2020年第二十届“无悔金杯”少年数学邀请赛决赛试卷(小高组c卷)
第20届华杯赛决赛-小中组A详解

- 1 -第二十届华罗庚金杯少年数学邀请赛决赛试题A 组试卷解析(小学中年级组A 卷)一、填空题(每小题 10分, 共80分)1. 计算: 3752(392)5030(3910)÷⨯+÷⨯=________.【考点】整数计算【难度】☆☆【答案】61【分析】原式3752(392)1006(392)=÷⨯+÷⨯(37521006)7847587861=+÷=÷=2. 右图中, G F D C B A ∠+∠+∠+∠+∠+∠ 等于________度.【考点】几何、角度计算【难度】☆☆【答案】360【分析】连接CD ,有G F EDC ECD ∠+∠=∠+∠,这样就转化成四边形的内角和了,四边形的内角和是360度.3. 商店以每张2角1分的价格进了一批贺年卡, 共卖14.57元. 若每张的售价相同, 且不超过买入价格的两倍, 则商店赚了________元.【考点】数论、分解质因数【难度】☆☆【答案】4.7元【分析】14.57元=1457分,14573147=⨯每张的售价不超过买入价格的两倍,47是张数,31分是售价;商店赚了(3121)47470-⨯=(分)=4.7元.4. 两个班植树, 一班每人植3棵, 二班每人植5棵, 共植树115棵. 两班人数之和最多为________.【考点】组合、最值问题【难度】☆☆【答案】37人.【分析】设一班a 人,二班b 人,则有35115a b +=, 求两班人数最多,算式转化成: 3()2115a b b ++=,a b +最大,b 尽可能的小,2b =时,37a b +=。
两班人数之和最多的是37人.5. 某商店第一天卖出一些笔, 第二天每支笔降价1元后多卖出100支, 第三天每支笔比前一天涨价3元后比前一天少卖出200支. 如果这三天每天卖得的钱相同, 那么第一天每支笔售价是________元.【考点】应用题【难度】☆☆☆【答案】4元【分析】设第一天每支笔售价x 元,卖出n 支,有(1)(100)(1)(100)nx x n nx x n =-+⎧⎨=+-⎩可得到1001001002200x n x n =+⎧⎨=-⎩,解得3004n x =⎧⎨=⎩6. 一条河上有A, B 两个码头, A 在上游, B 在下游. 甲、乙两人分别从A, B 同时出发, 划船相向而行, 4小时后相遇. 如果甲、乙两人分别从A, B 同时出发, 划船同向而行, 乙16小时后追上甲. 已知甲在静水中划船的速度为每小时6千米, 则乙在静水中划船每小时行驶________千米.【考点】行程、流水行船【难度】☆☆☆【答案】10【分析】在流水行船问题中,两船相遇的速度和即两船船速和,两船追及速度差即两船船速差。
2020年第十九届“无悔金杯”少年数学邀请赛决赛试卷(小高组d卷)

2014年第十九届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组D卷)一、填空题(每小题10分,共80分)1.(10分)如图,边长为12米的正方形池塘周围是草地,池塘边A、B、C、D处各有一根木桩,且AB=BC=CD=3米,现用长4米的绳子将一头羊拴在其中的某根木桩上,为了使羊在草地上活动区域的面积最大,应将绳子拴在处的木桩上.2.(10分)在所有是20的倍数的自然数中,不超过3000并且是14的倍数的数之和是.3.(10分)从1~8这八个自然数中,任取三个数,其中没有连续自然数的取法有种.4.(10分)如图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为平方厘米.5.(10分)如果﹣<成立,则“○”与“□”中可以填入的非零自然数之和最大为.6.(10分)如图,三个圆交出七个部分.将整数1~7分别填到七个部分中,要求每个圆内的四个数字的和都相等.那么和的最大值是.7.(10分)学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有种租车方案.8.(10分)长为4的线段AB上有一动点C,等腰三角形ACD和等腰三角形BEC在过AB 的直线同侧,AD=DC,CE=EB,则线段DE的长度最小为.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.(10分)把n个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.如图给出了n=6时所有的不同放置方法,那么n=8时有多少种不同放置方法?10.(10分)有一个杯子装满了浓度为15%的盐水,有大、中、小铁球各一个,它们的体积比为10:5:3,首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球,其次把中球沉入盐水杯中,又将它取出,接着将大球沉入盐水杯中后取出,最后在杯中倒入纯水至杯满为止,此时杯中盐水的浓度是多少?11.(10分)清明节同学们乘车去烈士陵园扫墓,如果汽车行驶1个小时后将车速提高五分之一,就可以比预定时间提前10分钟赶到;如果该车先按原速行驶60千米,再将速度提高三分之一,就可以比预定时间提前20分钟赶到.那么从学校到烈士陵园有多少千米?12.(10分)如图,在三角形ABC中,AF=2BF,CE=3AE,CD=2BD,连接CF交DE于P点,求的值.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)从连续自然数1,2,3,…,2014中取出n个数,使这n个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.试求n的最大值,并说明理由.14.(15分)在右边的算式中,字母a,b,c,d和“□”代表十个数字0到9中的一个,其中a,b,c,d四个字母代表□□□□不同的数字,求a,b,c,d代表的数字之和.2014年第十九届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组D卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)如图,边长为12米的正方形池塘周围是草地,池塘边A、B、C、D处各有一根木桩,且AB=BC=CD=3米,现用长4米的绳子将一头羊拴在其中的某根木桩上,为了使羊在草地上活动区域的面积最大,应将绳子拴在B处的木桩上.【分析】分别把A、B、C、D这四个点为圆心的扇形面积算出来,再进行比较即可选择出正确答案.【解答】解:①S A=π×42+×π×(4﹣3)2=8.25π(平方米);②S B=π×42=12π(平方米);③S C=π×42+×π×(4﹣3)2=8.25π(平方米);④S D=π×42=8π(平方米),π<8.25π<12π,所以为了使羊在草地上活动区域的面积最大,应将绳子拴在B处的木桩上.故答案为:B.2.(10分)在所有是20的倍数的自然数中,不超过3000并且是14的倍数的数之和是32340.【分析】在所有20的倍数中不超过2014并且是14的倍数最小是140,最大是2940,共21个,然后根据“高斯求和”的方法解答.【解答】解:20=2×2×514=2×720和14的最小公倍数是:2×2×5×7=1403000÷140≈21.4140×21=2940所以在所有20的倍数中不超过3000并且是14的倍数最小是140,最大是2940,共21个,(140+2940)×21÷2=3080×21÷2=32340.答:在所有是20的倍数的自然数中,不超过3000并且是14的倍数的数之和是32340.故答案为:32340.3.(10分)从1~8这八个自然数中,任取三个数,其中没有连续自然数的取法有20种.【分析】首先取3个所有的方法有=56种连续的有两个连续另外一个不连续,如果这两个连续的数在两端,是12或78,则各有5种不同的方法,如:124,125,126,127,128,如果这两个两个数在中间,是23、34、45、56、67,则各有4种不同的方法,如:235,236,237,238;这样一共有5×2+5×4种方法;三个连续的有123,234,345,456,567,678,6种情况;用总种数减去有连续自然数的种数,就是符合要求的数.【解答】解:==56(种)有两个连续数的可能是:5×2+5×4=30(种)有三个连续的数的可能有6种:56﹣30﹣6=20(种)答:没有连续自然数取法为20种.故答案为:20.4.(10分)如图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为56平方厘米.【分析】按题意,可以将图中剪影分割成若干部分,然后标出每部分的面积,利用剪切和拼接的性质求得每部分的面积,最后求和.【解答】解:根据分析,如图,将剪影分割,通过分割和格点面积公式可得小马剪影的总面积=0.5+3+16+2+1+2.5+3+0.5+1.5+12+3+2+0.5+3+0.5+1+2+1.5+0.5=56(平方厘米)故答案是:56.5.(10分)如果﹣<成立,则“○”与“□”中可以填入的非零自然数之和最大为393.【分析】将不等式﹣<的左右通分,分母变成55×□,即,则5×○×□﹣385<44×□,即5×○×□﹣44×□<385,□×(5×○﹣44)<385,当5×○和44约接近时,□的值越大,所以○=9时,□的值最大;据此解答即可.【解答】解:将不等式﹣<的左右通分,即,,则,5×○×□﹣385<44×□,即,5×○×□﹣44×□<385,□×(5×○﹣44)<385,当5×○和44约接近时,□的值越大,所以○=9时,□的值最大,□×(5×9﹣44)<385□<385□最大是384,所以,当○=9,□=384时,两数之和最大,即,○+□=9+384=393.答:“○”与“□”中可以填入的非零自然数之和最大为393.故答案为:393.6.(10分)如图,三个圆交出七个部分.将整数1~7分别填到七个部分中,要求每个圆内的四个数字的和都相等.那么和的最大值是19.【分析】因为使得每个圆内的四个数字的和都相等,且和最大值时,7最大,就把7写在最中间,还剩的3个较大数字6、5、4,填在两黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。
华杯赛小高近 真题 附详解 C

2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
120
4 3
30+ 40 3
4 3
42 .
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3月1 4 相 约 华杯
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
A
B
E
D
H
C
6. 【答案】 B 【解析】 3 3 、 4 4 能够成功,例子如图:
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
2020年第十八届“无悔金杯”少年数学邀请赛(武汉赛区)决赛试卷(小学高年级组)

2013年第十八届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小学高年级组)一、填空题(共8小题,每小题10分,满分80分)1.(10分)计算:=.2.(10分)自动扶梯停止运行时,一个小孩要用90秒钟才能走完60米长的自动扶梯.自动扶梯运行时则可用60秒钟将乘客从底端送到顶端.若小孩在运行的自动扶梯上行走,问小孩从扶梯底端到达顶端需要秒.3.(10分)两个骑车人在不同的赛道上训练.骑车人A用圆形赛道,其直径是1千米;骑车人B用直线赛道,其长度为5千米.骑车人A用10分钟完成3圈,而骑车人B用5分钟行进了2个来回.那么骑车人A与骑车人B的速度比是()A.1:1.6πB.π:10C.3:4D.3π:40 4.(10分)山洞里有一堆桃子,是三只猴子的共同财产.猴老大来到山洞后将桃子按5:4的比例分成两部分,并取走较多的一部分;猴老二来到后,将剩下的桃子又按5:4的比例分成两部分,并取走较多的一部分;剩余的桃子归猴老三.已知猴老大比猴老三多拿了29个桃子,则猴老二拿了个桃子.5.(10分)如图排列的前五个三角形都是直角三角形,则构成这100个三角形的所有线段中有条线段长度为整数.6.(10分)从1、2、3、…、7中选择若干个数,使得其中偶数之和等于奇数之和.则符合条件的取法()种.A.6B.7C.8D.97.(10分)若一个四位数5ab4是一个数的平方,则a+b=.8.(10分)从小明家到游泳池的路上有200棵树.在往返的路途中,小明用红丝带系在一些树上做标记,去游泳池的时候,他在第1棵树、第6棵树、第11棵树、…上做了标记,每次都隔4棵树标记一棵;返回时,他在遇到的第1棵树、第9棵树、第17棵树、…上做了标记,每次都隔7棵树标记一棵.则他回到家时,没有被标记的树共有棵.二、解答下列各题(每题10分,满分40分)9.(10分)如图,沿正方体XYTZ﹣ABCD的两个平面BCTX和BDTY切割,将此正方体切成4块.请问含有顶点A的那一块占正方体体积的几分之几?10.(10分)如图,ABCD是一个长方形,从G、F、E引出的小横线都平行于AB.若AD =12,则AG等于多少?11.(10分)影院正在放映《玩具总动员》、《冰河世纪》、《怪物史莱克》、《齐天大圣》四部动漫电影,票价分别为50元、55元、60元、65元.来影院的观众至少看一场,至多看两场.因时间关系《冰河世纪》与《怪物史莱克》不能都观看,若今天必有200人看电影所花的钱一样多,则影院今天至少接待观众多少人?12.(10分)现有四种颜色的灯泡(每种颜色的灯泡足够多),要在三棱柱ABC﹣A1B1C1各顶点上装一个灯泡,要求同一条棱两端点的灯泡颜色不相同,且每种颜色的灯泡都至少有一个,安装方法共有多少种?三、解答下列题(共2小题,每题15分,满分30分.要求写出详细过程)13.(15分)将从1到30的自然数分成两组,使得第一组中所有数的乘积A能被第二组中所有数的乘积B整除.则的最小值是多少?14.(15分)如图,在边长大于20cm的正方形PQRS中,有一个最大的圆O,若圆周上一点T到PS的距离为8cm,到PQ的距离为9cm.则圆O的半径是多少厘米?2013年第十八届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小学高年级组)参考答案与试题解析一、填空题(共8小题,每小题10分,满分80分)1.(10分)计算:=2013.【分析】首先根据平方差公式分别对繁分数的分子和分母进行化简,然后再求解即可.【解答】解:===2013故答案为:2013.2.(10分)自动扶梯停止运行时,一个小孩要用90秒钟才能走完60米长的自动扶梯.自动扶梯运行时则可用60秒钟将乘客从底端送到顶端.若小孩在运行的自动扶梯上行走,问小孩从扶梯底端到达顶端需要36秒.【分析】把自动扶梯的长度看作单位“1”,则这个小孩走完60米长的自动扶梯所用时间为,自动扶梯将乘客从底端送到顶端用的时间为,那么小孩从扶梯底端到达顶端需要的时间为1÷(+),解决问题.【解答】解:1÷(+)=1÷=36(秒)答:小孩从扶梯底端到达顶端需要36秒.故答案为:36.3.(10分)两个骑车人在不同的赛道上训练.骑车人A用圆形赛道,其直径是1千米;骑车人B用直线赛道,其长度为5千米.骑车人A用10分钟完成3圈,而骑车人B用5分钟行进了2个来回.那么骑车人A与骑车人B的速度比是()A.1:1.6πB.π:10C.3:4D.3π:40【分析】通过分析可知;A的速度为:πD×3÷10=π×1000×3÷10=300π(米/分)B的速度为:5000×2×2÷5=4000(米/分)其速度比为:A:B=π×1000×3÷10:5000×2×2÷5,据此解答即可.【解答】解:由题目中的数据,求得A的速度为:πD×3÷10=π×1000×3÷10=300π(米/分)B的速度为:5000×2×2÷5=4000(米/分)其速度比为:A:B=300π:4000=3π:40故选:D.4.(10分)山洞里有一堆桃子,是三只猴子的共同财产.猴老大来到山洞后将桃子按5:4的比例分成两部分,并取走较多的一部分;猴老二来到后,将剩下的桃子又按5:4的比例分成两部分,并取走较多的一部分;剩余的桃子归猴老三.已知猴老大比猴老三多拿了29个桃子,则猴老二拿了20个桃子.【分析】首先根据题意,设这堆桃子的总量为单位“1”,分别求出三只猴子各拿走的比例,然后根据猴老大比猴老三多拿了29个桃子,求出桃子的总量,进而求出猴老二拿了多少个桃子即可.【解答】解:根据题意,设这堆桃子为单位“1”,则猴老大拿走了,则猴老二拿走了:×,猴老三拿走了:×,则桃子的总数:=81(个),候老二拿走的个数:81××=20(个)答:猴老二拿了20个桃子.故答案为:20.5.(10分)如图排列的前五个三角形都是直角三角形,则构成这100个三角形的所有线段中有110条线段长度为整数.【分析】观察图形可知:第一个三角形2条直角边长度为整数,从第二个三角形开始,每个三角形都有一个边长为1的直角边;则边长为1的线段有:2+99=101(条);前一个三角形的斜边是后一个三角形的一个直角边,根据勾股定理分别求出每个三角形斜边的长,找出开方后为整数的边,再加上101即可求出答案.【解答】解:观察图形可知:边长为1的线段有:2+99=101(条);根据勾股定理分别求出每个三角形斜边的长为:、、、…、;根据:12=1,22=4,32=9,…102=100;可知三角形斜边的长中有9个开方后为整数,即三角形斜边的长中有9条边的长度为整数.则:101+9=110(条)答:构成这100个三角形的所有线段中有110条线段长度为整数.故答案为:110.6.(10分)从1、2、3、…、7中选择若干个数,使得其中偶数之和等于奇数之和.则符合条件的取法()种.A.6B.7C.8D.9【分析】找出1,2,3,…,7这7个自然数那些是奇数,哪些是偶数,列出符合条件偶数之和等于奇数之和的算式,据此解答即可.【解答】解:1,2,3,4,5,6,7中1,3,5,7是奇数,2,4,6是偶数,1+3=41+5=63+7=4+63+5=2+61+7=2+61+5=2+45+7=2+4+6共7种故选:B.7.(10分)若一个四位数5ab4是一个数的平方,则a+b=9.【分析】702=4900,802=6400,5000多的一个四位数,应该是70到80之间的一个两位数的平方.又它的末位数是4,所以这个两位数的个位只能是2或8.722=5184,符合题意.再检验一下782是否符合题意即可.【解答】解:722=72×72=5184符合题意.782=78×78=6084,不符合题意.舍去.所以a=1,b=8.a+b=1+8=9.故答案为:9.8.(10分)从小明家到游泳池的路上有200棵树.在往返的路途中,小明用红丝带系在一些树上做标记,去游泳池的时候,他在第1棵树、第6棵树、第11棵树、…上做了标记,每次都隔4棵树标记一棵;返回时,他在遇到的第1棵树、第9棵树、第17棵树、…上做了标记,每次都隔7棵树标记一棵.则他回到家时,没有被标记的树共有140棵.【分析】根据题意,可得去游泳池的时候,每5棵树标记一棵,一共标记了200÷5=40棵;返回时,每8棵树标记一棵,一共标记了200÷8=25棵;重复标记的棵数是200÷(5×8)=5棵,用40加上25,减去5,求出一共标记了多少棵树,最后用200减去标记的棵树,求出没有被标记的树共有多少棵即可.【解答】解:去游泳池的时候,每5棵树标记一棵,一共标记了200÷5=40(棵);返回时,每8棵树标记一棵,一共标记了200÷8=25(棵);重复标记的棵数是200÷(5×8)=5(棵),200﹣(40+25﹣5)=200﹣60=140(棵)答:没有被标记的树共有140棵.故答案为:140.二、解答下列各题(每题10分,满分40分)9.(10分)如图,沿正方体XYTZ﹣ABCD的两个平面BCTX和BDTY切割,将此正方体切成4块.请问含有顶点A的那一块占正方体体积的几分之几?【分析】沿面BCTX切割,此时含有顶点A的那一块占正方体体积的,再沿BDTY切割,含有顶点A的那一块占沿面BCTX切割后的,由乘法原理可得含有顶点A的那一块占正方体体积为:×=.【解答】解:沿面BCTX切割,此时含有顶点A的那一块占正方体体积的,再沿BDTY切割,含有顶点A的那一块占沿面BCTX切割后的,所以含有顶点A的那一块占正方体体积为:×=.答:含有顶点A的那一块占正方体体积的.10.(10分)如图,ABCD是一个长方形,从G、F、E引出的小横线都平行于AB.若AD =12,则AG等于多少?【分析】因为四边形ABCD是一个长方形,黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。
2020年第二十二届“无悔金杯”少年数学邀请赛决赛试卷(小高组b卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每小题10分,共80分)1.(10分)++…+=.2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了分钟.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有个数的数字组成中最多有两个不同的数字.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD 边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有个.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)++…+=2034144.【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:===2×(2+4+6+8+ (2016)=2×=2018×1008=20341442.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了52分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(1+20%):4=3:2,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5=x:3,x=甲在行驶AC的爆胎位置到中点的正常时间为:×==(小时);甲乙爆胎前后的速度比为:5:5(1+20%)=5:6;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:6:5=:y,y=;修车时间为:3﹣×=(小时)=52(分)故答案为:52分3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.4.(10分)小于1000的自然数中,有352个数的数字组成中最多有两个不同的数字.【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:9×9×8=648个,则最多有两个不同数字的数有:1000﹣648=352个.故答案是:352.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD 边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10.【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),n a n S(a n)120171022243145499514561457101866977101341111212661388141451513416991713418134198820123211122255237724123251012644275528992914530145311013266由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有19个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决.【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90.(2)尾数不为0的有:12,21,24,36,42,45,48,54,63,84.故答案为:198.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有4种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m 的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数m=4;③若有三条直线互相平行,则m=5,6,7;④若有两条直线互相平行,则m=5,6,7,8,9;⑤若没有直线平行,则m=1,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数.又有:2017=6×336+1=6×335+7当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是1311黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。
2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)一、填空题(每小题10分,共80分)1.(10分)4584 1.3751050.91919⨯+⨯.2.(10分)如图是用六个正方形,六个三角形、一个正六边形组成的图案,正方形边长都是2cm,这个图案的周长是cm.3.(10分)某项工程需要100天完成,开始由10个人用30天完成了全部工程的15,随后再增加10个人来完成这项工程,那么能提前天完成任务.4.(10分)王教授早上8点到达车站候车,登上列车时,站台上的时钟的时针和分针恰好左右对称.列车8点35分出发,下午2点15分到达终点站.当王教授走下列车时,站台上时钟的时针和分针恰好上下对称,走出车站时恰好3点整.那么王教授在列车上的时间共计分钟.5.(10分)由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是.6.(10分)如图所示,从长、宽、高分别为15cm,5cm,4cm的长方体中切割走一块长、宽、高分别为ycm,5cm,xcm的长方体(x,y为整数),余下部分的体积为3120cm,那么x y+=.7.(10分)一次数学竞赛有A,B,C三题,参赛的39个人中,每人至少答对了一道题.在答对A的人中,只答对A的比还答对其它题目的多5人;在没答对A的人中,答对B的是答对C的2倍;又知道只答对A的等于只答对B的与只答对C的人数之和.那么答对A的最多有人.8.(10分)甲,乙进行乒乓球比赛,三局两胜制.每局比赛中,先得11分且对方少于10分者胜;10平多得2分者胜.甲、乙二人得分总和都是30分,在不计比分先后顺序时,三局的比分共有种情况.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)两个自然数之和为667,它们的最小公倍数除以最大公约数所得的商等于120.求这两个数.10.(10分)酒店有100个标准间,房价为400元/天,但入住率只有50%.若每降低20元的房价,则能增加5间入住.求合适的房价,使酒店收到的房费最高.11.(10分)如图,长方形ABCD的面积是256cm.3=.请你回答:三DF cmBE cm=,2角形AEF的面积是多少?12.(10分)当N取遍1,2,3,⋯,2015中所有的数时,形如3+的数中能够被7整3n n除的有多少个?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)如图所示,ABCD是平行四边形,AM MB=,DN CN=,BE EF FC==,四边形EFGH的面积是1,求平行四边形ABCD的面积.14.(15分)“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且各个成语中四个汉字所代表的数的和都是21.则“弄”可以代表的数最大是多少?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)4584 1.3751050.91919⨯+⨯.【解答】解:4584 1.3751050.91919⨯+⨯.160011200091981910=⨯+⨯220018001919=+400019=1021019=故答案为:10 210192.(10分)如图是用六个正方形,六个三角形、一个正六边形组成的图案,正方形边长都是2cm,这个图案的周长是24cm.【解答】解:2626⨯+⨯1212=+24()cm=答:这个图案的周长是24cm.故答案为:24.3.(10分)某项工程需要100天完成,开始由10个人用30天完成了全部工程的15,随后再增加10个人来完成这项工程,那么能提前10天完成任务.【解答】解:1110030(1)[(1030)(1010)]55---÷÷⨯⨯+ 4170575=-÷ 7060=-10=(天)答:能提前10天完成任务.故答案为:10.4.(10分)王教授早上8点到达车站候车,登上列车时,站台上的时钟的时针和分针恰好左右对称.列车8点35分出发,下午2点15分到达终点站.当王教授走下列车时,站台上时钟的时针和分针恰好上下对称,走出车站时恰好3点整.那么王教授在列车上的时间共计 360 分钟.【解答】解:8时整时分针与时针的夹角是120︒,240120(60.5)13÷+=(分),王教授登上车的时间是:8时24013分; 下午2时15分时,分钟与时针的夹角是156(600.515)22.5⨯-+⨯=(度),4522.5(60.5)13÷+=(分),王教授下车的时间是:2时15分4513+分=下午2时24013分; 下午下午2时24013分化成24计时法是14时24013分 14时24013分8-时24013分6=小时 6小时360=分钟.故答案为:360.5.(10分)由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是 5321 .【解答】解:设四个数字分别为a 、b 、c 、d .根据题意可得以a 开头的组合有:abcd ,abdc ,acbd ,acdb ,adbc ,6adcb 个,则这六个四位数分别是:1000100101a b c d ⨯+⨯+⨯+⨯,1000100110a b c d ⨯+⨯+⨯+⨯,1000110100a b c d ⋯⨯+⨯+⨯+⨯,这6个数的和是6000222222222a b c d +++++;同理,以b 开头的6个四位数的和是2226000222222a b c d +++;以c 开头的6个四位数的和是2222226000222a b c d +++;以d 开头的6个四位数的和是2222222226000a b c d +++;则6666()73326a b c d +++=,即11a b c d +++=,分析可得a 、b 、c 、d 是1、2、3、5中的一个数字,所以组成的四位数中最大四位数是5321.故答案为:5321.6.(10分)如图所示,从长、宽、高分别为15cm ,5cm ,4cm 的长方体中切割走一块长、宽、高分别为ycm ,5cm ,xcm 的长方体(x ,y 为整数),余下部分的体积为3120cm ,那么x y += 15cm .【解答】解:1554120⨯⨯-300120=-3180()cm =则5180xy =,即36xy =,因为x ,y 为整数,且04x <<,015y <<,所以x 为3cm ,y 为12cm ,15x y cm +=.故答案为:15.7.(10分)一次数学竞赛有A ,B ,C 三题,参赛的39个人中,每人至少答对了一道题.在答对A 的人中,只答对A 的比还答对其它题目的多5人;在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的与只答对C 的人数之和.那么答对A 的最多有 23 人.【解答】解:只答对A 的人数是3b a +,答对A 还答对其他题目的人数是35b a +-,所以有:3353239b a b a b a +++-++=,化简得:4944a b +=,因为a 、b 都为自然数,所以当2a =时,4b =;当11a =时,0b =,即24a b =⎧⎨=⎩或110a b =⎧⎨=⎩答对A 的人共335625b a b a b a +++-=+-,把a 、b 的最大值代入625b a +-中,最大值是:64225⨯+⨯-2445=+-23=(人)答:答对A 的人最多有23人.故答案为:23.8.(10分)甲,乙进行乒乓球比赛,三局两胜制.每局比赛中,先得11分且对方少于10分者胜;10平多得2分者胜.甲、乙二人得分总和都是30分,在不计比分先后顺序时,三局的比分共有 8 种情况.【解答】解:甲、乙二人得分总和都是30分30311<⨯三局中其中一个人胜了两局,所以至少有两个分数不小于11,甲得分总和是:30:3011910=++乙对应的得分是:3071112:=++对应的比分是11:79:1110:12⎧⎪⎨⎪⎩,之后7、9依次减1,10和12依次加1:11:68;1111:13⎧⎪⎨⎪⎩、11:57:1112:14⎧⎪⎨⎪⎩、11:46:1113:15⎧⎪⎨⎪⎩、11:35:1114:16⎧⎪⎨⎪⎩、11:24:1115:17⎧⎪⎨⎪⎩、11:13:1116:18⎧⎪⎨⎪⎩、11:02:1117:19⎧⎪⎨⎪⎩上面8种都是乙取得了胜利,甲取得胜利对应的也是8种,但考虑不计比分先后顺序,故有8种情况,答:三局的比分共有8种情况.故答案为:8.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)两个自然数之和为667,它们的最小公倍数除以最大公约数所得的商等于120.求这两个数.【解答】解:6672329=+,=⨯,由题意,假设23是它们的最大公约数,由于29245⨯=,245120所以两数分别是2423552⨯=;⨯=,523115假设29是它们的最大公约数,由于23158⨯=,⨯=;所以两数分别是1529435=+,158120⨯=;829232答:这两个数是115和552,或者232和435.10.(10分)酒店有100个标准间,房价为400元/天,但入住率只有50%.若每降低20元的房价,则能增加5间入住.求合适的房价,使酒店收到的房费最高.【解答】解:由题意分析得①房价为400元/天,入住房间为10050%50⨯=元;⨯=,所以收到的房费为:4005020000②房价为380元/天,入住房间为50555⨯=元;+=,所以收到的房费为:3805520900③房价为360元/天,入住房间为60,所以收到的房费为:3606021600⨯=元;④房价为340元/天,入住房间为65,所以收到的房费为:3406522100⨯=元;⑤房价为320元/天,入住房间为70,所以收到的房费为:3207022400⨯=元;⑥房价为300元/天,入住房间为75,所以收到的房费为:3007522500⨯=元;⑦房价为280元/天,入住房间为80,所以收到的房费为:2808022400⨯=元;⑧房价为260元/天,入住房间为85,所以收到的房费为:2608522100⨯=元;答:当房价为300元/天时,酒店受到的房费最高.11.(10分)如图,长方形ABCD的面积是256cm.3DF cm=.请你回答:三=,2BE cm角形AEF的面积是多少?【解答】解:据分析可知:四边形AGEF的面积为:56228÷=(平方厘米),则阴影部分的面积为:28232-⨯÷=-283=(平方厘米).25答:三角形AEF的面积是25平方厘米.12.(10分)当N取遍1,2,3,⋯,2015中所有的数时,形如3+的数中能够被7整3n n除的有多少个?【解答】解:如图:3n除以7的余数以6为周期,3、2、6、4、5、1;3N除以除以7的余数以7为周期,1、1、6、1、6、6、0;则总周期为42:2015424741÷=⋯⨯+47662826=+=(个)288答:能够被7整除的有288个.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)如图所示,ABCD是平行四边形,AM MB=,DN CN==,四=,BE EF FC边形EFGH的面积是1,求平行四边形ABCD的面积.【解答】解:如图,,作//EQ CD ,//FP CD ,分别交BN 与点Q 、P , 因为13EQ EQ BE BM CN BC ===, 所以13EH OE HM BM ==; 因为BEM ∆的面积占平行四边形ABCD 的面积的:111132212⨯⨯=, 所以HEQ ∆的面积占平行四边形ABCD 的面积的:2131()12313⨯⨯+ 1311249=⨯⨯ 1144= 因为23FP FP ND CN ==, 所以BFP ∆的面积占BCN ∆的面积的:224()39=, 所以四边形EFPQ 的面积占平行四边形ABCD 的面积的:21141()[1()]2292⨯⨯⨯- 143494=⨯⨯ 112= 因为23FP FG ND GD ==, 所以FGP ∆的面积占平行四边形ABCD 的面积的:211312()()323223⨯⨯⨯⨯+13146529=⨯⨯⨯145=所以平行四边形ABCD的面积的:1111()1441245÷++9180=÷889=答:平行四边形ABCD的面积是889.14.(15分)“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且各个成语中四个汉字所代表的数的和都是21.则“弄”可以代表的数最大是多少?【解答】解:根据分析可知,表、一、故、如、虚”,五个重复数字之和为18,因为所有数是111--,重复数字只有以下几种可能:①1、2、3、4、8;②1、2、3、5、7;③1、2、4、5、6代入发现只有情况③符合情况,每个数都填入后,可得虚1=,故4=,弄、玄只能是9、7,弄最大是9.答:“弄”可以代表的数最大是9.。
2020年第二十一届“无悔金杯”少年数学邀请赛决赛试卷(小中组b卷)

2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组B卷)一、填空题(每小题10分,共80分)1.(10分)计算:2016×2016﹣2015×2016=.2.(10分)计算:1+2+4+5+7+8+10+11+13+14+16+17+19+20=.3.(10分)如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形.如果小长方形的周长是16cm,则原来长方形的面积是cm2.4.(10分)某月里,星期五、星期六和星期日各有5天,那么该月的第1日是星期.5.(10分)从1、3、5、7、9这5个数中选出4个不同的数填入下面4个方格中,使式子成立:□+□>□×□.两种填法,如果应用加法交换律和乘法交换律后,式子相同,则认为是相同填法,则共有种不同的填法.6.(10分)甲、乙两车分别从A,B两地同时出发,相向匀速行进,在距A地60千米处相遇.相遇后,两车继续行进,分别到达B,A后,立即原路返回,在距B地50千米处再次相遇.则A,B两地的路程是千米.7.(10分)黑板上先写下一串数:1,2,3,…,50,每次都擦去最前面的4个,并在这串数的最后再写上擦去的4个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足4个.问:(1)最后黑板上剩下的这些数的和是;(2)最后1个所写的数是.8.(10分)一个整数有2016位,将这个整数的各位数字相加,再将得到的整数的各位数字相加,则最后的这个和数可能的最大值是.二、简答题(每小题5分,共20分,要求写出简要过程)9.(5分)某商店搞了一次钢笔促销活动,促销办法是:顾客买的钢笔中,每2支送1只小熊玩具,不足2支不送.卖出1支钢笔的利润是7元,1只小熊玩具的进价是2元,这次促销活动共赚了2011元,该商店此次促销共卖出多少支钢笔?10.(5分)如图是一个三角形纸片折叠后的平面图形,折痕为DE,已知:∠B=74°,∠A=70°,∠CEB=20°,那么∠ADC等于多少度?11.(5分)将自然数1,2,3,4,从小到大无间隔地排列起来,得到:1234567891011121314,这串数码中,当偶数数码首次连续出现5个时,其中的第一个(偶)数码所在位置从左数是第多少位?12.(5分)从1到200这200个自然数中任意选数,至少要选出多少个才能确保其中必有2个数的和是5的倍数?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:2016×2016﹣2015×2016=2016.【分析】加法左右两边的算式中都有相同的因数2016,可以根据乘法分配律简算.【解答】解:2016×2016﹣2015×2016=2016×(2016﹣2015)=2016×1=2016故答案为:2016.2.(10分)计算:1+2+4+5+7+8+10+11+13+14+16+17+19+20=144.【分析】通过观察发现,运用加法交换律与结合律把前后两数组合可以得出整21,共7对,即(1+20)+(2+19)+(4+17)+(5+16)+(7+14)+(8+13)+(10+11),计算即可.【解答】解:1+2+4+5+7+8+10+11+13+14+16+17+19+20=(1+20)+(2+19)+(4+17)+(5+16)+(7+14)+(8+13)+(10+11),=21×7=147故答案为:147.3.(10分)如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形.如果小长方形的周长是16cm,则原来长方形的面积是56cm2.【分析】由大长方形到小长方形周长减少了:30﹣16=14(厘米),相当于减少了两条正方形的边长,所以正方形的边长是:14÷2=7(厘米),也就是原来长方形的宽是7厘米;那么原来长方形的长为:16÷2﹣7+7=8(厘米),面积是:8×7=56cm2.【解答】解:根据分析可得,30﹣16=14(厘米),正方形的边长:14÷2=7(厘米),原来长方形长:16÷2﹣7+7=8(厘米),面积:8×7=56(平方厘米);答:原来长方形的面积是56cm2.故答案为:56.4.(10分)某月里,星期五、星期六和星期日各有5天,那么该月的第1日是星期五.【分析】首先根据1个月最多有31天,可得:1个月最多有4个星期零3天;然后根据该月星期五、星期六和星期日各有5天,可得:该月的第1日是星期五,据此解答即可.【解答】解:因为31÷7=4(个)…3(天),所以1个月最多有4个星期零3天,因为该月星期五、星期六和星期日各有5天,所以该月的第1日是星期五.答:该月的第1日是星期五.故答案为:五.5.(10分)从1、3、5、7、9这5个数中选出4个不同的数填入下面4个方格中,使式子成立:□+□>□×□.两种填法,如果应用加法交换律和乘法交换律后,式子相同,则认为是相同填法,则共有12种不同的填法.【分析】按题意,可以分类讨论,两个数的和大于两个数的乘积,而两个数的和最大为7+9=16,可从7+9开始分类讨论,最后算得总的填法.【解答】解:根据分析,两个数的和大于两个数的乘积,而两个数的和最大为7+9=16,①两数之和为7+9时,则不等式右边有1×3、1×5、3×5三种填法;②两数之和为5+9时,则不等式右边有1×3、1×7两种填法;③两数之和为3+9时,则不等式右边有1×5、1×7两种填法;④两数之和为1+9时,则不等式右边有0种填法;⑤两数之和为5+7时,则不等式右边有1×3、1×9两种填法;⑥两数之和为3+7时,则不等式右边有1×5、1×9两种填法;⑦两数之和为1+7时,则不等式右边有0种填法;⑧两数之和为3+5时,则不等式右边有1×7一种填法;⑨两数之和为1+5时,则不等式右边有0种填法;⑩两数之和为1+3时,则不等式右边有0种填法;综上,共有:3+2+2+0+2+2+0+1+0+0=12.故答案是:12.6.(10分)甲、乙两车分别从A,B两地同时出发,相向匀速行进,在距A地60千米处相遇.相遇后,两车继续行进,分别到达B,A后,立即原路返回,在距B地50千米处再次相遇.则A,B两地的路程是130千米.【分析】可以利用相遇时距离之比等于速度之比,列出关系式,可设AB两地间的距离为S,第一次相遇时,甲走了60千米,而乙走了S﹣60千米,第二次相遇,甲又走了S﹣60+50千米,乙又走了60+S﹣50千米,从而可以求出S的值.【解答】解:根据分析,设AB两地间的距离为S,第一次相遇时,甲走了60千米,而乙走了S﹣60千米,第二次相遇,甲又走了S﹣60+50千米,乙又走了60+S﹣50千米,则:,解得:S=130.故答案是:130.7.(10分)黑板上先写下一串数:1,2,3,…,50,每次都擦去最前面的4个,并在这串数的最后再写上擦去的4个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足4个.问:(1)最后黑板上剩下的这些数的和是1275;(2)最后1个所写的数是755.【分析】按题意,每次擦去的4个数之和都写在后面,擦到最后只剩下49和50,但后面均为四个数的和,个数为12个,加上49和50两个数,共14个数,再继续循环,这次首先擦掉的是49和50及1+2+3+4的和,及5+6+7+8的和,依此继续下去,最后只剩下,4组数的和,即:25+26+27+28,29+30+31+32,33+34+35+36,37+38+39+40,此时这一组数的和为一个数,故最后剩下的数为这4组数的和,即:25+26+27+28+29+30+31+32+33+34+35+36+37+38+39+40=520,而最后一个写的数,可通过总数算得.【解答】解:根据分析,每次擦去的4个数之和都写在后面,擦到最后只剩下49和50,但后面均为四个数的和,个数为12个,加上49和50两个数,共14个数,再继续循环,这次首先擦掉的是49和50及1+2+3+4的和,及5+6+7+8的和,依此继续下去,最后只剩下,4组数的和,即:25+26+27+28=106,29+30+31+32=122,33+34+35+36=138,37+38+39+40=154,而四组数的和为:106+122+138+154=520,当黑板上只剩下:41+42+43+44=170黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。
2015年第二十届华杯赛决赛C卷详解(高年级组)

1 =336(千米)。 4
3
成都市青羊区金河路 59 号尊城国际 13 楼 1305 10.
68890961
【答案】33 【解析】最简分数的分母只含有 2 或 5,化为小数才为有限小数 分母形式只能是: 2 5 ,且 2 5 2016 ,则 5 2016, b 4
a b a b
【答案】101 【解析】由于∠ADH+∠IDE=90°,则△AHD 与△DIE 完全相同, 则 S△AHD=S△DIE=11×9÷2,可得 AH=DI=9,HB=11-9=2, 得 S 阴影=SABEI-S△DIE-S△ADH-S△HBE= (11+9)×11-11×9÷2-11×9÷2-2×20÷2=101.
5
成都市青羊区金河路 59 号尊城国际 13 楼 1305 14.
68890961
【答案】3 【解析】① 若 48 名学生分到的数量互不相同,则 至少要: 0 1 2 3 47 1128 530 ,不满足条件 ② 若只有 2 名学生分到的书数量相同,则 至少要: (0 1 2 3 23) 2 552 530 ,不满足条件 ③ 若有 3 名学生分到的书的数量相同,则 至少要: (0 1 2 3 15) 3 360 530 ,满足条件 综上所述:至少有 3 名学生分到的书的数量相同。
成都市青羊区金河路 59 号尊城国际 13 楼 1305
68890961
第二十届华罗庚金杯少年数学邀请赛
决赛 C 试卷(小学高年级组) 一、选择题(每小题 10 分,共 80 分.)
1. 科雅数学 电话:68890961,86111521; 科雅小升初 QQ 交流群: 194587786; 科雅 5 年级 QQ 交流群:252737962; 科雅 3,4 年级交流群: 217107180;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)一、填空题(每小题10分,共80分)1.(10分)计算:+=.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有种不同的分法.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为9厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是平方厘米.5.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出种不同类型的卡片.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是平方厘米.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x=.8.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A地时,甲车距离B地还有84千米,那么A 和B两地距离是多少千米?10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?11.(10分)a,b为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:+=1.【分析】把繁分数的分子分母中的算式分别化简,然后根据分数的基本性质解答即可.【解答】解:+=+=+=1;故答案为:1.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有8种不同的分法.【分析】根据题意,分成的两组之和为(1+8)×8÷2=36,因为两组的自然数各自之和的差等于16,因此和较大的一组等于(36+16)÷2=26,较小的一组是36﹣26=10,由此即可解答.【解答】解:分成的两组之和为:(1+8)×8÷2=9×8÷2=36和较大的一组等于:(36+16)÷2=52÷2=26较小的一组是:36﹣26=10因为10=2+8=3+7=4+6=1+2+7=1+3+6=1+4+5=2+3+5=1+2+3+4相应地26=1+3+4+5+6+7=1+2+4+5+6+8=1+2+3+5+7+8=3+4+5+6+8=2+4+5+7+8=2+3+6+7+8=1+4+6+7+8=5+6+7+8所以共有8种不同的分法故答案为:8.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于8479.【分析】按题设条件,操作16次后,如上图,发现数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现.根据整个规律,推出操作了2015次,得到的数,再求和即可.【解答】解:按题设条件,操作16次后,如下:数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现,则操作2015次:(2015﹣6)÷5=401…4,则2015次操作的对应的数字是5;则所有自然数和为:前4位:2+0+1+5=8,后6为:3+6+9+1+4+1+6+6=36,重复的数字和为:1+1+1+3+3+5+7=21,重复401次后,和为401×21=8421,余数4,对应数字的和为:1+1+1+3+3+5=14,以上数字相加即为所有自然数和=8+36+8421+14=8479.故:应该填:8479.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为9厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是101平方厘米.【分析】1、延长EF、AD交于点K;2、将△DEK和△ADH面积相等,所以,HB=2;3、S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE【解答】根据上述分析=S ABEK﹣S DEK﹣S ADH﹣S BHE=11×(11+9)﹣0.5×9×11﹣0.5×9×11﹣故答案是:S阴影0.5×2×(11+9)=1015.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出8种不同类型的卡片.【分析】可首先分析向左的减法,然后根据左右对称情况得出向右的剪法,减去重合的剪法,从而得出总的不同剪法.【解答】解:先考虑从正面剪,中间那条粗线是一定要剪开的,剪开后,从点1有三种选择,向上向左向右;1、向上:,属于第1种类型;2、向左:剪至点3,又有3种选择,向上向左向下,(1)向上(黑线):,红线是和黑线对称的情况,但按红线剪出的图形旋转后和黑线相同,属于第2种类型;(2)向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第3、4种类型;(3)向下:向下剪至点6,有两种选择,向左,向下,①向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第5、6种类型;②向下:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第7、8种类型;综上可得,总共有8种类型.故答案是:8.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是224平方厘米.【分析】长宽高的和是:88÷黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。
头号新闻网:头号新闻网为您及时提供科技、互联网、房产、家居、美食等相关领域的新闻资讯。
4=22厘米,长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,然后再利用长方体的侧面积公式,也就是用底面周长乘高,据此解答即可.【解答】解:长宽高的和是:88÷4=22(厘米),长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,(7+7)×2×8=28×8=224(平方厘米);答:这个长方体的总侧面积最大是224平方厘米.故答案为:224.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x=2.【分析】按题意,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,而3x﹣5为整数,不难求得x=2.【解答】解:根据分析,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,⇒x≤,∵3x﹣5≥0∴x=2而3x﹣5为整数,不难求得x=2.故答案是:28.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是8569.【分析】观察这个算式,要使这个算式的值最大,那么两位数与两位数的乘积就要尽可能的大,所以天空=96,则湛蓝=87;同理,两位数与一位数的乘积也要尽可能的大,所以翠绿=43,则树=5;那么盼=1,望=2;据此解答即可.【解答】解:根据分析可得,1×2+43×5+96×87=2+215+8352=8569;故答案为:8569.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A地时,甲车距离B地还有84千米,那么A 和B两地距离是多少千米?【分析】首先根据甲丙相遇走完全程的一半,乙走完全程的即可列出一组甲乙丙速度的关系式,再根据丙3小时走一半路程,乙3.5小时走完全程可以列出乙丙的速度关系式.重点求出甲乙的速度比,根据甲车距离B地84千米,求得对应的份数,即可求出所求.【解答】解:根据题意可知,当甲丙相遇时走完全程的一半,乙走完全程的,即(V 甲+V丙)=V乙.①再根据丙3小时走了全程的一半,乙3.5小时走完全程,即6V丙=3.5V乙.②根据①②得:V甲:V乙=3:4.所以甲乙路程之比就是3:4.一份量是:84÷(4﹣3)=84千米.全程是:84×4=336千米.故答案为:336千米.10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?【分析】先找出分母中只有因数2,5,同时有2和5的数的个数,即可得出结论.【解答】解:在2015个分数,,…,,的分母中,只有因数2的数有2,4,8,16,32,64,128,256,512,1024共10个数,只有因数5的数有5,25,125,625共4个数,既有因数2,也有因数5的数有10,20,40,50,80,100,160,200,250,320,400,500,640,800,1000,1250,1280,1600,2000共19个数,所以总有10+4+19=33个有限小数,答:共有33个有限小数.11.(10分)a,b为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?【分析】根据条件,代入验证,求出a,b,即可得出结论.【解答】解:由题意,a=7,则取b=1,+=1.4+0.143≈1.54,不符合题意;a=6,则取b=3,+=1.2+0.429≈1.63,不符合题意;a=5,则取b=4,+=1+0.571≈1.57,不符合题意;a=4,则取b=5,+=0.8+0.714≈1.51,符合题意;∴a+b=9.12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?【分析】aad×e=abcd中,d×e的个位数仍为d(1~9)×1=(1~9)(2、4、6、8)×6=(12、24、36、48)5×(3、5、7、9)=(15、25、35、45)【解答】解:从上面的分析可以看出e可能为1、6、(3、5、7、9)设:e为9,希望得最大值,则d为5从a=(1~9)检测,得115×9=1035225×9=2025335×9=3015…通过检测,∴abcd的最大值为3015答:这个四位数最大是3015.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?【分析】连接BD(如下图),若△AEF以AF为底、△EFD以FD为底,他们的高相等,则底边比等于面积比,可以求出AF:DF=2:3;=0.2×S▱ABCD、而S△BDF 若△ABF、△BFD分别以AF、FD为底,他们高相同,则S△ABF=0.3×S▱ABCD;=0.6×S△ABDS△BCDF=S△BFD+S△BCD,求出S▱ABCD;=0.2×S▱ABCD,求出S△ABF;,根据S△AEB=S△ABF﹣S△AEF,可以S△AEB;由S△ABFS△AEB与S△ECD之和为平行四边形面积的一半,可以求出S△ECD.【解答】解:连接BD(如上图),根据△AEF的面积=8cm2,△DEF的面积=12cm2,求出AF:DF=8:12=2:3;S△BCDF=S△BFD+S△BCD=0.5S▱ABCD+0.3S▱ABCD=0.8S▱ABCD=72,所以:S▱ABCD=90;S△ABF=0.2S▱ABCD=18,S△ABE=S△ABF﹣S△AEF=10;S△ABE+S△ECD=0.5×S▱ABCD=45;=45.故S△ECD的面积为45cm2.答:S△ECD14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?【分析】①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同,据此解答即可.【解答】解:①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同.答:至少3名学生分到的书数量相同.第11页(共11页)。