测井解释 电阻率测井
《电法测井》普通电阻率测井

普通电阻率测井使用电极系进行测量,电极系包括供电电极 、测量电极和回路电极等。电极排列方式有多种,如梯度电 极系、聚焦电极系等,不同的电极排列方式适用于不同的测 量需求和地层条件。
测量方法与测量系统
总结词
普通电阻率测井的测量方法与测量系统密切相关,测量系统的性能直接影响测量结果的准确性和可靠 性。
评估油气储量
通过分析地层电阻率的变 化,可以估算出油气储量, 为资源评估和开发计划提 供数据支持。
指导钻探和开发
通过电阻率测井数据,可 以确定最佳的钻井位置和 开发方案,提高油气开采 效率和效益。
煤田勘探
识别煤层
通过测量煤层电阻率,可以确定煤层的厚度、深度和位置,为后 续的采煤和矿区规划提供依据。
案例二
某煤田利用普通电阻率测井技术发现煤层中 存在异常区域,经进一步勘探证实存在煤层 气富集区。
工程地质案例分析
案例一
某工程利用普通电阻率测井技术探测地下岩 土层的电阻率,为工程设计和施工提供了地 质依据。
案例二
某工程利用普通电阻率测井技术监测地下水 位变化,及时发现渗漏和塌陷等安全隐患。
环境地质案例分析
普通电阻率测井的历史与发展
历史
普通电阻率测井技术自20世纪初诞生以来,经历了漫长的发展历程,技术不断 改进和完善。
发展
随着科技的不断进步,普通电阻率测井技术也在不断创新和发展,测量精度和 稳定性不断提高,应用范围也不断扩大。未来,普通电阻率测井技术将继续向 着高精度、高效率、自动化和智能化方向发展。
油气田案例分析
案例一
某油田在开发过程中,通过普通电阻 率测井技术探测到油层电阻率变化, 成功发现潜在的油藏。
案例二
某油田利用普通电阻率测井技术对油 层进行监测,发现油层电阻率异常, 及时调整开发方案,提高了采收率。
电阻率测井解读与应用

电阻率测井解读与应用电阻率测井是一种常见的地球物理测井方法,广泛应用于油气勘探和生产过程中。
本文将对电阻率测井的原理、参数解读和应用进行详细介绍。
一、原理电阻率测井的原理基于电流在地层中的传导特性。
测井仪器通入电流,通过测量电场强度和电流强度来计算电阻率。
地层的电阻率是一个重要的地质参数,可以反映岩石的导电能力,进而推断出储层的性质。
二、参数解读1. 孔隙度与饱和度地层的孔隙度和含水饱和度是电阻率测井中重要的解释参数。
孔隙度指地层孔隙空间的比例,一般情况下孔隙度越大,电阻率越小;而含水饱和度是指孔隙中水的比例,水的导电能力较高,所以含水饱和度越高,电阻率越小。
2. 渗透率地层的渗透率是指地层岩石中流体(如石油和天然气)通过能力的指标。
渗透率与电阻率之间存在一定的关系,一般情况下,渗透率越高,电阻率越大。
3. 岩石类型不同的岩石类型具有不同的电阻率特性。
例如,沉积岩中的砂岩和泥岩的电阻率差异较大,可以通过电阻率测井数据来判别岩石类型。
三、应用电阻率测井具有广泛的应用价值,在油气勘探和生产过程中发挥着重要的作用。
1. 储层评价利用电阻率测井数据可以对储层进行评价。
通过分析电阻率测井曲线,可以推断储层的孔隙度、饱和度和渗透率等参数,从而评估储层的储集能力和开发潜力。
2. 油气饱和度计算电阻率测井可以帮助计算油气饱和度。
通过测量地层的电阻率变化情况,结合其他物性参数,可以对油气饱和度进行定量计算,为油气开采提供重要依据。
3. 水层识别在油气勘探中,准确识别水层对于油气开采至关重要。
由于水的导电性较高,利用电阻率测井可以快速准确地识别出地层中的水层,有助于合理规划井别和减少水的影响。
4. 地层划分电阻率测井数据可以用于地层划分。
根据地层中的电阻率变化情况,可以将地层划分为不同的层级,为地质分析和油气勘探提供重要的信息。
5. 钻井过程监测在钻井过程中,电阻率测井还可以用于监测井壁稳定性和识别地层问题。
通过实时监测电阻率变化,可以及时发现钻井问题,保障钻井作业的安全和顺利进行。
过套管电阻率测井解释-精品文档

单层分析
第27层:该层套 后地层电阻率在 不受泥浆侵入影 响情况与套前地 层电阻率基本一 致,数值较高, 综合其它资料分 析该层应该含油, 建议对该层进行 射孔求产。
单层分析
第7层:该层套后 地层电阻率低于 套前电阻率,原 因是泥浆增阻侵 入影响,还是其 它因素影响还有 待于分析考察, 但从裸眼完井资 料综合分析,该 层应该含油,建 议对该层进行射 孔求产。
过套管电阻率测井解释
二0一0年八月
汇报内容
•
一、概述
•
•
二、过套管电阻率测井的地质应用
三、过套管电阻率测井资料处理
•
•
四、过套管电阻率测井资料解释分析
五、X井测井及解释分析
•
六、结论
概
述
过套管电阻率测井是一种电阻率测井方法,它实现了
在套管内对套管外地层电阻率的测量,因具有比核测井更 好的探测特性和动态探测范围等优势,逐渐成为套管井看
单层分析
第1层:该层套后 地层电阻率在不 受泥浆侵入影响 情况与套前地层 电阻率基本一致, 数值低主要为岩 性影响,储层具 有一定厚度,建 议对该层进行射 孔求产。
深度匹配后,人工确定出适合本井的K因子,得到反映地层真实信息的过套管电
阻率。
3、绘制过套管电阻率测井曲线综合图
:将经过预处理的过套管电阻率测井
资料与裸眼井测井资料绘制成测井曲线综合图,进行资料解释与评价。
过套管电阻率测井资料解释分析
1、 过套管电阻率测井资料解释标准 :
过套管电阻率大于或近似等于裸眼井电阻率:过套管电阻率与裸眼电阻 率相当或略有升高,地层保持原始状态或油运移所致,但应依据裸眼井解释 为油层、含水油层和油水同层,或在一次解释中因疏忽、漏判、错判而解释 为水层导致遗失的油气层,才能采取进一步增产措施。 过套管电阻率小于裸眼井电阻率:过套管电阻率明显低于裸眼井电阻率 ,或考虑地层水矿化度的影响,用油田提供的产出水矿化度计算剩余油饱和 度,结合每口井的生产简史,解释水淹程度较高的层,建议采取措施进行封 堵;而仍有较大的剩余油饱和度,即水淹程度较低的层,仍可能提高单井产 能,建议采取措施求产。
测井资料综合解释经典

测井资料综合解释经典测井是油气勘探开发过程中极为重要的一项技术手段,通过对地下岩层进行电磁、声波、核子等各种物理方法的测量,获取有关地层、含油气性质等基本参数的数据。
测井数据对于判断油气藏的性质、水文地质条件、岩性变化等都具有重要的参考价值。
本文将综合解释几种经典的测井资料,包括测井曲线、测井解释方法等。
一、测井曲线1. 自然伽马测井曲线(GR)自然伽马测井曲线测量的是地层的自然伽马辐射强度,是一种常用的测井曲线之一。
自然伽马辐射是由岩石中的放射性元素,如钍、钾和铀等的衰变所产生的。
GR曲线的峰值反映了岩石的放射性物质含量,通过与岩层进行对比分析,可以判断岩层的类型和含油气性质。
2. 电阻率测井曲线(ILD、Rt)电阻率是指物质对电流的阻碍程度,电阻率测井曲线测量了地层的电阻率值。
岩石的电阻率与其孔隙度、含水饱和度以及岩石的含油气性质密切相关。
ILD曲线是测量液体饱和度等含油气性质的重要参数,而Rt曲线通常用于描述岩石的电阻性质。
3. 声波测井曲线(DT、ΔT)声波测井曲线主要是通过测量岩石对声波的传播速度来获取有关地层岩性和孔隙度等参数。
DT曲线即声波传播时间曲线,反映了声波在地层中传播所需的时间,ΔT曲线是声波时差曲线,它可用于计算地层中流体的饱和度。
二、测井解释方法1. 直接解释法直接解释法是根据测井曲线的特征进行判断、推断,结合地层信息和岩性特征,直接得出结论。
例如,根据GR曲线的峰值及其分布情况,可以判断油气层的存在与否,以及油气层的厚度和含油饱和度等。
2. 相关系数法相关系数法是通过建立地层参数之间的统计关系来进行解释。
通过计算测井曲线之间的相关系数,可以得出地层岩性、岩相、孔隙度、饱和度等参数的推断。
例如,通过计算GR曲线与含油饱和度的相关系数,可以判断油气层的含油饱和度等。
3. 分层解释法分层解释法是根据地层的特点和垂向变化进行测井解释。
通过分析测井曲线的规律性变化和层段特点,将地层划分为若干层段,再对每个层段进行解释。
《电阻率测井》课件

05
电阻率测井实例分析
实例一:某油田的电阻率测井解释
总结词
该实例展示了电阻率测井在某油田勘探中的应用,通过电阻 率曲线分析地层岩性、孔隙度、含油性等信息。
详细描述
该油田位于我国东部地区,地层复杂多变,通过电阻率测井 技术,可以确定地层岩性、孔隙度、含油性等参数,为油田 的勘探和开发提供了重要的依据。
辅助电极
用于测量电位差,与主电极一起形成 测量回路。
接地电极
用于连接地面,形成完整的电流回路 。
隔离电极
用于隔离不同层位的地层,避免相互 干扰。
03
电阻率测井方法
直流电阻率测井
总结词
通过向地下供电,测量地层电阻率的方法。
详细描述
直流电阻率测井使用稳定电流源向地下供电,测量地层电阻率的一种方法。它具 有测量精度高、稳定性好的优点,但测量速度较慢,且容易受到电极极化和井眼 效应的影响。
地层对比与划分
通过对比不同地层的电阻率值,对地 层进行划分和识别,确定地层的岩性 、物性和含油性等。
电阻率测井的地质应用
岩性识别
通过电阻率曲线形态和数值的变 化,判断地层的岩性特征,如砂 岩、泥岩等。
含油性评估
根据电阻率值的大小和变化规律 ,评估地层的含油量和油藏类型 ,为油藏开发提供依据。
储层评价
详细描述
电磁波传播电阻率测井利用电磁波在地层中的传播特性,通过测量电磁波的传播速度和幅度衰减来计 算地层电阻率。这种方法具有测量速度快、精度高、受井眼效应影响小的优点,但需要高频率的电磁 波源和精密的接收设备。
04
电阻率测井解释
电阻率测井资料的处理
地球物理测井:第02章 电阻率测井

I
MN I
I
电位: MN ,则 AN / MN 1, UMN UM
Ra 4 AM AN UMN 4 AM UM
MN
I
I
电极互换原理:
保持电极系中各电极之间的相对位置不变,只改变其功能(供电或 测量),则当测量条件不变时所测曲线完全相同,称为电极互换原理。
补充:理论计算一般用AMN;实际生产中小尺寸电极系用双极供电, 大尺寸电极系用单极供电减小干扰。
深:
Rd LL3
反映原状地层Rt
浅:
Rs LL3
反映侵入带Ri
(3)探测特性
➢ 纵向分辨率:主电流厚度(绝缘环中点O1O2间距),约0.2 m ➢ 探测半径:横向探测深度,深rd≈1.0 m,浅rs≈0.3 m
2021/7/31
中国石油大学(华东)
23
A0:主电极(供主电流Io) A1、A2:屏蔽电极(供屏蔽电流Is,与Io同极性) M1、M1、M2、M2 :监督电极 B1、B2:回路电极; N:对比(参考)电极,无穷远处
中国石油大学(华东)
8
有关阿尔奇公式
➢ 意义:将孔隙度测井与电阻率测井联系起来,用于计算 流体饱和度,是测井定量解释油水层的基础。
➢ 适用条件:纯岩石(不含泥质)或含泥质很少的岩石。
➢ 用法:孔隙度测井 + 电阻率测井 + 阿尔奇公式,在水 层(电阻率测井得出R0)可求出Rw;在油层可求出其R0 并进而确定Sw。
电阻率或电导率都是描述物质导电性质的物理量,
电阻率:单位是欧姆米(Ωm),测井上用符号R表示;(Resistivity) 电导率:单位是姆欧/米( /m),标准单位是西门子/米(S/m),测
井上用符号σ表示。 (Conductivity)
电阻率测井

③含水岩石电阻率与孔隙度的关系
地层因素F:完全含水(100%含水)岩石的 电阻率Ro与地层水电阻率Rw的比值。即定义:
微球型聚焦-测量原理(恒压法)
测井时,主电极Ao发出总电流I,其中一 部分电流和辅助电极形成回路,叫辅助电流Ia, 主要分布在泥饼中;另一部分电流经过B电极 形成回路,叫主电流Io,主要分布在冲洗带中。 通过自动调整电路调节Io和Ia的大小,直到监 督电极之间的的电位相等,即Um1=Um2,同时 测量电极Mo与两个监督电极M1和M2的中点 O之间的电位差为给定值,即ΔUMoO=Vref(参 考电压)为止。
单极供电 倒装电位 电极系
双极供电 正装电位 电极系
双极供电 倒装电位 电极系
单极供电 正装(底 部)梯度 电极系
单极供电 倒装(顶 部)梯度 电极系
双极供电 正装(底 部)梯度 电极系
双极供电 倒装(顶 部)梯度 电极系
称
1、岩石的电阻率
①岩石电阻率与岩性的关系 不同岩性的岩石电阻率不同,主要造岩矿物和石
梯度电极系曲线特点
②高阻层厚度很 大时,对着地层 中部Ra曲线出现 一个直线段,其 幅度值接近地层 的真电阻率Rt。
电位电极系Ra曲线
①电位电极系的Ra 曲线对地层中点对 称;
②Ra曲线对着地层 中点取得极值。当 厚度h>AM(大于电 极距L)时,对应高 阻地层中点,Ra呈 现极大值,且h越大, 极大值越接近Rt; 当h<L时,对应地层 中点,Ra呈现极小 值,不能反映地层 Rt的变化。
测井解释电阻率测井

整理课件
18
改进思路
采用屏蔽电流控制主电流的流路(路径) 使影响减至最小——发展侧向测井。
目前侧向测井包括:三侧向、七侧向、 双侧向、微侧向等。
整理课件
19
一、三电极侧向测井
1、测量原理
A0——主电极 A1、A2——屏蔽电极 B1、B2——回路电极 电极系中有三个柱状电极(回
路电极除外)。 主电极较短,屏蔽电极较长。 浅三测向的屏蔽电极较深三测
整理课件
33
二、七电极侧向测井
2、测井曲线特点
特点与三侧向类似,七侧向与三侧向探测特性 的差别:
深七侧向的探测深度比深三侧向大。 浅七侧向的探测深度比浅三侧向小
整理课件
34
二、七电极侧向测井
3、影响因素
与三侧向类似,所不同的是依探测深度的不同 所受影响大小不同
4、测井资料的应用
与三侧向类似,
整理课件
整理课件
4
一、普通电阻率测量原理
2、普通电阻率测量原理
普通电阻率测井的测量方法与岩样的测量原 理是极其相似的;但井内电场与电位的分布很复 杂;与R之的关系也很复杂。
供电电极:A、B 测量电极:M、N 有一个在地面(如图 为N),其余在井下, 构成电极系,电极距L=AM
整理课件
5
一、普通电阻率测量原理
向的短。 浅三测向的回路电极离屏蔽电
极较近,深三测向的回路电极 离屏蔽电极较远。
整理课件
20
一、三电极侧向测井
1、测量原理
测井过程中,A1、A0、 A2具有相同有极性和电位 且与B的极性相反。
深、浅三侧向的电流侧 向流入地层。
深三侧向的主电流能流 入到地层较深的地方才开 始发散。这主要是屏蔽电 极长,回路电极远,聚焦 能力强所导致的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、三、七、双侧向对比
2、纵向分层能力:
三侧向的分层能力最好(层厚:0.4~0.5m) 七侧向与双侧向相同且较三侧向差。
四、三、七、双侧向对比
3、影响因素:
影响因素相同,但影响的大小不同。 三侧向受井眼、围岩及侵入的影响最大,且 深、浅三侧向的探测深度差不大,不利于对比分 析。 双侧向受井眼、侵入的影响最小,且深、浅 侧向的电流层厚度相同有利于对比分析。 七侧向介于三侧向和双侧向之间,且深、浅 七侧向的主电流厚度不同不利于对比。
向的短。 • 浅三测向的回路电极离屏蔽电
极较近,深三测向的回路电极 离屏蔽电极较远。
一、三电极侧向测井
1、测量原理
• 测井过程中,A1、A0、 A2具有相同有极性和电位 且与B的极性相反。
• 深、浅三侧向的电流侧 向流入地层。
• 深三侧向的主电流能流 入到地层较深的地方才开 始发散。这主要是屏蔽电 极长,回路电极远,聚焦 能力强所导致的。
般情况下(中、低矿化度);油层为正差异,水 层为负差异。
一、三电极侧向测井
4、测井资料的应用
4)确定地层电阻率 a)仅用深三侧向的视电阻率确定Rt: Ⅰ对应于地层中部读取极值; Ⅱ对其作相应的影响因素校正。 *根据仪器的型号、测井时的环境选择相
应的专用图版或经验公式。 b)用浅三侧向的视电阻率确定Ri: Ⅰ对应于地层中部读取极值; Ⅱ对其作相应的影响因素的校正。
一、三电极侧向测井
1、测量原理
• 测井过程中,A1、A0、 A2具有相同有极性和电位 且与B的极性相反。
• 深、浅三侧向的电流侧 向流入地层。
• 浅三侧向的主电流流入 到地层后不久就发散,这 主要是屏蔽电极短,回路 电极近,聚焦能力差所决 定的 。
一、三电极侧向测井
1、测量原理
电阻率:
RLL 3
一、三电极侧向测井
三侧向测井与普通电阻率测井相比,受井眼 、围岩的影响要小得多。但仍有弱点:
1)深三侧向测井的探测深度不够深。三侧 向测井是通过加长屏蔽电极来增强聚焦能力,提 高探测深度,而理论与实验结果都表明:随屏蔽 电极的加长,探测深度加深,当屏蔽电极加长到 一定的度度之后,再进一步加长屏蔽电极对聚焦 效果的改善不明显。
二、七电极侧向测井
1、测量原理
• 测量过程中:A1、A0、A2的极性 相同;主电流强度I0不变,通过自 动调节电路调整Is的大小使 Um1=Um1’,Um2=Um2’,即使主电 流Io侧向流入地层之中.
• 深浅七侧向的电极系分布比S不同, 聚丝能力不同。深七侧向的主电流 能流入到地层的深部,而浅七侧向 的主电流进入地层后不久就开始发 散。
二、电极系分类
成对电极:把电 极系中接在同一线路 中的电极叫成对电极: MN。
不成对电极:把 和地面电极接在同一 线路中的电极叫不成 对电极:AB。
二、电极系分类
1、电位电极系
不成对电极到靠近
它的那个成对电极之
间的距离小于成对电
电
极之间的距离(AM<MN)
位
的电极系。
电
极
系
二、电极系分类
1、电位电极系
• 探测范围不同。 • 深七侧向的深度较大,测得的
RLL7主要反映Rt,而浅七侧向的探 测深度较小,测得的RLL7主要反映 Ri.
二、七电极侧向测井
1、测量原理
电阻率:
RLL 7
K
U I0
K—电极系系数(一般由实 验或理论计算确定)
I0—主电极强度 ΔU—M1与N(无限远处)的电
位差。
二、七电极侧向测井
K
U I0
K—电极系系数(一般
由实验或理论计算确定)
I0—主电极强度。 ΔU—主电极与无限远处 的电位差
一、三电极侧向测井
2、测井曲线特点
1)高阻层Ra增大,比普通电阻率曲线更接近Rt。 2)上下围岩电阻率相等时Ra对称于高阻层中部, 应取地层中部的Ra(极值)作为地层的Ra。 3)高阻邻层影响很小。
电位电极系视电阻率曲线 特征:
a、半幅点之间的距离与 地层的厚度及电阻率有关。 Rt>Rs,且h>>L,半幅点距离 =h-L;其它情况下,半幅点距 离=h+L。
b、曲线极值对应于地层 重点且最接近于Rt。
二、电极系分类
2、梯度电极系
不成对电极到靠近
它的那个成对电极之
间的距离大于成对电
极之间的距离(AM>MN)
一、三电极侧向测井
3、影响因素
1)井眼和泥浆的影响 井眼的影响由井眼的直径及流体的电阻率所
决定,当井内的电阻率较低时,且直径不是很大 时,井眼影响小。
2)泥饼的影响 泥饼的影响由泥饼的厚度(hmc)、和泥饼
的电阻率(Rmc)所决定。通常hmc很小,其对测 量影响很小。
一、三电极侧向测井
3、影响因素
一、普通电阻率测量原理
2、普通电阻率测量原理
普通电阻率测井的测量方法与岩样的测量原 理是极其相似的;但井内电场与电位的分布很复 杂;与R之的关系也很复杂。
供电电极:A、B 测量电极:M、N 有一个在地面(如图 为N),其余在井下, 构成电极系,电极距L=AM
一、普通电阻率测量原理
2、普通电阻率测量原理
2)浅三侧向的探测深度不够浅。 改进的思路:改变电极系的结构和聚焦方式 从而以展了七侧向测井。。
二、七电极侧向测井
1、测量原理
• 七测向测井的电极系结构 A0—主电极
• A1、A2—屏蔽电极 • M1、M2、M1’、M2’ —
监督电极 • 电极系距:L= O1O2 • 电极系长度:L0= A1 A2 • 电极系分布比:S=L0/L • 记录点:A0的中点。
四、三、七、双侧向对比
4、曲线特点:
曲线特点基本相同。
5、应用:
基本相同,只是效果不同。
6、应用的有利条件:
盐水泥浆,高阻地层。
一、三电极侧向测井
4、测井资料的应用
1)划分岩性并决定层界面的位置(以地区经验 为基础)
2)识别渗透层 在渗透层处两条曲线(深三侧向、浅三侧向)
出现差异,这主要是由于滤液与地层流体的差别 所引起的。
一、三电极侧向测井
4、测井资料的应用
3)判断油气水层 仅用深三侧向:油气层的RLL3高,水层的
RLL3小(以地区经验为基础)。 用深三侧向与浅三侧向的差值进行判别:一
电阻率表达式:
Ra
K
U MN I
K—电极系系数,只与电极系结构有关 I—电流 测量 U MN 即可确定介质电阻率
一、普通电阻率测量原理
2、普通电阻率测量原理
测量时,3个电极放 入井中,1个(B或N)留在地 面。提升过程中,地面仪 器记录沿井身的电位差变 化曲线,该电位差不仅与 地层的Rt有关,而且还与 井眼流体、侵入带、围岩 的电阻率有关。故该电位 差经刻度后,得到视电阻 率Ra。
• 主电流层的厚度略大于三 侧向。
三、双侧向测井
1、测量原理 电阻率:
RLL
K
U I0
K—电极系系数(一般 由实验或理论计算确定)
I0—主电极强度 ΔU—M1与N(无限远处) 的电位差。
四、三、七、双侧向对比
1、探测深度:
1)深探测方面: 三侧向最小,双侧向中的深侧向最大,七侧
向次之。 2)浅侧向方面: 浅侧向与浅七侧向的相差不多且较小,浅三
地层厚度h、围岩电阻率与Rt的差异的大小、层 厚变薄,低阻围岩对测量结果贡献增大
4、侵入的影响
低侵(一般在油层)、高侵(一般在水层)与 di、Ri有关
5、高阻邻层的屏蔽影响
高阻邻层的屏蔽改变了电流的分布及地流密度
四、视电阻率曲线的应用
1、划分岩性剖面
不同岩性地层的Rt不同,反映Rt的视电阻率Ra 也不同,所以Ra曲线可用来划分岩性,以地区经 验为基础。
d、h<L时(薄层),其极值最 接近Rt
三、普通电阻率测井影响因素
1、电极系的影响
电极矩不同时,探测范围不同,测量结果不同 (L小时,主要测量Rm和Ri;L太大时,受围岩影 响)
2、井眼的影响
井眼的大小、泥浆电阻率决定了探测范围内各 种介质对测量结果的贡献的大小
三、普通电阻率测井影响因素
3、层厚与围岩的影响
第三章 电阻率测井
一、普通电阻率测井 二、侧向测井
第三章 电阻率测井
利用岩石的导电性(电阻率或电导率) 研究地层的一类测井方法称为电阻率测井。
岩石的电阻率与岩性、储集物性、含 油性有密切的关系 ,所以通过研究岩石的 电阻率的差异就可以区分岩性、划分储集 层并评价含油气性、进行地层对比
一、普通电阻率测量原理
改进思路
采用屏蔽电流控制主电流的流路(路径) 使影响减至最小——发展侧向测井。
目前侧向测井包括:三侧向、七侧向、 双侧向、微侧向等。
一、三电极侧向测井
1、测量原理
• A0——主电极 • A1、A2——屏蔽电极 • B1、B2——回路电极 • 电极系中有三个柱状电极(回
路电极除外)。 • 主电极较短,屏蔽电极较长。 • 浅三测向的屏蔽电极较深三测
3)泥浆侵入的影响
影响的大小由侵入深度(di)侵入带的电阻 率(Ri)所决定。
4)围岩的影响
围岩影响的大小由地层的厚度(h)和围岩 的电阻率(Rs)所决定。当h<4倍主电流层的厚 度时,影响较低大,主要是影响电流的分布,即 主电流层包含了非目的层(围岩),围岩电阻率 低时,分流严重,使RLL3不能很好地反映目的层 的Rt
2)对Ra做相应的校正(井眼、层厚、侵入等), 每一种仪器在不同情况下,采用不同的图版或经 验公式进行校正。
第三章 电阻率测井
一、普通电阻率测井 二、侧向测井