小学奥数-最大与最小教师版

合集下载

【教师版】小学奥数5-4-3 约数与倍数(三).专项练习及答案解析

【教师版】小学奥数5-4-3 约数与倍数(三).专项练习及答案解析

1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。

2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各知识点拨教学目标5-4-3.约数与倍数(三)个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。

小学奥数教师版-6-1-18 年龄问题(一)

小学奥数教师版-6-1-18 年龄问题(一)

请;6-1-8.年龄问题(一)教学目标1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.知识精讲知识点说明:一、年龄问题变化关系的三个基本规律:1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量;3.两个人之间的年龄差不变二、年龄问题的解题要点是:1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系.2.关键:抓住“年龄差”不变.3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式.4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律:1.两人年龄的差是不变的量;2.两个人的年龄增加量是不变的;3.两人年龄的倍数关系是变化的量;年龄问题的解题正确率保证:验算!例题精讲年龄差不变【例1】小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁?【考点】年龄问题【难度】1星【题型】解答【解析】这道题有两种解答方法:方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612+=(岁);妈妈今年36岁,再过6年是(366-=(岁).+)岁,也就是42岁,那时,妈妈比小卉大421230方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366-)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.列式:36630-=(岁),再过6年,小卉读初中时,妈妈比小卉大30岁.【答案】30岁【例2】爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?【考点】年龄问题【难度】1星【题型】解答【解析】五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年请;龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题.爸爸的年龄:726239+÷=()(岁)妈妈的年龄:39633-=(岁)【答案】爸爸39岁,妈妈33岁【例3】姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?40 岁年龄差若干年9岁13岁弟弟姐姐【考点】年龄问题【难度】2星【题型】解答【解析】用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394-=(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.弟弟的年龄:(404)218-÷=(岁),姐姐的年龄:18422+=(岁).【答案】弟弟年龄18岁,姐姐22岁【例4】欢欢对乐乐说:“我比你大8岁,2年后,我的年龄是你的年龄的3倍。

五年级奥数第20讲-最小公倍数(教)

五年级奥数第20讲-最小公倍数(教)

学科教师辅导讲义知识梳理一、约数和倍数的定义整数A能被整数B整除,A叫做B的倍数,B就叫做A的约数(在自然数的范围内)。

如:2和6是12的约数,12是2的倍数,12也是6的倍数;18的约数有1、18、2、9、3、6。

注意:①一个数的约数个数是有限的,一个数的倍数有无数个。

②任何数都有最小的约数1,最大的约数本身,最小的倍数也是本身。

③一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

④因数和约数的区别:约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。

如果数a与数b 相乘的积是数c,a与b都是c的因数。

二、 2、3和5倍数的特征2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数5的倍数的数特征是个位是0或53的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数三、质数与合数(1)只有1和本身两个因数的数叫做质数(或素数)(2)除了1和本身外还有其它因数的数叫做合数(3)1既不是质数,也不是合数(4)100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

(5)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

记作[2,3]=6。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

注意:最大公约数×最小公倍数=两数的乘积,即(a,b)×[a,b]=a×b。

5年级奥数讲义(最大公约数最小公倍数)

5年级奥数讲义(最大公约数最小公倍数)

第五讲最大公因数与最小公倍数 (教师版)例1、437与323的最大公约数是多少?基本概念:1、公约数和最大公约数 几个数公有的约数........,叫做这几个数的公约数..........;其中最大的一个.......,叫做这几个数的最大公约数............。

例如:12的约数有1,2,3,4,6,12;30的约数有1,2,3,5,6,10,15,30。

12和30的公约数有1,2,3,6,其中6是12和30的最大公约数。

一般地我们用(a,b )表示a,b 这两个自然数的最大公约数,如(12,30)=6。

如果(a,b )=1,则a,b 两个数是互质数。

2、公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

例如:12的倍数有12,24,36,48,60,72,… 18的倍数有18,36,72,90,…12和18的公倍数有:36,72…其中36是12和 18的最小公倍数。

一般地,我们用[a,b]表示自然数,a,b 的最小公倍数,如[12,18]=36。

3、最大公约数与最小公倍数的求法A .最大公约数求两个数的最大公约数一般有以下几种方法 (1)分解质因数法 (2)短除法 (3)辗转相除法 (4)小数缩倍法 (5)公式法前两种方法在数学课本中已经学过,在这里我们主要介绍辗转相除法。

当两个整数不容易看出公约数时(一般是数字比较大),我们可以合用辗转相除法。

B .最小公倍数求几个数的最小公倍数的方法也有以下几种方法: (1)分解质因数法 (2)短除法 (3)大数翻倍法(4)a×b =(a,b )×[a,b]上面的公式表示:两个数的乘积等于这两个数的最大公约数和最小公倍数的乘积。

例2、24871和3468的最小公倍数是多少?练习254216933的最简分数是多少?例3、把一块长90厘米,宽42厘米的长方形铁板剪成边长都是整厘米,面积都相等的小正方形铁板,恰无剩余。

一年级奥数第10讲 简单的判断 - 教师版

一年级奥数第10讲  简单的判断 - 教师版

第10 讲简单的判断【专题导引】三个小朋友在比年龄:小明比小林大,小红比小林小,你知道他们谁大谁小吗?在日常生活中,我们经常会遇到这类问题。

所有这些问题的解决,需要我们认真地审题,仔细地分析,进行有根有据的推理,做出正确的判断,最终找到问题的答案。

判断推理和我们赏见的一些数学题不同,不需要或很少用到计算。

解答时只要认真审题,仔细分析,通过列表等方法,进行有根有据的推理,就一定能找到最后的结论,做出准确的判断。

【典型例题】【B1】三个小朋友比身高,小丽比小婷高,小平比小丽高,三人中谁最高?解答:小平最高。

【试一试】黑兔、白兔和灰兔三只兔子在赛跑,黑兔说:“我跑得不是最快的,但比白兔快”。

请你说说,谁跑得最快?谁跑得最慢?解答:灰兔最快,白兔最慢。

【B2】有三种水果,请根据动物所说的话,猜一猜,哪种水果最重?哪种水果最轻?解答:香蕉最重,桃最轻。

【试一试】根据下面三句话,猜一猜三位老师的年龄的大小。

(1)王老师说:“我比李老师小”(2)张老师说:“我比王老师大”(3)李老师说:“我比张老师小”解答:张老师年龄最大,李老师次之,王老师年龄最小。

【B3】4 辆汽车进行了 4 场比赛,每场比赛结果如下:(1)1 号汽车比 2 号汽车跑得快;(2)2 号汽车比 3 号汽车跑得快;(3)3 号汽车比 4 号汽车跑得慢;(4)4 号汽车比 1 号汽车跑得快。

哪辆汽车跑得最快?解答:4 号汽车跑得最快。

【试一试】甲、乙、丙、丁进行了四场赛跑,每场比赛结果如下:(1)甲比乙跑得快;(2)乙比丙跑得快;(3)丙比丁跑得慢;(4)丁比甲跑得快;谁跑得最快?谁最慢呢?解答:丁跑得最快,丙跑得最慢。

【A1】明明、亮亮和刚刚三个好朋友的爸爸,一位是工人、一位是医生、一位是解放军战士。

请你根据下面三句话,猜一猜他们爸爸各是谁?(1)明明的爸爸不是工人;(2)亮亮的爸爸不是医生;(3)明明的爸爸和亮亮的爸爸正听一位当解放军的爸爸讲战斗故事。

三年级奥数第16讲数字趣谈(教师版)

三年级奥数第16讲数字趣谈(教师版)

三年级奥数第16讲数字趣谈(教师版)教学目标尝试使用探索法和分类统计法解决自然数列计数问题知识梳理在日常生活中,0、1、2、3、、4、5、6、7、8、9是我们最常见、最熟悉的数,由这些数字构成的自然数列中也有很多有趣的计数问题,动动脑筋,你就会找到答案。

本周的习题,大都是关于自然数列方面的计数问题,解题的方法一般是采用尝试探索法和分类统计法,相信你们能很好地掌握它。

典例分析考点一:枚举计数例1、在10和40之间有多少个数是3的倍数?【解析】由尝试法可求出答案:3×4=12 3×5=15 3×6=18 3×7=21 3×8=243×9=27 3×10=30 3×11=33 3×12=36 3×13=39例2、在10和1000之间有多少个数是3的倍数?【解析】求10和1000之间有多少个数是3的倍数,用一一列举的方法显得很麻烦。

可以这样思考:10÷3=3……1 说明10以内有3个数是3的倍数;1000÷3=333……1 说明1000以内有333个数是3的倍数。

333-3=330 说明10——1000之间有330个数是3的倍数。

例3、从1——9九个数中选取,将11写成两个不同的自然数之和,有多少种不同的写法? 【解析】将1——9的九个自然数从小到大排成一列:1,2,3,4,5,6,7,8,9先看最小的1和最大的9相加之和为10不符合要求,但用第二小的2和最大的9相加,和为11符合要求,得11=2+9。

依次做下去,可得11=3+8,11=4+7,11=5+6。

共有4种不同的写法。

例4、2000年2月的一天,有三批同学去植树,每批的人数不相等,没有一个人单独去的,三批人数的乘积正好等于这一天的日期。

想一想,这三批学生各有几人?【解析】2000年2月有29天,三批同学人数的乘积不能大于29,我们可以先用最小的几个数试乘(1除外):2×3×4=24,24<29;2×3×5=30,30>29,不合题意。

【精品】五年级奥数培优教程讲义第20讲最小公倍数(教师版)

【精品】五年级奥数培优教程讲义第20讲最小公倍数(教师版)

第20讲最小公倍数團教学目标掌握倍数和最小公倍数的概念,最小公倍数的求法;圈会利用最小公倍数解决实际问题知识梳理、约数和倍数的定义整数A能被整数B整除,A叫做B的倍数,B就叫做A的约数(在自然数的范围内)。

女口:2和6是12的约数,12是2的倍数,12也是6的倍数;18 的约数有1、18、2、9、3、6。

注意:①一个数的约数个数是有限的,一个数的倍数有无数个。

②任何数都有最小的约数1,最大的约数本身,最小的倍数也是本身。

③一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。

④因数和约数的区别:约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。

如果数a与数b相乘的积是数c,a与b都是c的因数。

二、2、3和5倍数的特征2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数5的倍数的数特征是个位是0或53的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数三、质数与合数(1)只有1和本身两个因数的数叫做质数(或素数)(2)除了1和本身外还有其它因数的数叫做合数(3)1既不是质数,也不是合数(4)100 以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

(5)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,女口2 的倍数有2、4、6、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

记作[2,3]=6。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

小学奥数最大与最小教师版

小学奥数最大与最小教师版

第七讲:最大与最小模块一、数论中的极端思想【例1】1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。

那么这两个四位数各是多少?【解析】8531和7642。

高位数字越大,乘积越大,所以它们的千位分别是8,7,百位分别是6,5。

两数和一定时,这两数越接近乘积越大,所以一个数的前两位是85,另一个数的前两位是76。

同理可确定十位和个位数.【巩固】两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【解析】将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。

由此可知把15分成7与8之和,这两数的乘积最大。

结论:如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。

特别地,当这两个数相等时,他们的乘积最大.【巩固】两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【解析】48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。

所以,两个自然数的乘积是48,共有以下5种情况:48=1×48,1+48=49;48=2×24,2+24=26;48=3×16,3+16=19;48=4×12,4+12=16;48=6×8,6+8=14。

两个因数之和最小的是6+8=14。

结论:两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。

【例2】有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数中最大的自然数是多少?【解析】要想使自然数尽量大,数位就要尽量多,所以数位高的数值应尽量小,故10112358满足条件.如果最前面的两个数字越大,则按规则构造的数的位数较少,所以最前面两个数字尽可能地小,取1与0.【例3】有一类自然数,它的各个数位上的数字之和为2003,那么这类自然数中最小的是几?【解析】一个自然数的值要最小,首先要求它的数位最小,其次要求高位的数值尽可能地小.由于各数位上的和固定为2003,要想数位最少,各位数上的和就要尽可能多地取9,而2003÷9=222……5,所以满足条件的最小自然数为:2229599...9个【例 4】 将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 12 (9899100)从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【解析】 要得到最大的数,左边应尽量多地保留9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块一、数论中的极端思想【例 1】 1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。

那么这两个四位数各是多少?【解析】 8531和7642。

高位数字越大,乘积越大,所以它们的千位分别是8,7,百位分别是6,5。

两数和一定时,这两数越接近乘积越大,所以一个数的前两位是85,另一个数的前两位是76。

同理可确定十位和个位数.【巩固】 两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【解析】 将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。

由此可知把15分成7与8之和,这两数的乘积最大。

结论:如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。

特别地,当这两个数相等时,他们的乘积最大.【巩固】 两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【解析】 48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。

所以,两个自然数的乘积是48,共有以下5种情况:48=1×48,1+48=49;48=2×24,2+24=26;48=3×16,3+16=19;48=4×12,4+12=16;48=6×8,6+8=14。

两个因数之和最小的是6+8=14。

结论:两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。

【例 2】 有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数中最大的自然数是多少?【解析】 要想使自然数尽量大,数位就要尽量多,所以数位高的数值应尽量小,故10112358满足条件.如果最前面的两个数字越大,则按规则构造的数的位数较少,所以最前面两个数字尽可能地小,取1与0.【例 3】 有一类自然数,它的各个数位上的数字之和为2003,那么这类自然数中最小的是几?【解析】 一个自然数的值要最小,首先要求它的数位最小,其次要求高位的数值尽可能地小.由于各数位上的和固定为2003,要想数位最少,各位数上的和就要尽可能多地取9,而2003÷9=222……5,所以满足条件的最小自然数为:2229599...9个第七讲:最大与最小【例 4】将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 12 (9899100)从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【解析】要得到最大的数,左边应尽量多地保留9。

因为1~59中有109个数码,其中有6个9,要想左边保留6个9,必须划掉1~59中的109-6=103(个)数码,剩下的数码只有192-103=89(个),不合题意,所以左边只能保留5个9,即保留1~49中的5个9,划掉1~49中其余的84个数码。

然后,在后面再划掉16个数码,尽量保留大数(见下图):所求最大数是9999978596061…99100。

同理,要得到最小的数,左边第一个数是1,之后应尽量保留0。

2~50中有90个数码,其中有5个0,划掉其余90-5=85(个)数码,然后在后面再划掉15个数码,尽量保留小数(见下图):所求最小数是100000123406162…99100。

【例 5】把17分成几个自然数的和,怎样分才能使它们的乘积最大?【解析】假设分成的自然数中有1,a是分成的另一个自然数,因为1×a<1+a,也就是说,将1+a作为分成的一个自然数要比分成1和a两个自然数好,所以分成的自然数中不应该有1。

如果分成的自然数中有大于4的数,那么将这个数分成两个最接近的整数,这两个数的乘积大于原来的自然数。

例如,5=2+3<2×3,8=3+5<3×5。

也就是说,只要有大于4的数,这个数就可以再分,所以分成的自然数中不应该有大于4的数。

如果分成的自然数中有4,因为4=2+2=2×2,所以可以将4分成两个2。

由上面的分析得到,分成的自然数中只有2和3两种。

因为2+2+2=6,2×2×2=8,3+3=6,3×3=9,说明虽然三个2与两个3的和都是6,但两个3的乘积大于三个2的乘积,所以分成的自然数中最多有两个2,其余都是3。

由此得到,将17分为五个3与一个2时乘积最大,为3×3×3×3×3×2=486。

结论:整数分拆的原则:不拆1,少拆2,多拆3。

【巩固】把14拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大?【解析】14拆成3、3、3、3、2时,积为3×3×3×3×2=162最大.【例 6】某国家的货币中有1元、3元、5元、7元、9元五种,为了能支付1元、2元……100元的钱数(整数元),那么至少需要准备货币多少张?【解析】为了使货币越少越好,那么9元的货币应该尽量多才行。

当有10张9元时,容易看出1、1、3、5这四张加上后就可以满足条件。

当9元的货币超过11张时,找不到比14张更少的方案。

当9元的货币少于10张时,至少有19元需要由5元以下的货币构成,且1元的货币至少2张,这样也找不到比14张更少的方案。

综上分析可以知道,最少需要10张9元的、2张1元的、1张3元的、1张5元的,共14张货币。

【例 7】在五位数22576的某一位数码后面再插入一个该数码,能得到的六位数中最大的是几?【解析】225776【巩固】在六位数865473的某一位数码后面再插入一个该数码,能得到的七位数中最小的是几?【解析】8654473.【例 8】设自然数n有下列性质:从1、2……n中任取50个不同的数,其中必有两数之差等于7,这样的n最大不能超过多少?【解析】当n=98时,将1、2……98按每组中两数的差为7的规则分组:{1,8}、{2、9}、……{7,14}、{15,22}……{90,97}、{91、98}。

一共有49组,所以当任取50个数时,必有两个数在同一组,他们的差等于7。

当n=99时,取上面每组中的前一个数,即1、2……7、15……21、29……35、43……49、57……63、71……77、85……91和99一共是50个数,而它们中任2个的差不为7。

因此n最大不能超过98。

【例 9】在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。

要求:(1)算式的结果等于37;(2)这个算式中的所有减数(前面添了减号的数)的乘积尽可能地大。

那么,这些减数的最大乘积是多少?【解析】 把10个数都添上加号,它们的和是55,如果把其中一个数的前面的加号换成减号,使这个数成为减数,那么和数将要减少这个数的2倍。

因为55-37=18,所以我们变成减数的这些数之和是18÷2=9。

对于大于2的数来说,两数之和总是比两数乘积小,为了使这些减数的乘积尽可能大,减数越多越好(不包括1)。

9最多可拆成三数之和2+3+4=9,因此这些减数的最大乘积是2×3×4=24,添上加、减号的算式是:10 + 9+ 8+ 7 + 6+ 5- 4- 3- 2 +1=37。

模块二、智巧趣题中的极端思想【例 10】 99个苹果要分给一群小朋友,每一个小朋友所分得的苹果数都要不一样,且每位小朋友至少要有一个苹果.问:这群小朋友最多有几位?【解析】 1+2+3+…+13=91<99,1+2+3+…+14=105>99,说明若13位各分得1,2,3,…,13个苹果,未分完99个,若14位各分得1,2,3,…,14个苹果,则超出99个.因91+8=99,在13位上述分法中若把剩下的8个苹果分别加到后8位人上,就可得合题意的一个分法:13人依次分1,2,3,4,5,7,8,9,lO,11,12,13,14个.所以最多有13位小朋友.(注:13人的分法不唯一)【例 11】 (第四届希望杯1试)一位工人要将一批货物运上山,假定运了5次,每次的搬运量相同,运到的货物比这批货物的35多一些,比34少一些。

按这样的运法,他运完这批货物最少共要运 次,最多共要运 次。

【解析】 这道题目用到了极值判断法,体会极值判断法:假定5次运的恰好等于53,则每一次最少运53÷5=253,所以最多运1÷253=183≈9次; 假定5次运的恰好等于34,则每一次最多运34÷5=320,所以最少运1÷320=263≈7次.【例 12】 某学校,星期一有15名学生迟到,星期二有12名学生迟到,星期三有9名学生迟到,如果有22名学生在这三天中至少迟到过一次,则这三天都迟到的学生最多有多少人?【解析】 三天都迟到的要尽量多,则将迟到的22人次分为仅迟到一次和三天都迟到的.可求出三天都迟到的学生最多有(15+12+9-22)÷2=7(人).【巩固】 某次数学、英语测试,所有参加测试者的得分都是自然数,最高得分198,最低得分169,没有得193分、185分和177分,并且至少有6人得同一分数,参加测试的至少多少人?【解析】 得分数共有198-169+1-3=27(种),当只有6个人得分相同时,参加测试的人最少,共有27+6-1=32(人).【例 13】 149位议员中选举一位议长,每人可投一票.候选人是A,B,C 三人.开票中途,A 已得45票,B已得20票,C 已得35票.如果票数最多者当选,那么A 至少再有多少票才能一定当选?【解析】 45+20+35=100,还有149-100=49(票).45-35=10,如果49票中有10票都给C,49-10=39,那么A至少还要有20票才能当选.【例 14】 如图,司机开车按顺序到五个车站接学生到学校,每个站都有学生上车.第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半.车到学校时,车上最少有多少学生?【解析】 因为每个站都有学生上车,所以第五站至少有1个学生上车.假如第五站只有一个学生上车,那么第四、三、二、一站上车的人数分别是2,4,8,16个.因此五个站上车的人数共有1+2+4+8+16=31(人),很明显,如果第五站有不止一个学生上车,那么上车的总人数一定多于31个.所以,最少有31个学生.【例 15】某公共汽车从起点开往终点站,中途共有15个停车站。

相关文档
最新文档