全等三角形做辅助线-倍长中线,截长补短课程教案
人教版数学八年级上册第12章全等三角形专题课截长补短法教学设计

-通过小组间的交流,分享解题思路和经验,提高学生之间的相互学习和借鉴。
4.实践操作,加深理解:
-安排尺规作图实践,让学生动手操作,加深对截长补短法的理解和记忆。
-教师巡回指导,及时纠正学生在作图和证明过程中的错误,确保学习效果。
5.反思评价,促进成长:
-在复杂问题中识别应用截长补短法的时机,并能够结合全等三角形的判定定理进行有效证明。
-对于一些非标准图形,能够创造性地运用截长补短法,培养学生的创新思维和解决问题的能力。
(二)教学设想
1.创设情境,引入新课:
-通过展示一些生活中的实际例子,如建筑设计中的几何图形,引出全等三角形的应用。
-设计问题,让学生在实际情境中发现全等三角形,并感受到截长补短法在解决问题时的便捷性。
2.教学实施:
-分组讨论:将学生分成小组,每组分配一个或多个问题,要求运用截长补短法解决。
-教师巡回指导:观察学生的讨论过程,适时给予提示和指导,引导学生深入思考。
-小组分享:鼓励各小组展示解题过程和结果,其他小组给予评价和反馈。
(四)课堂练习
1.教学设计:设计具有梯度性的练习题,让学生独立完成,巩固所学知识。
-鼓励学生在课后进行反思,总结截长补短法在解决问题时的优势和局限。
-通过自我评价和同伴评价,帮助学生认识自身的进步和需要提升的地方,促进他们的个性化发展。
四、教学内容与过程
(一)导入新课
1.教学设计:通过生活实例和问题情境,自然导入新课——截长补短法在全等三角形中的应用。
-展示图片:呈现一些包含全等三角形的生活场景,如建筑物的立面图、拼图游戏等。
人教版数学八年级上册第12章全等三角形专题课截长补短法教学设计
人教版数学八年级上册第12章全等三角形专题课截长补短法优秀教学案例

3.引导学生运用数学符号和语言,表达和阐述解题过程和思路。例如,要求学生用数学语言描述全等三角形的判定方法,并解释其原理。
4.鼓励学生积极思考和解决问题,培养他们的自主学习能力和问题解决能力。例如,在解决问题的过程中,引导学生独立思考,寻找解决方案,并进行验证。
(三)小组合作
1.组织学生进行小组讨论和实践活动,培养他们的团队协作能力和交流能力。例如,将学生分成小组,让他们共同解决一个实际问题,要求学生在讨论中交流思路、分享解题方法。
在全等三角形专题课中,学生已经学习了全等三角形的定义、性质和判定方法。通过对全等三角形的性质和判定方法的学习,学生已经能够熟练地运用SSS、SAS、ASA、AAS四种判定方法判断两个三角形是否全等。然而,在解决实际问题时,学生往往需要灵活运用多种方法,而截长补短法作为一种特殊的方法,可以帮助学生更加简洁地解决问题。
3.小组合作培养团队协作能力:组织学生进行小组讨论和实践活动,培养他们的团队协作能力和交流能力。通过小组合作,学生能够在合作中发现问题、解决问题,并培养批判性思维和自我反思能力。
4.反思与评价提高自我认知:教师引导学生对自己的学习过程进行反思,总结经验和教训。通过互评和自我评价,学生能够培养批判性思维和自我反思能力,提高自我认知。
2.引导学生通过观察、分析和归纳,发现全等三角形的性质和判定方法。例如,通过展示两个全等三角形的图形,让学生观察并分析它们的性质,引导学生归纳出全等三角形的判定方法。
中线倍长法及截长补短经典讲义

几何证明中常用辅助线(一)中线倍长法:例1、求证:三角形一边上的中线小于其他两边和的一半。
已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线, 求证:∠C=∠BAE 作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 结论2、已知:如图,?ABC 中,?C=90?,CM ?AB 于M ,AT 平分?BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF (二)截长补短法于点D ,AB +BC =2BD . 求证:∠BAP +∠BCP =180°.分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造.DABCMTEC图2-2APN证明:过点P 作PE 垂直BA 的延长线于点E ,如图3-2∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中,⎩⎨⎧==BPBP PDPE上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。
让掌握学生掌握好“截长补短法”对于更好的理解数学中的化归思想有较大的帮助。
作业:1、已知:如图,ABCD 是正方形,∠FAD =∠FAE .求证:BE +DF =AE .2、五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE F EDCBAC(三)其它几种常见的形式:1、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。
八年级上册全等三角形中 倍长中线、截长补短辅助线做法(导学案,,无答案)

全等三角形常见辅助线的作法一倍长中线法倍长中线法:就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长××到某点,使什么等于什么(延长的那一条),用SAS证全等(对顶角)方法总结:遇中线,要倍长,倍长之后__构造全等三角形_,转移边、转移角,然后和已知条件重新组合解决问题【例题精讲】例1、如图1,在△ABC中,AD为BC边上的中线.求证:AB+AC>2AD.分析:①因为AD为中线,延长AD至点E,使DE=AD,连接CE;②进而利用全等三角形的判定(SAS)△ABD≌△ECD;③由全等可得_AB=EC__;证明:延长AD至E,使DE=AD,连接EC∵AD是中线∴DC=DBDC=DB∴△CDE≌△BDA(SAS)∴CE=AB在△AEC中CE+AC>AE,CE=AB∴AB+AC>AE ∵DE=AD∴AE=2AD ∵AB+AC>AE ∴AB+AC>2AD例2如图CB,CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB.求证:CE=2CD.例3、 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.例4、如图,在ABC ∆中,AD 是BC 边的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于点F .求证:AF =EFBCB C二、截长补短法截长:1.过某一点作长边的垂线 2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短:1.延长短边 2.通过旋转等方式使两短边拼合到一起。
【例题精讲】例1.如图,△ABC中,∠ACB=2∠B,∠1=∠2 求证:AB=AC+CD证法一:(补短法)延长AC至点F,使得AF=AB在△ABD和△AFD中∴△ABD≌△AFD(SAS)∴∠B=∠F∵∠ACB=2∠B∴∠ACB=2∠F而∠ACB=∠F+∠FDC∴∠F=∠FDC∴CD=CF而AF=AC+CF∴AF=AC+CD∴AB=AC+CD证法二:(截长法)在AB上截取AE=AC,连结DE在△AED和△ACD中∴△AED≌△ACD(SAS)例2、如图,在△ABC中,AD为BC边上的高,∠B=2∠C.求证:CD=AB+BD.例3、如图,AD//BC ,BE 、AE 分别是∠ABC 、∠BAD 的平分线,点E 在CD 上,求证:AB=AD+BC例4、如图,△ABC 中,AB >AC ,AD 是∠BAC 的角平分线,P 是线段AD 上任一点除A 、D 外的任意一点。
全等三角形之手拉手模型、倍长中线-截长补短法(西城专用)

证明举例教案(提高)1)等变换中的“旋转”.2)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.3)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;(遇垂线及角平分线时延长垂线段,构造等腰三角形)4)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶常见辅助线的作法有以下几种:.手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°(3)OA平分∠BOC变形:例 1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)DFB AGB ∆≅∆ (5)CFB EGB ∆≅∆ (6)BH 平分AHC ∠ (7)AC GF //变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD , 问:(1)DBC ABE ∆≅∆是否成立? (2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度? (4)HB 是否平分AHC ∠?倍长与中点有关的线段倍长中线类☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。
数学人教版八年级上册《倍长中线法与截长补短法》教学设计

《倍长中线法与截长补短法》教学设计教学目标:知识与技能:掌握运用倍长中线法与截长补短法构造全等三角形、解决几何图形问题的方法。
过程与方法:通过学生的自主合作探究,灵活运用倍长中线法与截长补短法解决问题。
情感态度与价值观:通过学生间的合作交流,增强学生的学习信心。
教学重点:倍长中线法与截长补短法的应用。
教学难点:如何运用倍长中线法与截长补短法构造全等三角形解决问题。
教学准备:多媒体课件教学过程:一、问题导入课前互动:同学们,想想我们这段时间学习全等三角形的过程中,遇到的难点是什么呢?(辅助线)课件出示初中几何常见辅助线做法口诀(让学生读,体会其中的含义)问:在三角形中常见的辅助线有哪些?课件展示。
教师引入本节学习内容:倍长中线法与截长补短法(板书课题)二、探究活动,解决问题活动一:倍长中线法在三角形中有中线时,常延长加倍中线,构造全等三角形。
出示例题:已知:如图1,在△ABC中,AD为BC边上的中线.求证:2AD<AB+AC教师引导学生分析解题思路,出示辅助线做法,学生合作解决问题。
课件展示完整解题过程:证明:延长AD至E,使DE=AD,连接CE.∵AD为BC边的中线∴BD=CD在△ADB和△EDC中AD=DE∠ADB=∠EDCBD=CD∴△ADB≌△EDC (SAS)∴AB=CE∵AD+DE<CE+AC∴2AD<AB+AC练习巩固:在△ABC中,分别以AB、AC为直角边向外做等腰直角三角形△ABD和△ACE,F为BC边的中点,FA的延长线与DE交于点G.求证:(1)DE=2AF (2)FG⊥DE教师引导学生画出辅助线,学生讨论解决问题。
活动二:截长补短法课件出示截长补短法的辅助线做法与应用:要证明两条线段之和等于第三条线段,可以采取“截长补短”法。
截长法即在较长线段上截取一段等于两较短线段中的一条,再证剩下的一段等于另一段线段。
所谓补短,即把两短线段补成一条线段,再证它与长线段相等。
第12章全等三角形常见辅助线做法(教案)

最后,我意识到教学过程中需要不断调整方法和节奏,以适应不同学生的学习需求。在接下来的课程中,我将更加注重个体差异,提供个性化的指导和支持,确保每位学生都能在全等三角形的学习中取得进步。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“全等三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的判定方法及其基本概念。全等三角形是指在大小和形状上完全相同的两个三角形,其判定方法有SSS、SAS、ASA、AAS等。这些判定方法在几何证明和解题中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过作辅助线,利用全等三角形的判定方法解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和辅助线的常见作法这两个重点。对于难点部分,我会通过具体例题和图形分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用模型或工具作辅助线,观察全等三角形的形成。
初二数学尖子班第六讲:全等三角形辅助线之倍长中线与截长补短

第六讲 全等三角形辅助线之倍长中线与截长补短一、全等三角形知识点复习 1.判定和性质② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 性质 1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
(以上可以简称:全等三角形的对应元素相等) 7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3、当图中出现两个以上等边三角形时,应首先考虑用SAS 找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 做题技巧一般来说考试中线段和角相等需要证明全等。
因此我们可以来采取逆思维的方式。
来想要证全等,则需要什么条件另一种则要根据题目中给出的已知条件,求出有关信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,. 教学过程
一、复习预习
全等三角形的判定定理:
1、SSS:三边对应相等的两个三角形全等
2、SAS:两边以及它们的夹角对应相等的两个三角形全等
3、AAS:两角以及其中一角的对边对应相等的两个三角形全等
4、ASA:两角以及它们的夹边对应相等的两个三角形全等
5、HL:在直角三角形中,直角边与斜边对应相等的两个三角形全等
,.
二、知识讲解
考点1
遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.
,. 考点2
截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法适合于证明线段的和、差、倍、分等类的题目.
,.
三、例题精析
【例题1】
【题干】已知:如图3所示,AD为△ABC的中线,求证:AB+AC>2AD。
A
D
B C
E
3
,. 【答案】
证明:延长AD至E,使DE=AD,连接EC
∵AD是中线
∴DC=DB
∵DE=AD,∠CDE=∠BDA,DC=DB
∴△CDE≌△BDA
∴CE=AB
在△AEC中CE+AC>AE,CE=AB
∴AB+AC>AE
∵DE=AD
∴AE=2AD
,. ∵AB+AC>AE
∴AB+AC>2AD
【解析】
分析:要证AB+AC>2AD,由图形想到:AB+BD>AD,AC+CD>AD,所以有:AB+AC+ BD+CD > AD +AD=2AD,但它的左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去。
,.
【例题2】
【题干】已知:如图1所示,AD为△ABC的中线,且∠1=∠2,∠3=∠4。
求证:BE+CF>EF。
A
B
C
D
E F
N
1
图
1
234
,. 【答案】
证明:在DA上截取DN=DB,连接NE,NF,则DN=DC
在△DEB和△DNE中
DN=DB
∠1=∠2
DE=DE
∴△DEB≌△DNE(SAS)
∴BE=NE
同理可得:CF=NF
在△EFN中,EN+FN>EF
∴BE+CF>EF
,.
【解析】
分析:要证BE+CF>EF ,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用全等三角形的对应边相等,把EN,FN,EF移到同个三角形中。
,.
四、课堂运用
【基础】
1、△ABC中,AB=5,AC=3,则中线AD的取值范围()
A.1<AD<4
B.3<AD<13
C.5<AD<13
D.9<AD<13
,.
【答案】
A
,.
【解析】
解:延长AD至M使得DM=AD显然三角形ABD全等于三角形CDM
所以AB=CM
又CM-AC<AM<CM+AC
所以2<2*AD<8
所以1<AD<4
,.
2、已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,
求证:BD=CE
,. 【答案】
过D作DF∥AC交BC于F,
∵DF∥AC(已知),
∴∠DFC=∠FCE,∠DFB=∠ACB(平行线的性质),
∵AB=AC(已知),
∴∠B=∠ACB(等边对等角),
∴∠B=∠DFB(等量代换),
∴BD=DF(等角对等边),
∵BD=CE(已知),
∴DF=CE(等量代换),
∵∠DFC=∠FCE,∠DGF=∠CGE(已证),
,. ∴△DFG≌△ECG(AAS),
∴DG=GE(对应边相等)
,. 【解析】
过D作DF∥AC交BC于F,利用等腰三角形的性质和平行线的性质,求证△GDF≌△CEG即可.
,. 【巩固】
1、已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,
求证:AF=EF
,.
【答案】
解:延长AD至G,使得AD=DG,连接BG,GC
∵△ABC中,AD是BC边上的中线
∴BD=DC
∵AD=DG
∴四边形ABGC为平行四边形
∴AC=BG,AC//BG
∴△AFE∽△GBE
∴AF/FE=GB/BE
∵AC=BE,AC=BG
,. ∴BE=BG
∴AF=FE
【解析】
延长AD至G,使得AD=DG,连接BG,GC,根据全等证明AF=EF
,.
2、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.
A
E
D C
B
,. 【答案】
延长AE到M,使EM=AE,连结DM
易证△DEM ≌△CEA
∴∠C=∠MDE, DM=AC
又BD=DC=AC
∴DM=BD,∠ADC=∠CAD
又∠ADB=∠C+∠CAD,∠ADM=∠MDE+∠ADC
∴∠ADM=∠ADB
∴△ADM ≌△ADB
∴∠BAD=∠MAD
即AD平分∠BAE
,.
【解析】
因为BD=DC=AC,所以AC=1/2BC
因为E是DC中点,所以EC=1/2DC=1/2AC
∠ACE=∠BCA,所以△BCA∽△ACE
所以∠ABC=∠CAE
因为DC=AC,所以∠ADC=∠DAC
∠ADC=∠ABC+∠BAD
所以∠ABC+∠BAD=∠DAE+∠CAE
所以∠BAD=∠DAE
即AD平分∠BAE
,.
,.
C
B
A
【拔高】
1、如图,已知在△ABC 内,0
60BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC
∠的角平分线。
求证:BQ+AQ=AB+BP
,. 【答案】
证明:
做PM‖BQ,与QC相交与M。
∵∠APB=180°—∠BAP—∠ABP=180°—30°—80°=70°
且∠APM=180°—∠APB—∠MPC=180°—70°—∠QBC=180°—70°—40°=70°
∴∠APB=∠APM
又∵AP是BAC的角平分线,
∴∠BAP=∠MAP
AP是公共边
∴△ABP≌△AMP(角边角)
∴AB=AM,BP=MP
,. 在△MPC中,∠MCP=∠MPC=40°
∴MP=MC
∴AB+BP=AM+MP=AM+MC=AC
在△QBC中
∵∠QBC=QCB=40°
∴BQ=QC
∴BQ+AQ=AQ+QC=AC
∴BQ+AQ=AB+BP
,.
【解析】
做辅助线PM‖BQ,与QC相交与M。
首先算清各角的度数,然后证明全等,即可证明结论。
,.
2、如图,AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD过点E,求证;AB=AC+BD
A
C
B
D
,. 【答案】
在AB上取点N ,使得AN=AC
∠CAE=∠EAN ,
AE=AE,
∴△CAE≌△EAN
∴∠ANE=∠ACE
又AC∥BD
∴∠ACE+∠BDE=180
而∠ANE+∠ENB=180
∴∠ENB=∠BDE,∠NBE=∠EBN
BE=BE
,. ∴△EBN≌△EBD
∴BD=BN
∴AB=AN+BN=AC+BD
【解析】
根据截长补短的方法以及三角形全等即可得到结论
,. 课程小结
1)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋
转”.
2)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段
相等,再利用三角形全等的有关性质加以说明.这种作法适合于证明线段的和、差、倍、分等类的题目.。