2x n )C .−3x n (x 2+2)D .3(−x 2n −2x n )9.下列变形中,是正确的因式分解的是( )A . 0.09m 2− 4916n 2 = ( 0.03m+ 74)( 0.03m −74) B .x 2−10 = x 2−9−1 = (x+3)(x −3)−1C .x 4−x 2 = (x 2+x)(x 2−x)D .(x+a)2−(x −a)2 = 4ax10.多项式(x+y −z)(x −y+z)−(y+z −x)(z −x −y)的公因式是( )A .x+y −zB .x −y+zC .y+z −xD .不存在11.已知x 为任意有理数,则多项式x −1−41x 2的值( ) A .一定为负数B .不可能为正数C .一定为正数D .可能为正数或负数或零二、解答题:分解因式:(1)(ab+b)2−(a+b)2(2)(a 2−x 2)2−4ax(x −a)2(3)7x n+1−14x n +7x n −1(n 为不小于1的整数)参考答案:一、选择题:1.B 说明:右边进行整式乘法后得16x 4−81 = (2x)4−81,所以n 应为4,答案为B .2.B 说明:因为9x 2−12xy+m 是两数和的平方式,所以可设9x 2−12xy+m = (ax+by)2,则有9x 2−12xy+m = a 2x 2+2abxy+b 2y 2,即a 2 = 9,2ab = −12,b 2y 2 = m ;得到a = 3,b = −2;或a = −3,b = 2;此时b 2 = 4,因此,m = b 2y 2 = 4y 2,答案为B .3.D 说明:先运用完全平方公式,a 4− 2a 2b 2+b 4 = (a 2−b 2)2,再运用两数和的平方公式,两数分别是a 2、−b 2,则有(a 2−b 2)2 = (a+b)2(a −b)2,在这里,注意因式分解要分解到不能分解为止;答案为D .4.C 说明:(a+b)2−4(a 2−b 2)+4(a −b)2 = (a+b)2−2(a+b)[2(a −b)]+[2(a −b)]2 =[a+b −2(a −b)]2 = (3b −a)2;所以答案为C .5.B 说明:(−21)2001+(−21)2000 = (−21)2000[(−21)+1] = (21)2000 •21= (21)2001 = −(−21)2001,所以答案为B . 6.B 说明:因为M −N = x 2+y 2−2xy = (x −y)2≥0,所以M≥N .7.A 说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).8.A9.D 说明:选项A ,0.09 = 0.32,则 0.09m 2−4916n 2 = ( 0.3m+74n)( 0.3m −74n),所以A 错;选项B 的右边不是乘积的形式;选项C 右边(x 2+x)(x 2−x)可继续分解为x 2(x+1)(x −1);所以答案为D .10.A 说明:本题的关键是符号的变化:z −x −y = −(x+y −z),而x −y+z≠y+z−x ,同时x −y+z≠−(y+z −x),所以公因式为x+y −z .11.B 说明:x −1−41x 2 = −(1−x+41x 2) = −(1−21x)2≤0,即多项式x −1−41x 2的值为非正数,正确答案应该是B .二、解答题:(1) 答案:a(b−1)(ab+2b+a)说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) =a(b−1)(ab+2b+a).(2) 答案:(x−a)4说明:(a2−x2)2−4ax(x−a)2= [(a+x)(a−x)]2−4ax(x−a)2= (a+x)2(a−x)2−4ax(x−a)2= (x−a)2[(a+x)2−4ax]= (x−a)2(a2+2ax+x2−4ax)= (x−a)2(x−a)2 = (x−a)4.(3) 答案:7x n−1(x−1)2说明:原式= 7x n−1•x2−7x n−1•2x+7x n−1 = 7x n−1(x2−2x+1) = 7x n−1(x−1)2.人教版八年级数学上册必须要记、背的知识点第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯⨯同字母,不同字母为积的因式. ⑵单项式⨯. ⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()nm mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).2021-2022学年度秋季八年级上学期人教版数学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优学教育 YOUXUE
2、完全平方公式法:
a2 2ab b2 ab 2 a2 2ab b2 ab 2
我们可以通过以上公式把“完全平方式”分解因 式我们称之为:运用完全平方公式分解因式 .
优学教育 YOUXUE
例1:若x2+(m-3)x+4是完全平方式,求m的值. 错解:因为x2+(m-3)x+4=x2+(m-3)x+22,x2+(m-3)x+4是完 全平方式,所以(m-3)x=2x·2. 因此m-3=4. 所以m=7.
B.a(a-2)
C.(a-2)(a-1)
D.(a-2)(a+1)
例4:已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,
则△ABC的形状为( D )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
优学教育 YOUXUE
例5:已知|x-y+2|+ x + y - 2 =0,则x2-y2的值为___-__4___.
解:-x2-4y2+4xy= -(x2+4y2-4xy) = -(x2-4xy+4y2) =-[x2-2·x·2y+(2y)2] = -(x-2y)2.
优学教育 YOUXUE
知识点5:十字交叉法分解因式
在二次三项式 ax2 bx c (a ≠0)中,如果二次项系数可以分解成两个因数之 积,即a a1a2 ,常数项可以分解成两个因数之积,即 c c1c2,把 a1,a2,c1,c2 排列如下:
优学教育 YOUXUE
例2:已知4x2+mx+36是完全平方式,则m的值为( D )
A.8
B.±8
C.24
D.±24
例3:计算或化简:(1)2022+202×196+982; (2)(a2-2)2-2a2(a2-2)+a4.
解:(1)原式=2022+2×202×98+982=(202+98)2=3002= 90000.
拆项(添项)等方法.
知识点4:公式法分解因式
1、平方差公式法:
a2 - b2 = ( a + b )( a - b )
因式分解 两个数的平方差,等于这两个数的和与这两个 数的差的乘积.
优学教育 YOUXUE
例1:下列各式不能用平方差公式分解因式的是( C )
A.-x2+y2 C.-m2-n2
B.x2-(-y)2 D.4m2- n21
(2)原式=(a2-2)2-2a2(a2-2)+(a2)2 =(a2-2-a2)2
优学教育 YOUXUE
例4:把8a3-8a2+2a进行因式分解,结果正确的是( C )
A.2a(4a2-4a+1)
B.8a2(a-1)
C.2a(2a-1)2
D.2a(2a+1)2
例5:因式分解:-x2-4y2+4xy.
例7:分解因式:(a+b)2-4a2. 解:(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a).
易错点:忽视系数变平方的形式 导致出错
例8:分解因式: a4-1. 解:a4-1 =(a2+1)(a2-1) =(a2+1)(a+1)(a-1).
要点诠释:分组分解法分解因式常用的思路有:
方法 分类
四项 分组 分解 五项 法
六项
.
分组方法 二项、二项 三项、一项
特点 ①按字母分组②按系数分组③符合公 式的两项分组
先完全平方公式后平方差公式
三项、二项
各组之间有公因式
三项、三项二项、二 项、二项
各组之间有公因式
三项、二项、一项 可化为二次三项式
优学教育 YOUXUE
.
(2)
优学教育 YOUXUE
知识点6:分组分解法分解因式
对于一个多项式的整体,若不能直接运用提公因式法、公 式法和十字交叉法进行因式分解时,可考虑分步处理的方法, 即把这个多项式分成几组,先对各组分别分解因式,然后再 对整体作因式分解——分组分解法.即先对题目进行分组, 然后再分解因式.
.
优学教育 YOUXUE
因式,另一个因式是多项式除以这个公因式所得的商。 (4)提公因式法的一般步骤:第一步找出公因式;第二步确定另一个因式;
第三步写成积的形式。
优学教育 YOUXUE
2.易错警示: (1)找底数互为相反数的幂的公因式时符号出错; (2)提取公因式后,漏掉另一个因式中商是1的项; (3)提取公因式后,多项式中各项还含有公因式。
例6:小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:
a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:昌、爱、
我、宜、游C、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信
息可能是( )
A.我爱美 B.宜昌游
C.爱我宜昌
D.美我宜昌
优学教育 YOUXUE
例1:分解因式:(1) 【答案】解:(1)
(2) (2)
例2:分解因式: x2 x2 8 x2 x 12
解:
x2
2
x
8
x2
x
12
= x2 x 2x2 x 6
= x 1 x 2 x 2 x 3
优学教育 YOUXUE
例3:分解因式:(1) (3)
【答案】解:(1) (2 ) (3)
C.5a2b(b-a)
D.以上均不正确
优学教育 YOUXUE
知识点3:提公因式法分解因式
1.提公因式法: 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而 将多项式化成两个因式乘积的形式。这种因式分解的方 法叫做提公因式法。用字母表示:ma+mb+mc=m(a+b+c). 要点: (1)把公因式提到括号外面,与剩下的多项式写成积的形式。 (2)实质上是逆用乘法的分配律. (3)把一个多项式分解成两个因式积的形式,其中的一个因式是各项的公
优学教育 YOUXUE
第四章:因式分解
优学教育 YOUXUE
知识点2:提公因式
一、公因式的定义:一个多项式各项都含有的相同因式 ,叫做这 个多项式各项的公因式
怎样确定多项式各项的公因式?(三定) 定系数:公因式的系数是多项式各项系 数的最大公约数; 定字母:字母取多项式各项中都含有的相同的字母; 定指数:相同字母的指数取各项中最小的一个,即字母最低次幂;
B.(x-y)(x-y-1)
C.(x+y)(x-y+1)
D.(x+y)(x-y-1)
.
优学教育 YOUXUE
例3分解因式:-x2-2xy+1-y2.
导引:按分组分解法,第一、二、四项提出负号后符合完全平 方式,再与“1”又组成平方差公式.
解:-x2-2xy+1-y2 =1-(x2+2xy+y2) =1-(x+y)2 =(1+x+y)(1-x-y)
=-( 24x3-12x2+28x)
=-(4x·6x2-4x·3x+4x·7)
= -4x(6x2-3x+7).
当多项式第一项的系数是负数时, 通常先提出“—”号,使括号内 第一项的系数成为正数.在提出 “—”号时,多项式的各项都要 变号.
优学教育 YOUXUE
例3:利用提公因式法解答下列各题:
(1)计算:978×85+978×7+978×8; (2)已知2x-y= 1 ,xy=2,求2x4y3-x3y4的值.
优学教育 YOUXUE
【例1总结升华】确定公因式一定要从系数、字母及指数三方面入手,公 因式可以是一个数,也可以是一个单项式,还可以是一个多项式,互为相反 数的因式可变形为公因式.
例2:式子15a3b3(a-b),5a2b(b-a)的公因式是( C )
A.5ab(b-a)
B.5a2b2(b-a)
9
例2:下列各式中,可用平方差公式分解因式的有( B ) ①-a2-b2;②16x2-9y2;③(-a)2-(-b)2;
④-121m2+225n2;⑤(6x)2-9(2y)2.
A.5个
B.4个
C.3个 D.2个
优学教育 YOUXUE
例3:将(a-1)2-1分解因式,结果正确的是( B )
A.a(a-1)
错解解析:错在只注意到中间项的符号是正,而忽视中间项的符号是负的情况,产
生漏解.(要注意中间项的符号有“+”“-”两种情形)
正确解法:因为x2+(m-3)x+4=x2+(m-3)x+22,x2+(m-3)x+4是完 全平方式, 所以(m-3)x=±2x·2. 所以(m-3)x=±4x. 因此m-3=±4. 所以m=7或 m=-1.
例1:下式用提公因式法分解因式的结果是否正确? 4x2y-6xy2+2xy=2xy(2x-3y);
不正确,理由:提取公因式后剩下的因式中有常数项“1”; 正确的是:4x2y-6xy2+2xy=2xy(2x-3y+1).
优学教育 YOUXUE
例2:因式分解:-24x3+12x2-28x
解:-24x3+12x2-28x
3 导引:(1)题每一项都含有公因数978,把978作为公因式提出;
(2)题先对所求式提取公因式,再运用整体思想;整体代入计算.
解: (1)原式=978×(85+7+8)=978×100=97
800.
(2)2x4y3-x13y4=x3y3(2x-y)=(xy)3(2x-1 y).8 .
3
33
3
优学教育 YOUXUE
按斜线交叉相乘,再相加,得到 a1c2 a2c1,若它正好等于二次三项式 ax2 bx c
的一次项系数b,即a1c2 a2c1 b ,那么二次三项式就可以分解为两个因式 a1x c1与 a2x c2 之积,即ax2 bx c a1x c1 a2x c2
优学教育 YOUXUE
例1:把多项式4x2-2x-y2-y用分组分解法分解因式,正确的分组方法应 该是( B )