吊装平衡梁受力计算
吊车吊装计算

8.1、主冷箱内大件设备的吊装计算(一)下塔的吊装计算(1)下塔的吊装参数设备直径:φ4.2m 设备高度:21.71m 设备总重量:52.83T附:上塔(上段)吊车臂杆长度和倾角计算简图(2)主吊车吊装计算①设备吊装总荷重:P=P Q +P F =52.83+3.6 =56.43t式中:P Q—设备吊装自重P Q =52.83tP F—设备吊装吊索及平衡梁的附加重量,取P F =3.6t②主吊车性能预选用为:选用260T履带吊(型号中联重科QUY260)回转半径:16m 臂杆长度:53m 起吊能力:67t履带跨距:7.6 m 臂杆形式:主臂形式吊装采用特制平衡梁钩头选用160t/100t吊钩,钩头重量为2.8吨吊车站位:冷箱的西面③臂杆倾角计算:α=arc cos(S-F)/L = arc cos(16-1.5)/53 =74.12°式中:S —吊车回转半径:选S=16mF —臂杆底铰至回转中心的距离,F=1.5mL —吊车臂杆长度,选L=53m④净空距离A的计算:A=Lcosα-(H-E)ctgα-D/2=53cos74.12°-(36.5-2) ctg74.12°-5/2=2.1m式中:H —设备吊装时距臂杆最近的最高点b至地面的高度,选H=36.5mE —臂杆底铰至地面的高度,E=2mD —设备直径:D=4.2m,取D=5 m以上计算说明所选的吊车性能能满足吊装需求⑤主吊车吊装能力选用校核:吊装总荷重/起吊能力=P/Q=56.43/67=84.22%经过校核,选用的主吊车能够满足吊装要求。
(3)溜尾吊车的吊装计算①受力计算F=(9-1)×52.83=21.44t21.71-1-1②溜尾吊车的选择辅助吊车选用为:75T汽车吊臂杆长度:12m;回转半径:7m;起吊能力:36t;吊装安全校核:因为21.44t〈36t,所以75T汽车吊能够满足吊装要求。
(二)、上塔(上段)的吊装计算(1)上塔上段的吊装参数设备直径:φ3.6m 设备高度:11.02m 设备重:17.35T 安装高度:45米附:吊装臂杆长度和倾角计算简图(2)主吊车吊装计算①设备吊装总荷重:P=P Q +P F=17.35+3.6=20.95t式中:P Q—设备吊装自重P Q =17.35tP F—设备吊装吊索及平衡梁的附加重量,取P F =3.6t②主吊车性能预选用为:选用260T履带吊(型号中联重科QUY260)回转半径:16m 主臂杆长度:59m 副臂杆长度:27m 起吊能力:55t履带跨距:7.6 m 臂杆形式:主臂+塔式副臂,主臂角度不变85度,钩头选用160t/100t吊钩,钩头重量为2.8吨副臂起落吊装采用特制平衡梁, 主吊车站位于冷箱的西面③主臂角度不变85度,副臂杆倾角计算:C=16-F-59coc85°=16-1.5-59coc85°=9.34mγ=β-(90°-α)=arcSin(C/27)-(90°-85°)= arcSin(9.34/27)-5°= 15.24°式中:γ—副臂杆倾角,为副臂中心线与主臂中心线夹角S —吊车回转半径:选S=16mF —臂杆底铰至回转中心的距离,F=1.5m主臂杆长度:59m 副臂杆长度:27mα—为主臂角度不变85度④净空距离A的计算:A=C-[H-(59*Sinα+E)]tanβ-D/2=9.34-[74-(59*Sin85°+2)]tan20.24-4/2 =2.46m式中:H —设备吊装时距臂杆最近的最高点b至地面的高度,选H=74mE —臂杆底铰至地面的高度,E=2 mD —设备直径D=3.6m, 取D=4 m以上计算说明所选的吊车性能能满足吊装需求。
平衡梁计算及校核

平衡梁计算及校核3.5.2场地基础的处理1.在吊机定位,吊机作业周围的其他钢结构设备基础暂缓施工,待设备吊装结束后进行施工。
2.300吨吊机的每个支腿与处理过的路基上放上四块双面路基板,在此路基板上再设置300吨吊机的专用路基板。
3.300吨吊机与150吨吊行车范围及设备进场的场地道路应加固处理,采用换垫层法使其具有一定的地耐力,开挖一定的面积,开挖深度约1米,以除去松软的回填土,挖至老土为准,再在上面铺设大石块约800毫米厚,并用压路机压实压平,然后再在大石块上铺约200毫米厚,再用压路机来回数次的压实压平,表面一定要处理平整,具体要求详见(图8)。
4.150吨履带吊的定位与行走区域范围场地道路处理后,并在处理过的路基上要铺设双面路基板,以增强和扩大地基的承载能力和受力面。
5.根据吊机的有关资料及设备重量和吊索的重量300吨吊机每个支腿最大的承载148吨。
P1+P2+P3+P4+P5+P64(79+120+124.9+1+3.8+0.34)/ 4 = 329/4=82.3吨P1:主吊机的自重量79吨P2:主吊机的配重重量120吨P3:设备的重量124.9吨P4:吊索具的重量1吨P5:吊钩的重量 3.8吨P6:设备群座支撑用钢管的重量Ø219×10 0.34吨3.6吊机性能选用详见氧氯化反应器吊装立面图(6、7)3.6.1主吊机选用DEMAG-TC2000型300吨桁架式汽车吊。
1)吊装总重量的计算G1.设备重量G1 =124.9吨2.吊钩重量G2 =3.8吨3.主吊索具的重量Ø60.5-6×37-170 G3 =1.027吨4.群座支撑钢管的重量Ø219×10 G4 =0.35吨5.底部吊索具的重量Ø56-6×37-170 G5 =0.23吨6.卸扣的重量75吨级5只G6 =0.72吨7.吊梁重量G7=1.5吨8.G=G1+G2+G3+G4+G5+G6+G7=132.5吨符合吊机性能要求。
论吊装平衡梁的设计在海洋船舶控制平台的重要性

论吊装平衡梁的设计在海洋船舶控制平台的重要性海洋的船舶控制平台在实际的航海过程中非常重要,作为一种拥有350m3的大型设备,它的全身都是使用钢材来建造的,海洋船舶的控制平台底座由钢焊接而成,除此之外,该平台提供有四个钢造的吊耳,可以为吊装提供使用。
同时,该控制平台的内外部均匀涂抹有特殊的材料,在其内部安装了造价昂贵的机器设备,所以在使用平台时要尽量做到平稳,减少缓冲的力度和摩擦,以保护好海洋船舶控制平台。
本篇论文从吊装的平衡梁入手,研究其设计之后,分析它在平台实际控制中的重要作用。
标签:平衡梁;控制平台;船舶;设计1 平衡梁概述1.1 平衡梁的作用在使用吊装机时,平衡梁在吊装机的地位是相当重要的,它被广泛的运用到大型的工程中,同时,平衡梁也可以称之为铁扁担,可以在机器吊起比较重的设备时尽量保持整体的稳定性,减少吊环绳索的摩擦损坏力度,缩短吊索距离水平路面的距离,还有动滑轮的起吊高度,以及可以减轻在起吊时产生的压力,尽量避免对机器的损坏程度,除此之外,在使用多台机器设备时,平衡梁可以通过合理分配好各个支点的平衡点,计算相应的负荷力度,使得在实际运用中可以减少问题的产生。
1.2 平衡梁原理吊装的平衡梁在船舶控制平台中,可以使用其内部的CAN总线网络来实现传感器以及超声波的完美结合,在检测的过程中可以对不同的位置进行检索,然后把收集到的数据信息集合起来,通过归纳整理和分析之后把数据传送到控制平台之内,控制平台通过筛选出有用的信息之后判断好此时机器设备的工作稳定状态,最后输出对平液系统的控制信号来达到自动找出平衡的目标。
2 设计原则在实际工作当中,为了减轻工作量,平衡梁应该尽量选用形状比较简单,并且材质为钢板的材料,同时还要有优良的工作性能和工艺性能,为了方便平衡梁跟其他的部件能够顺利连接,一般需要使得平衡梁的截面保持一个对称的形状,此外,在构件方面应该选择具有长细比很明显的材料,并且要尽量增加截面积,提高材料的抗弯性能,可以尽可能地使用外壁较薄、整体外形的尺寸比较大的横截面形状。
吊车吊装计算

吊车吊装计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]、主冷箱内大件设备的吊装计算 (一)下塔的吊装计算(1)下塔的吊装参数设备直径:φ 设备高度: 设备总重量:(2)主吊车吊装计算 ① 设备吊装总荷重: P=P Q +P F =+ =式中:P Q — 设备吊装自重 P Q =P F — 设备吊装吊索及平衡梁的附加重量,取P F = ② 主吊车性能预选用为:选用260T 履带吊(型号中联重科QUY260)回转半径:16m 臂杆长度:53m 起吊能力:67t附:上塔(上段)吊车臂杆长度履带跨距: m 臂杆形式:主臂形式吊装采用特制平衡梁钩头选用160t/100t吊钩,钩头重量为吨吊车站位:冷箱的西面③臂杆倾角计算:α=arc cos(S-F)/L = arc cos()/53 =°式中:S —吊车回转半径:选S=16mF —臂杆底铰至回转中心的距离,F=L —吊车臂杆长度,选L=53m④净空距离A的计算:A=Lcosα-(H-E)ctgα-D/2=°-°-5/2=式中:H —设备吊装时距臂杆最近的最高点b至地面的高度,选H=E —臂杆底铰至地面的高度,E=2mD —设备直径:D=,取D=5 m以上计算说明所选的吊车性能能满足吊装需求⑤主吊车吊装能力选用校核:吊装总荷重/起吊能力=P/Q=67=%经过校核,选用的主吊车能够满足吊装要求。
(3)溜尾吊车的吊装计算①受力计算F=(9-1)×=②溜尾吊车的选择辅助吊车选用为:75T汽车吊臂杆长度:12m;回转半径:7m;起吊能力:36t;吊装安全校核:因为〈36t,所以75T汽车吊能够满足吊装要求。
(二)、上塔(上段)的吊装计算(1)上塔上段的吊装参数设备直径:φ设备高度:设备重:安装高度:45米附:吊装臂杆长度和倾角计算简图(2)主吊车吊装计算①设备吊装总荷重:P=PQ +PF=+=式中:PQ —设备吊装自重 PQ=PF —设备吊装吊索及平衡梁的附加重量,取PF=②主吊车性能预选用为:选用260T履带吊(型号中联重科QUY260)回转半径:16m 主臂杆长度:59m 副臂杆长度:27m 起吊能力:55t履带跨距: m 臂杆形式:主臂+塔式副臂,主臂角度不变85度,钩头选用160t/100t吊钩,钩头重量为吨副臂起落吊装采用特制平衡梁, 主吊车站位于冷箱的西面③主臂角度不变85度,副臂杆倾角计算:C=16-F-59coc85°=°=γ =β-(90°-α)=arcSin(C/27)-(90°-85°)= arcSin27)-5°= °式中:γ—副臂杆倾角,为副臂中心线与主臂中心线夹角S —吊车回转半径:选S=16mF —臂杆底铰至回转中心的距离,F=主臂杆长度:59m 副臂杆长度:27mα—为主臂角度不变85度④净空距离A的计算:A=C-[H-(59*Sinα+E)]tanβ-D/2=-[74-(59*Sin85°+2)]-4/2 =式中:H —设备吊装时距臂杆最近的最高点b至地面的高度,选H=74mE —臂杆底铰至地面的高度,E=2 mD —设备直径D=, 取D=4 m以上计算说明所选的吊车性能能满足吊装需求。
吊装-受力计算资料

——当额定起重量为16~50t 时,应取10%;
——当额定起重量不小于75t 时,应取8%。
2)硬钩吊车:应取20%。
ቤተ መጻሕፍቲ ባይዱ
横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。
注: 1 悬挂吊车的水平荷载应由支撑系统承受,可不计算。
1 吊车纵向水平荷载标准值,应按作用在一边轨道上所有刹车轮的最大轮压之和的10%采用;该项荷载的作用点位于刹车轮与轨道的接触点,其方向与轨道方向一致。
2 吊车横向水平荷载标准值,应取横行小车重量与额定起重量之和的下列百分数,并乘以重力加速度:
1)软钩吊车:
——当额定起重量不大于10t 时,应取12%;
2 手动吊车及电动葫芦可不考虑水平荷载。
平衡梁的设计

5T 平衡梁计算书 根据现场实际情况,选用槽钢型平衡梁。
该平衡梁可用于吊装直径φ1200mm~1400mm 左右的设备。
如图(一)图(一)材料为Q235-A ,其MPa MPa s 210235~185,取中值=σ(GB700-88),许用一. 槽钢的选择设备重量4.07T ,用双分支吊装,平衡梁受力简图如图(二)。
分支拉力L F 平衡梁的夹角为)60~45(︒︒α,计算取︒55,吊重Q=4.07T 计算吊重动计K Q Q ⋅=44.12.12.121=⨯=⨯=K K K 动其中 1K 为冲击系数,2K 为不均匀系数 故 Q 计=4.07×1.44=5.86TF V =Q/n=5.86/2=2.93TF L = (Q 计/n)×1/sin a=3.57TF h =F V /tan a=2.05T槽钢为只受轴力作用。
根据强度条件确定槽钢的横截面积为A ≥F h /[σ]=(2.05×1000×9.806)/(140×106)m 2=1.44cm 2选用16a 型槽钢,截面积为21.95×2=43.9cm 2,满足要求。
二. 吊耳板的验算 :如图(三):在断面A1B1处,b=20cm ,δ=3cmσ1=(Q 计/2)/b δ=4.79 MPa在断面A2B2处,b=16cm (偏保守),δ=3cm ,d=8cmσ2=(Q 计/2)/(b-d)δ=11.97 MPa在断面A3B3处,D=2R=16cm ,d=8cm ,δ=3cm 按拉漫公式验算: σ=(Q 计/2)/d δ=11.97 MPaσ3=σ(D 2+d 2)/ (D 2-d 2)=19.95 MPa吊索方向最大拉应力:σL =F L /((D-d) δ)=14.59 MPa []σ<,满足要求。
三. 焊缝的验算:对平衡梁受力分析知:焊缝(左侧吊耳)主要承受如图示方向的作用力 其剪切力为=⨯-⨯=3201054251h h F F P 96.63T 32010542511⨯-⨯=h h F F P =-34.87T (即1P 方向应向右) 上边焊缝承受弯距较下边的大,故只校验上边焊缝即可m N F M h •=⨯⨯⨯⨯=⨯=-23.72672105.10806.9100058.705.82m N l h M f f M .872.5910)2255(24.123.7267264.16622=⨯⨯-⨯⨯⨯==-τ m N l h P f .358.66102)2255(27.0806.9100063.967.04=⨯⨯⨯-⨯⨯⨯⨯==-剪τ式中: f h ——焊缝厚度l ——焊缝总计算长度,等于焊缝实际长度减去2f h[]ττττ MPa M 376.89358.66872.592222=+=+=剪,安全。
最新吊装平衡梁受力计算

回转半径i =√J/F=√1295.69/40.3=5.67 cm其长细比λ=μl/ i=1*340/5.67=59.9查取折减系数为φ=0.842,钢管允许应力【σ】=155MN/m2压应力为P/F=Q/2/F=21.5*9.8*103/40.3*10-4=52.3 MN/m2<φ【σ】=0.842*155=130.5 MN/m2扁担压杆稳定校核选用φ168*8钢管长4米.其截面积F=40.3cm2惯性距J=1295.69 cm4回转半径i =√J/F=√1295.69/40.3=5.67 cm其长细比λ=μl/ i=1*400/5.67=70.6查取折减系数为φ=0.842,钢管允许应力【σ】=155MN/m2压应力为P/F=Q/2/F=34//2*9.8*103/40.3*10-4=52.3 MN/m2<φ【σ】=0.842*155=130.5 MN/m2 2016年10月高等教育自学考试全国统一命题考试学前比较教育试卷(课程代码00401)精品好文档,推荐学习交流本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑o3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题一、单项选择题(本大题共30小题,每小题l分。
共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
未涂、错涂或多涂均无分。
1.最早提出比较教育术语的教育家是A.萨德勒B.康德尔C.汉斯D.朱利安2.通过运用因素分析、质量分析、数量统计等方法,对比较研究的结果进行分析、说明和概括,达到对所研究问题的实质性认识从而得出有价值的结论的方法是A.分析法B.文献法C.比较法D.调查法3.把各国、各地区同一类学前教育问题放在一起进行比较分析,从中找出各国、各地区学前教育特点和共同趋势的研究方法是A.综合比较研究B.专题比较研究C.影响比较研究D.问题比较研究4.标志着日本保育所制度得到进一步充实和完善,对促进日本保育所的发展发挥了重要的指导作用的是A.《法制令》B.《幼儿园保育及设备规程》C.《保育所保育指南》D.《幼儿园令》5.日本提出了振兴幼儿教育的“七大政策支柱”的是A.第一个幼儿园教育振兴计划B.第二个幼儿园教育振兴计划C.第三个幼儿园教育振兴计划D.幼儿园教育振兴计划(2006-2010)6.将“神学/懊悔教育/伦理学”纳入学前教师职前培养课程体系的国家是A.法国B.日本C.德国D.俄罗斯7.日本经“教员检定考试”合格的高中毕业生,可以获得A.一种资格证书B.二种资格证书C.专修资格证书D.临时资格证书8.1913年,英国的戴普福特建立了一所保育学校,主要招收被排斥在幼儿学校以外的5岁以下的儿童,这所保育学校的创立者是A.福禄培尔B.欧文C.麦克米伦姐妹D.费舍尔9.英国19世纪80年代颁布并落实了义务教育的规定,确定了儿童从5岁开始进行初等义务教育的是A.《费舍尔法案》B.《初等教育法》C.《哈多报告》D.《巴特勒法案》。
平衡梁吊具计算书

【屈服应力】 =367.5MPa . K=367.5/61.6=5.965﹥(K)安全
三:钢丝绳计算:
吊具安装吊装作业时采用 双股钢丝绳双吊索选用双绳兜吊。吊具由四个支座即四个吊点承载160T.每个吊点承载40T(4000000N).
钢丝绳破断拉力=40*6=240T(安全载重系数取值为6)
平衡吊具计算书
编制
校对
审核
一 现场采用二组吊具同时平稳起吊。吊具计算公式按单组平衡吊具计算。
如图一
单组吊具图(二)
二:荷载:
横梁吊耳板尺寸
39m箱梁重160T分配至每端为80T(800000N);按最重者验算受力。考虑1.2倍安全系数储备,800000N*1.2=960000N.单组吊具则要求吊具具备负重96T的能力。
轴截面惯性矩:W=0.1* =172800mm(销轴直径 )
轴最大弯曲应力: =M/W=80850000/172800=467.88MPa
抗拉强度:【 】=1080MPa/467.88MPa=2.3﹥【K】安全
钢丝绳破断拉力总和=240/0.82=292.6(换算系数取值0.82)
钢丝绳破断拉力总和:S破=292.6吨,动载系数1.05偏载系数1.1钢丝绳计算拉力:Smax=40t*动载系数*偏载系数=46.2t钢丝绳安全系数:n≧6,钢丝绳使用系数:0.92 机械效率:0.98. 实际安全系数:n=292.6*0.92*0.98*2/46.2=11.4﹥【6】安全
根据现场使用受力尺寸:四根销轴承载力为160T每根销轴承载40T,根据机动起重销轴类设计规定安全系数值K=1.75按单根销轴需承载P=40*1.75=70T
P=70T=700000N