初中数学提高题题库-分式及答案解析

合集下载

分式解答题(提升篇)(Word版 含解析)

分式解答题(提升篇)(Word版 含解析)
(1)当 时, 的最小值为_______;当 时, 的最大值为__________.
(2)当 时,求 的最小值.
(3)如图,四边形ABCD的对角线AC,BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.
【答案】(1)2,-2;(2)11;(3)25
【解析】
【分析】
(1)当x>0时,按照公式a+b≥2 (当且仅当a=b时取等号)来计算即可;x<0时,由于-x>0,- >0,则也可以按照公式a+b≥2 (当且仅当a=b时取等号)来计算;
(2)若甲工程队每天可以改造 米道路,乙工程队每天可以改造 米道路,(其中 ).现在有两种施工改造方案:
方案一:前 米的道路由甲工程队改造,后 米的道路由乙工程队改造;
方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造.
根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.
一、八年级数学分式解答题压轴题(难)
1.某市为了做好“全国文明城市”验收工作,计划对市区 米长的道路进行改造,现安排甲、乙两个工程队进行施工.
(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.
∴四边形ABCD面积=4+9+x+
当且仅当x=6时取等号,即四边形ABCD面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.
3.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍.若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.

中考数学总复习《分式方程》专项提升练习题及答案(人教版)

中考数学总复习《分式方程》专项提升练习题及答案(人教版)

中考数学总复习《分式方程》专项提升练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________【考点一】分式方程的概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法:(1)解分式方程的基本思路是去分母把分式方程转化为整式方程.(2)解分式方程的一般步骤:分式方程去分母→ 整式方程解整式方程→ x =a 检验→ {分式方程的分母不为零则x =a 是分式方程的解分式方程的分母为零则x =a 是分式方程的增根(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为“0”的根,称为方程的增根. 因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为“0”的根是增根应舍去.(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为“0”的因式.(5)分式方程的无解与增根:分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解.【考点二】分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行 “双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.一、单选题 1.已知实数x 满足22110x x x x +++=,那么x 的值为( )3.学校用500元钱到商场去购买“84”消毒液,经过还价,每瓶便宜1.5元,结果比用原价多买了10瓶,求A .()111x --=B .()111x +-=C .()112x x --=-D .()112x x +-=- 5.为了美化环境,某地政府计划对辖区内260km 的土地进行绿化,为了尽快完成任务,实际平均每月的绿602=;乙:A .x 表示原计划平均每月的绿化面积B .y 表示实际完成这项工程需要的月数C .□表示1.5xD .◇表示2y -6.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为( )是非负数,则所有满足条件的整数a 的值之和是( )A .10B .13C .15D .18二、填空题9.分式方程4122mx x x =+--无解,则m 的值为 . 10.若关于x 的方程2233x m x x x++=--的解是正数,则m 的取值范围为 . 11.为锻炼身体,小陈由开车上班改为骑自行车上班,已知小陈家距离上班地点14千米,开车每小时行驶的路程比骑自行车每小时行驶的路程的3倍还多5千米,且骑自行车上班所需时间是开车上班所需时间的3.5倍,则小陈骑自行车上班需要 小时.12.已知关于x 的分式方程()()212323nx x x x x =+----的解为正整数,且关于y 的不等式组()6131n y y y -<-⎧⎨-≥-⎩无解,则满足条件的所有整数n 的和为 .13.黄金分割总能给人以美的享受,从人体审美学的角度看,若一个人上半身长与下半身长之比满足黄金比的话,则此人符合和谐完美的身体比例.如图,一芭蕾舞演员的身高为160cm ,但其上半身长与下半身长之比大于黄金比,当其表演时掂起脚尖,身高就可以增加10cm ,这时上半身长与下半身长之比就恰好满足黄金比,那么该演员的上半身长为 cm .(黄金分割比0.6≈)三、解答题14.解分式方程:(1)522112x x x +=-- (2)214111x x x +-=--a a>的正方形去掉一个边长为1m的正方形蓄水池后余下17.如图,“丰收1号”小麦的试验田是边长为m(1)a-的正方形,两块试验田的小麦都收获了1500kg.的部分,“丰收2号”小麦的试验田是边长为()1m(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的1.05倍,求“丰收2号”小麦的试验田的边长.18.今年初冬,受强冷空气影响,12月13日早晨开始,北京市出现强降雪天气,截至14日18时,北京市共出动专业作业人员11.5万人次,出动扫雪铲冰作业车辆1.7万车次,分成若干个小组,及时开展扫雪除冰工作,保障道路畅通及市民出行安全.其中甲、乙两组共同负责一条大街的扫雪工作,若由甲、乙两组合作则2小时可完成扫雪工作;若甲组先单独扫雪4小时,再由乙组单独扫雪1小时可完成扫雪工作.(1)求甲、乙两组单独完成此项工作各需要多少小时?(2)如果甲、乙两组合作时对道路交通有影响,单独工作时对交通无影响,且要求完成扫雪工作不超过2.5小时,问如何安排扫雪工作,对道路交通的影响会最小?参考答案 1.C2.D3.B4.D5.D6.A7.A8.B9.1或210.6m >-且3m ≠-11.1.412.2-13.63.7514.(1)=1x -(2)1x =15.(1)1x =(2)1a =或2a =16.小颖有道理17.(1)“丰收2号”小麦试验田的单位面积产量高;(2)“丰收2号”小麦试验田的边长为40m .18.(1)甲组单独完成此项工作需要6小时,乙组单独完成此项工作需要3小时(2)应安排甲乙合作1小时,然后再由乙组单独施工1.5小时,对道路交通的影响会最小。

初中数学-八年级--分式习题(附答案)

初中数学-八年级--分式习题(附答案)

分式1、(1)当x 为何值时,分式2122---x x x 有意义? (2)当x 为何值时,分式2122---x x x 的值为零? 2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫ ⎝⎛-+-+(4)x y x y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111x x x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫ ⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。

(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++ 的值。

(3)已知02322=-+y xy x (x ≠0,y ≠0),求xy y x x y y x 22+--的值。

(4)已知0132=+-a a ,求142+a a 的值。

4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求cb b a -+-11的值。

5、解下列分式方程:(1)xx x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。

8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n,但窗户的面积与地面面积的比值越大,采光条件越好。

【精选】八年级上册分式解答题(提升篇)(Word版 含解析)

【精选】八年级上册分式解答题(提升篇)(Word版 含解析)

一、八年级数学分式解答题压轴题(难)1.已知:12x M +=,21xN x =+. (1)当x >0时,判断M N -与0的关系,并说明理由;(2)设2y N M=+. ①当3y =时,求x 的值;②若x 是整数,求y 的正整数值.【答案】(1)见解析;(2)①1;②4或3或1 【解析】 【分析】(1)作差后,根据分式方程的加减法法则计算即可; (2)①把M 、N 代入整理得到y ,解分式方程即可; ②把y 变形为:221y x =++,由于x 为整数,y 为整数,则1x +可以取±1,±2,然后一一检验即可. 【详解】(1)当0x >时,M -N ≥0.理由如下:M -N =()()21122121x x xx x -+-=++ .∵x >0,∴(x -1)2≥0,2(x +1)>0,∴()()21021x x -≥+,∴M -N ≥0.(2)依题意,得:4224111x x y x x x +=+=+++. ①当3y =,即2431x x +=+时,解得:1x =.经检验,1x =是原分式方程的解,∴当y =3时,x 的值是1.②2422222111x x y x x x +++===++++ . ∵x y ,是整数,∴21x +是整数,∴1x +可以取±1,±2.当x +1=1,即0x =时,22401y =+=> ;当x +1=﹣1时,即2x =-时,2201y =-=(舍去); 当x +1=2时,即1x =时,22302y =+=> ;当x +1=-2时,即3x =-时,22102y =+=>-() ; 综上所述:当x 为整数时,y 的正整数值是4或3或1. 【点睛】本题考查了分式的加减法及解方式方程.确定x +1的取值是解答(2)②的关键.2.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma,+2020ma a ;(3)两组一起收割完这块麦田需要2241n nn --小时. 【解析】 【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0, ∴原分式方程的解为x =4, ∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨,根据题意得:20m m y y a+=+解得;y =20ma ,经检验:y =20ma是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a+; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n nn --小时.【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.3.阅读下面的解题过程:已知2113x x =+,求241x x +的值。

中考数学总复习《分式》专项提升练习题(附答案)

中考数学总复习《分式》专项提升练习题(附答案)

中考数学总复习《分式》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式中,属于分式的是( ) A.1π B. a C.3a D.a 32.若分式x -2x +1无意义,则( ) A.x =2 B.x =-1 C.x =1 D.x ≠-13.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 4.下列运算中,错误的是( )A.=++x y y xx y y x -- B.=1+a b a b --- C.0.5+5+10=0.20.323a b a b a b a b -- D.=(0)a ac c b bc ≠ 5.把分式11361124x x -+的分子与分母各项系数化为整数,得到的正确结果是( ) A.3624x x -+ B.4263x x -+ C.2121x x -+ D.2234x x -+ 6.解分式方程1-x x -2=12-x﹣2时,去分母变形正确的是( ) A.﹣1+x =﹣1﹣2(x ﹣2) B.1﹣x =1﹣2(x ﹣2)C.﹣1+x =1+2(2﹣x)D.1﹣x =﹣1﹣2(x ﹣2)7.老师设计了接力游戏,用合作的方式完成分式化简.规则:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图5-3-1所示,接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁8.化简2x x 2+2x -x -6x 2-4的结果为( ) A.1x 2-4 B.1x 2+2x C.1x -2 D.x -6x -29.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A.120x =150x -8 B.120x +8=150x C.120x -8=150x D 120x =150x +810.对于两个不相等的实数a ,b ,我们规定符号max{a ,b}表示a ,b 中的较大值,如max{2,4}=4.按这个规定,方程max{x ,﹣x}=2x +1x的解为( ) A.1﹣ 2 B.2﹣ 2 C.1+2或1﹣ 2 D.1+2或﹣1二、填空题11.如果x =-1,那么分式 x -2x 2-4的值为________. 12.填空:a 2-2a +1a -1÷(a 2-1)= . 13.分式方程1x -1=a x 2-1的解是x =0,则a = . 14.化简:(1+1x -1)÷x 2+x x 2-2x +1=________. 15.端午节当天,“味美早餐店”的粽子打九折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x 元,列方程为 .16.若关于x 的分式方程x +m x -2+2m 2-x =3的解为正实数,则实数m 的取值范围是_________三、解答题17.化简:(1-1x +1)÷x x 2-1.18.化简:a2-b2a÷(a﹣2a-b2a).19.解分式方程:xx-7﹣17-x=2;20.解分式方程:2x2-4+xx-2=1.21.化简:(x+2x2-2x-x-1x2-4x+4)÷x-4x,并从0≤x≤4中选取合适的整数代入求值.22.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2)得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.23.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?24.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?参考答案1.C2.B3.A4.A5.B6.D7.D8.C.9.D10.D11.答案为:112.答案为:1a+1.13.答案为:1.14.答案为:x-1 x+1.15.答案为:54x=540.9x﹣3.16.答案为:m<6且m≠2.17.解:原式=x+1-1x+1·(x+1)(x-1)x=xx+1·(x+1)(x-1)x=x-1.18.解:原式=a +b a -b19.解:去分母,得x +1=2x ﹣14,解得x =15经检验x =15是分式方程的解故原分式方程的解为x =15;20.解:去分母,得2+x(x +2)=x 2﹣4解得x =﹣3检验:当x =﹣3时,(x +2)·(x ﹣2)≠0故x =﹣3是原方程的根.21.解:原式==1(x -2)2. ∵⎩⎨⎧x ≠0,x -2≠0,x -4≠0,∴⎩⎨⎧x ≠0,x ≠2,x ≠4,∴当0≤x ≤4时,可取的整数为x =1或x =3.当x =1时,原式=1;当x =3时,原式=1.22.解:有错误,错在第①步,正确解法为:方程两边同乘(x ﹣2)得x ﹣3+x ﹣2=﹣3解得x =1经检验x =1是分式方程的解所以原分式方程的解是x =1.23.解:(1)设第一次每支铅笔进价为x 元根据题意列方程得,﹣=30,解得x =4经检验:x =4是原分式方程的解.答:第一次每支铅笔的进价为4元.(2)设售价为y 元,第一次每支铅笔的进价为4元则第二次每支铅笔的进价为4×54=5元根据题意列不等式为:×(y﹣4)+×(y﹣5)≥420,解得y≥6.答:每支售价至少是6元.24.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。

分式提高题(有标准答案)

分式提高题(有标准答案)

分式提高题(有答案)————————————————————————————————作者:————————————————————————————————日期:分式提高题一.选择题(共6小题)1.若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.22.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或23.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣4.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠45.若数a使关于x的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣36.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二.填空题(共3小题)7.已知﹣=3,则=.8.如果x2+x﹣5=0,那么代数式(1+)÷的值是.9.已知a+=4,则(a﹣)2=.三.解答题(共16小题)10.化简:(﹣)÷.11.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.12.先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.13.化简:(a+1﹣)÷,然后给a从1,2,3中选取一个合适的数代入求值.14.先化简,再求值:(﹣)÷,其中x=2y(xy≠0).15.先化简,再求值:(﹣)(﹣),其中x=4.16.解方程:=1﹣.17.解方程:﹣=1.18.解分式方程:﹣=.19.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?20.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示).(2)求点P原来的速度.21.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.22.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.23.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.24.已知a、b、c为实数,且.求的值25.因汛期防洪的需要,黄河河务局计划对某段河堤进行加固.此项工程若由甲、乙两队同时干,需要天完成,共支付费用180 000元;若甲队单独干2天后,再由乙队单独完成还需3天,共支付费用179 500元.但是为了便于管理,决定由一个队完成.(以下均需通过计算加以说明)(1)由于时间紧迫,加固工程必须在5天内完成,你认为应选择哪个队?(2)如果时间充裕,为了节省资金,你认为应选择哪个队?分式提高题参考答案与试题解析一.选择题(共6小题)1.若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.2.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或2【解答】解:∵a2﹣ab=0(b≠0),∴a=0或a=b,当a=0时,=0.当a=b时,=,故选C.3.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣【解答】解:由m2+n2=n﹣m﹣2,得(m+2)2+(n﹣2)2=0,则m=﹣2,n=2,∴﹣=﹣﹣=﹣1.故选:C.4.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.5.若数a使关于x的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤﹣<0,∴﹣4<a≤3,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,且y≠2,即(a+2)≥0,(a+2)≠2,解得a≥﹣2且a≠2,∴﹣2≤a≤3,且a≠2,∴满足条件的整数a的值为﹣2,﹣1,0,1,3,∴满足条件的整数a的值之和是1.故选:B.6.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.二.填空题(共3小题)7.已知﹣=3,则=﹣.【解答】解:∵﹣=3,∴3y﹣2x=3xy∴原式===故答案为:﹣8.如果x2+x﹣5=0,那么代数式(1+)÷的值是5.【解答】解:当x2+x=5时,∴原式=×=x2+x=5故答案为:59.已知a+=4,则(a﹣)2=12.【解答】解:∵(a+)2=42,∴a2++2=16∴a2+﹣2=14﹣2,∴(a﹣)2=12,故答案为:12三.解答题(共16小题)10.化简:(﹣)÷.【解答】解:(﹣)÷=====.11.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=312.先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【解答】解:÷(﹣x+1)====,∵﹣<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=﹣2时,原式=﹣.13.化简:(a+1﹣)÷,然后给a从1,2,3中选取一个合适的数代入求值.【解答】解:原式=•=•=2(a+2)=2a+4,当a=3时,原式=6+4=10.14.先化简,再求值:(﹣)÷,其中x=2y(xy≠0).【解答】解:(﹣)÷====,当x=2y时,原式=.15.先化简,再求值:(﹣)(﹣),其中x=4.【解答】解:原式=[+]•[﹣]=•(﹣)=•=x﹣2,当x=4时,原式=4﹣2=2.16.解方程:=1﹣.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.17.解方程:﹣=1.【解答】解:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣15,检验:x=﹣15代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣15,18.解分式方程:﹣=.【解答】解:去分母得:6x﹣3﹣4x﹣2=x+1,解得:x=6,经检验x=6是分式方程的解.19.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.20.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为x cm/s(用含x的代数式表示).(2)求点P原来的速度.【解答】解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;(2)AC===5,CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),答:点P原来的速度为cm/s.21.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.22.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.23.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.24.已知a、b、c为实数,且.求的值【解答】解:将已知三个分式分别取倒数得:,即,将三式相加得;,通分得:,即=.25.因汛期防洪的需要,黄河河务局计划对某段河堤进行加固.此项工程若由甲、乙两队同时干,需要天完成,共支付费用180 000元;若甲队单独干2天后,再由乙队单独完成还需3天,共支付费用179 500元.但是为了便于管理,决定由一个队完成.(以下均需通过计算加以说明)(1)由于时间紧迫,加固工程必须在5天内完成,你认为应选择哪个队?(2)如果时间充裕,为了节省资金,你认为应选择哪个队?【解答】解:(1)设甲乙两队单独完成任务分别需要x,y天.由题意得:,解得:.经检验:x=4,y=6是原方程组的解.∵4<5,6>5,∴应选择甲队.(2)设给甲乙两队每天需支付的费用分别为m,n元.由题意得:,解得:.∵甲单独完成任务需支付的费用为mx=45500×4=182000.乙单独完成任务需支付的费用为ny=29500×6=177000.显然mx>ny又∵时间充裕,∴应选择乙队.。

初中数学提高题题库-分式及答案解析

初中数学提高题题库-分式及答案解析

初中数学提高题题库-分式二、填空题1、在数7,25,-1,12,-3中,三个不同的数相加所得和数中,最小的一个和是。

2、已知a ,b 互为相反数,c ,d 互为负倒数,x 的绝对值等于1,则c dx xb a2的最大值等于。

3、求和:)603635343()602524232()601413121(6059)60585958(。

4、设01223344555)12(a x a xa xa xa x a x ,则012345a a a a a a 。

5、若23x x的最小值为a ,23xx的最大值为b ,则ab=。

6、设a ,b 为正整数,且满足7532ba ,则b 为最小时,a+b=。

7、已知6357dxcxbxaxy,当x=1时,y=23,那么当1x时,y=。

8、初一“数学晚会”上,有10个同学藏在10个盾牌后面,男同学的盾牌前面写的是一个正数,女同学的盾牌前面写的是一个负数,这10个盾牌如下所示:则盾牌后面的同学中有女同学______人,男同学________人。

9、乘积)9611)(9511()2111)(2011)(1911(=______ .10、||||20001-2002|-2003|-2004|-2005|=________。

11、如图,数轴中标出了a,b,c,d,e 五个有理数:则abc 的负倒数与de 的相反数之和等于__________。

12、199719961199619951431321211=________。

13、)611)(511)(411)(311)(211(22222=________。

14、有理数a,b,c 满足:b<a<0<c<1则化简:|a+b|-|b-1|-|a-c|-|1-c|=__________。

15、22)98112315()5413(78871=____________。

16、如果a=23,32b ,则2a 2b-(a-b)2=__________。

分式方程提高练习(含答案)

分式方程提高练习(含答案)

分式方程复习提高)(11b a x b b x a a ≠+=+ b x a 211+=)2(a b ≠ 417425254=-+-x x x x (换元法)87329821+++++=+++++x x x x x x x x (分离常数法) 41315121+++=+++x x x x (分组通分法)569108967+++++=+++++x x x x x x x x 41215111+++=+++x x x x6811792--+-+=--+-x x x x x x x x 65322176+++++=+++++x x x x x x x x分式方程求待定字母的方法例1.若关于x 的分式方程3132--=-x m x 有增根,求m 的值.例2.若分式方程122-=-+x a x 的解是正数,求a 的取值范围.提示:032>-=a x 且2≠x ,例3.若分式方程xm x x -=--221无解,求m 的值。

例4.若关于x 的方程11122+=-+-x x x k x x 不会产生增根,求k 的值。

例5.若关于x 分式方程432212-=++-x x k x 有增根,求k 的值。

例6、关于x 的方程的解为非负数,求m 的取值范围是.例7、关于x 的方程的解为非正数,求m 的取值范围.例8、若关于x 的方程233x k x x =+--无解,求k 的值例9、已知方程无解,求k 的值.例10、已知关于x 的方程3)1(2122-=+++x x x x ,求11++x x 的值。

分式方程练习:一、选择题1.若73212++y y 的值为81,则96412-+y y 的值是( ) (A )21-(B )171- (C )71- (D )71 2.已知xz z y x +=+=531,则z y y x +-22的值为( ) (A )1 (B )23 (C )23- (D )41 3.若对于3±=x 以外的一切数98332-=--+x x x n x m 均成立,则mn 的值是( ) (A )8 (B )8- (C )16 (D )16-4.有三个连续正整数,其倒数之和是6047,那么这三个数中最小的是( ) (A )1 (B )2 (C )3 (D )45.若d c b a ,,,满足a d d c c b b a ===,则2222d c b a da cd bc ab ++++++的值为( ) (A )1或0 (B )1- 或0 (C )1或2-(D )1或1-6.设轮船在静水中的速度为v ,该船在流水(速度为v u <)中从上游A 驶往下游B,再返回A ,所用的时间为T,假设0=u ,即河流改为静水,该船从A 至B 再返回A,所用时间为t ,则( )(A )t T = (B )t T < (C )t T > (D )不能确定T 与t 的大小关系二、填空题7.已知:x 满足方程20061120061=--x x,则代数式2007200520062004+-x x 的值是_____. 8. 已知:b a b a +=+511,则ba ab +的值为_____. 9.方程71011=++zy x 的正整数解()z y x ,,是_____. 10. 若关于x 的方程122-=-+x a x 的解为正数,则a 的取值范围是_____. 11. 若11,11=+=+zy y x ,则=xyz _____. 12.设y x ,是两个不同的正整数,且5211=+y x ,则._____=+y x 三、解答题(每题10分,共40分)13. 已知2+x a 与2-x b 的和等于442-x x ,求b a ,之值.14.解方程: 708115209112716512311222222-+=+++++++++++++x x x x x x x x x x x x .15. a 为何值时,分式方程()01113=++++-x x a x x x 无解?16. 某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶?练习答案:一、选择题1.解:根据题意, 8173212=++y y .可得1322=+y y . 所以().7932296422-=--=-+y y y y所以7196412-=-+y y . 故选(C )2.解:由xz z y x +=+=531得x x z x z y 5,3=+=+.从而.,4x y x z -== 所以.2342222=+-+=+-x x x x z y y x 故选(B )3.解: 98332-=--+x x x n x m . 左边通分并整理,得()()9893322-=-+--x x x n m x n m . 因为对3±=x 以外的一切数上式均成立,比较两边分子多项式的系数,得⎩⎨⎧=+=-.033,8n m n m 解得⎩⎨⎧-==.4,4n m所以()1644-=-⨯=mn .故选(D )4. 解:设这三个连续的正整数分别为2,1,++x x x .则有 604721111=++++x x x . 根据题意,得⎪⎪⎩⎪⎪⎨⎧⨯<+⨯>.3604721,360471x x 解得.4739347391<<x 因x 是正整数,所以2=x 或3=x .经检验2=x 适合原方程.故选(B )5. 解:设 k ad d c c b b a ====,则ak d dk c ck b bk a ====,,,. 上述四式相乘,得4abcdk abcd =.从而1±=k .当1=k 时,d c b a ===, 12222=++++++dc b a da cd bc ab ; 当1-=k 时, d c b a -==-=.144222222-=-=++++++aa d cb a da cd bc ab . 故选(D )6. 解:设B A ,相距为s ,则.2,222vs t u v vs u v s u v s T =-=-++= 所以1222>-=uv v t T ,即t T > 故选(C )二、填空题7. 解:由20061120061=--x x,得200612006=--x x . 所以01=--x x .所以0=x .经检验0=x 满足原方程.故200720052007200520062004-=+-x x . 8. 解: 由b a b a +=+511,得ba ab b a +=+5. 所以()ab b a 52=+.所以().33252222==-=-+=+=+ab ab ab ab ab ab ab b a ab b a b a a b9. 解:由71011=++z y x ,得73111+=++z y x . 因为是正整数,故必有1=x ,因而 312371+==+z y . 又因为z y ,也是正整数,故又必有3,2==z y .经检验()3,2,1是原方程的根.因此,原方程的正整数解()z y x ,,是()3,2,1.10. 解:由方程122-=-+x a x ,得x a x -=+22,从而.32a x -= 又由题意,得⎪⎪⎩⎪⎪⎨⎧≠->-.232,032a a 所以⎩⎨⎧-≠<.4,2a a 故a 的取值范围是2<a 且4-≠a .11. 解:由11,11=+=+z y y x ,得yz y y y x -=-=-=11,111. 所以1111-=-••-=y y y y xyz . 12. 解:由条件5211=+y x 得512121=+y x . 显然52,52>>y x ,故可设.52,5221t y t x +=+=则51515121=+++t t .去分母并整理,得2521=t t . 因为y x ,是两个不同的正整数,所以21t t ≠.所以25,121==t t 或1,2521==t t .所以.182261021025252121=+=++=+++=+t t t t y x 三、解答题13. 解:根据题意,有 2+x a +2-x b =442-x x . 去分母,得()()x x b x a 422=++-.去括号,整理得()()x a b x b a 42=-++.比较两边多项式系数,得0,4=-=+a b b a .解得2==b a .14. 解:因为方程的左边()()()()()()()()()().5551151414131312121111115414313212111120911271651231122222+=+-=⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-=+++++++++++++=+++++++++++++x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 故原方程可变为()708115552-+=+x x x x . 所以()7081152-+=+x x x x .解得118=x .经检验118=x 是原方程的根.15. 解:方程()01113=++++-x x a x x x 的两边同乘以()1+x x ,去分母,得 ()().013=++-+a x x x整理,得033=++a x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学提高题题库-分式
二、填空题
1、 在数7,25,-1,12,-3中,三个不同的数相加所得和数中,最小的一个和是 。

2、 已知a ,b 互为相反数,c ,d 互为负倒数,x 的绝对值等于1,则cdx x b a -++2的最大值等于 。

3、 求和:)60
3635343()602524232()601413121(+++++++++++•••+++ =++++60
59)60585958( 。

4、 设01223344555)12(a x a x a x a x a x a x +++++=-,则=-+-+-012345a a a a a a 。

5、 若23++-x x 的最小值为a ,23++-x x 的最大值为b ,则ab = 。

6、 设a ,b 为正整数,且满足
7
532<<b a ,则b 为最小时,a +b = 。

7、 已知6357-+++=dx cx bx ax y ,当x =1时,y =23,那么当1-=x 时,y = 。

8、 初一“数学晚会”上,有10个同学藏在10个盾牌后面,男同学的盾牌前面写的是一个正
数,女同学的盾牌前面写的是一个负数,这10个盾牌如下所示:
则盾牌后面的同学中有女同学______人,男同学________人。

9、 乘积)96
11)(9511()2111)(2011)(1911(--⨯⋅⋅⋅⨯---
=______ . 10、 ||||20001-2002|-2003|-2004|-2005|=________。

11、 如图,数轴中标出了a,b,c,d,e 五个有理数:则abc 的负倒数与de 的相反数之和等于
__________。

12、 1997
19961199619951431321211⨯+⨯+⋅⋅⋅+⨯+⨯+⨯=________。

13、 )6
11)(511)(411)(311)(211(22222-----=________。

14、 有理数a,b,c 满足:b <a <0<c <1则化简:|a+b|-|b -1|-|a -c|-|1-c |=__________。

15、 22)9
8112315()5413(78871÷+-÷+-⨯÷=____________。

16、 如果a =2
3,32-=b ,则2a 2b -(a -b)2=__________。

17、 规定a*b =1-1**,-=a
b b a b a ,则(6*8)**(8*6)=________。

18、 若|a |-|b |=1,且3|a |=4|b|,则在数轴上表示a,b 两数对应的点的距离是___________
或_______。

19、 已知a =11,那么⎥⎦
⎤⎢⎣⎡+-⨯⨯⎥⎦⎤⎢⎣⎡+-⨯⎥⎦⎤⎢⎣⎡+-⨯⎥⎦⎤⎢⎣⎡+-2222)9(11)3(11)2(11)1(11a a a a =
___________.
20、 若|x +y -1|与|x -y +3|互为相反数,则(x +y )2001=______________ .
21、 已知5是关于x 的方程3mx +4n =0的解,那么n /m =__________.
参考答案
二、填空题
1、 3
解:三个不同的数相加的和要最小,只要三个最小加数求和就可以了。

这个和是 (-1)+7+(-3)=3。

2、 2
解:已知a 、b 互为相反数,则a +b=0。

c ,d 互为负倒数,则1-=cd ,由1=x 知x =1或x = -1。

当x =1时,有21)1(102=⨯--+=-++cdx x b a 。

当x =-1时,有0)1)(1(102=---+=-++cdx x b a
所以cdx x b a -++2的最大值是2
3、 885
解:原式=)60
59602601()434241()3231(21++++++++++ 2
5925232221+++++= 88560594
1)59321(21=⨯⨯=++++⨯=
4、 243
解:令1-=x 代入得 0123455)3(a a a a a a +-+-+-=-
∴ =-+-+-012345a a a a a a 243
5、 25 解:23++-x x 看作是在数轴上x 到-2,3两点距离之和,其最小值是5,所以a =5。

23++-x x 看作是在数轴上x 到3,-2两点距离之差,其最大值是5,所以b=5。

25=∴ab 。

6、 17
解:a ,b 均为正整数,要求
7532<<b a ,即b a b 7
532<<, 由于要b 最小,可由b=1,2,3,, 依次由小到大试算:
当b =1时,a a ,7532<<无正整数解;
当b =2时,7
1034<<a ,即a a ,731311<<无正整数解; 当b =3时,a a ,7
122<<无正整数解; 当b =4时,a a ,7
62322<<无正整数解; 当b =5时,7
43313<<a ,a 无正整数解; 当b =6时,a a ,7
244<<无正整数解; 当b =7时,a a ,53
24<<无正整数解; 当b =8时,a a ,7
55315<<无正整数解; 当b =9时,a a ,7
366<<无正整数解; 当b =10时,a a ,7
17326<<有唯一正整数解,a =7。

可见a ,b 均为正整数,满足7
532<<b a 的b 的最小值是b =10,当b =10时a =7,确实满足,7
510732<< 17107=+=+∴b a
7、 -35
解:当x =1时,有292361=+++⇒=-+++==d c b a d c b a y x 。

∴当1-=x 时,有
356296)(61-=--=-+++-=-----=-=d c b a d c b a y x 。

8、 4,6
解:(-30)30是正数 是正数)
25()5(-- a 2+0.1是正数 是正数)(1997
18- 是负数97
198- (-8)是负数 -|-2|是负数 333)
(-是负数 4(-2)是负数 5|-1|是正数
所以有女同学4人,男同学6人。

9、 3/16
解:原式=3/16
10、 2003
解:原式=2003
11、 160
76799 解:由图可知,a = -8,b= -4,c=5,d=8,e= -6,得abc 的负倒数是
1601-,de 的相反数是48,则两者之和为48+
1601-=16076799。

12、 1997
1996 解:原式=1997
1996)1997119961()1996119951()4131()3121()211(=-+-++-+-+- 。

13、
12
7 解:原式
)6
11()611()511()511()411()411()311()311()211()211(+⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯-=6
7655654454334322321⋅⋅⋅⋅⋅⋅⋅⋅⋅==2
761⨯ 12
7=。

14、 -2
解:由题意,a+b<0,b -1<0,a -c<0,1-c>0
.
2)
1()]([)]1([)(1|1|),(||),1(|1|),(||-=--------+-=∴-=---=---=-+-=+∴c c a b b a c c c a c a b b b a b a 原式
15、 4964 解:原式=
222)100875.05.87()8
9112315()5413(4964⨯-⨯⨯+-÷+- =49
640)494315()5413(496422=⨯+-÷+-。

16、 36
16- 解:原式=22)]2
3(32[)23()32(2---- 3616362173616934-=-=--=
17、 3
7- 解:原式=3
714
1)31()31(41)681()861(-=--=-**=-**-
18、 1,7
解:由题意,4,4||1||,3,3|||,|4||33||3|,|1||±=∴=+=±=∴=∴=+=∴+=a b a b b b b a b a 所以为:1,7
19、 240
231 解:2402312021121120
1201201311311312112112222=⨯=+-⨯⨯+-⨯+-=))(())(())((原式 .
20、 A1
解:由题意|x +y -1|+|x -y +3|=0,则|x +y -1|=|x -y +3|=0,解得x = -1,y =2,所以2001)(y x +=20011=1.
21、 4
15- 解:根据方程解的定义,有415,415,0453-=-==+⨯m n n m n m 所以
即.。

相关文档
最新文档