高中不等式例题(超全超经典)
高中不等式经典例题

高中不等式经典例题例1解不等式:(1)2x ³-x ²-15x>0;(2)(x+4)(x+5)²(2-x)³<0.分析:如果多项式 f(x)可分解为 n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)把方程x(2x+5)(x-3)=0的三个根说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正:②对于偶次或奇次重根可转化为不含重根的不等式, 也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2解下列分式不等式: (1)3x−2≤1−2x+2; (2)x 2−4x+13x 2−7x+2<1分析:当分式不等式化为 f (x )g (x )<0(或≤0)时,要注意它的等价变形(1) 解:原不等式等价于3x−2≤x x+23x−2−x x+2≤03(x+2)−x (x−2)(x−2)(x+2)≤0−x 2+5x+6(x−2)(x+2)≤0可用“穿根法”求解,但要注意处理好有重根的情况。
解:(1) 原不等式可化为x(2x+5)(x-3)>0x 1=0,x 2=−52,x 3=3顺次标上数轴, 然后从右上开始画线顺次经过三个根, 其解集如下图的阴影部分,∴原不等式解集为(2) 原不等式等价于(x+4)(x+5)³(x -2)³>0x>2 ∴原不等式解集为 或-5<x<-4或x>2}f (x )g (x )<0f (x )⋅g (x )<0;(x−6)(x+1)(x−2)(x+2)≥0{(x −6)(x +1)(x −2)(x +2)≥0(x +2)(x −2)≠0(2) 解法一:原不等式等价于2x 2−3x+13x 2−7x+2>0 (2x 2−3x +1)(3x 2−7x +2)>0{2x 2−3x +1>03x 2−7x +2>0或 {2x 2−3x +1<03x 2−7x +2<0x <13或 12<x <1或x>2,∴原不等式解集为 (−∞,13)∪(12,1)∪(2,+∞). 解法二:原不等式等价于典型例题三例3解不等式|x ²-4|<x+2 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义 |a|={a (a ≥0)−a(a <0)二是根据绝对值的性质: |x|<a −a <x <a,|x|ax >a 或x<-a, 因此本题有如下两种解法。
高中不等式的试题及答案

高中不等式的试题及答案一、选择题1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( (-1, 2) \),则下列不等式中解集为 \( (-∞, -2) ∪ (1, +∞) \) 的是()。
A. \( 2ax^2 + 2bx + c < 0 \)B. \( 2ax^2 - bx + c < 0 \)C. \( ax^2 - bx + c < 0 \)D. \( 2ax^2 + bx + 2c < 0 \)答案:B解析:已知不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( (-1, 2) \),说明 \( a < 0 \) 且 \( -1 \) 和 \( 2 \) 是方程 \( ax^2 + bx + c = 0 \) 的根。
因此,\( -b/a = -1 + 2 = 1 \) 和 \( c/a = -1 \times 2 = -2 \)。
将这些值代入选项中,只有选项 B 满足条件。
2. 若 \( x^2 - 4x + m < 0 \) 的解集非空,则实数 \( m \) 的取值范围是()。
A. \( m < 4 \)B. \( m > 4 \)C. \( m < 16 \)D. \( m > 16 \)答案:C解析:要使不等式 \( x^2 - 4x + m < 0 \) 的解集非空,需要判别式 \( \Delta = b^2 - 4ac > 0 \),即 \( 16 - 4m > 0 \),解得 \( m < 4 \)。
但因为 \( m \) 必须使得不等式有实数解,所以 \( m \) 必须小于\( x^2 - 4x \) 的最小值,即 \( m < 4 \)。
因此,\( m \) 的取值范围是\( m < 16 \)。
二、填空题3. 若 \( a > 0 \),\( b > 0 \),且 \( a + b = 2 \),则 \( \frac{1}{a} + \frac{1}{b} \) 的最小值为 ______。
高一数学不等式部分经典习题及答案

ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
(word完整版)高中不等式所有知识及典型例题(超全).docx

一.不等式的性 :二.不等式大小比 的常用方法 : 1.作差:作差后通 分解因式、配方等手段判断差的符号得出 果; 2.作商(常用于分数指数 的代数式) ; 3.分析法; 4.平方法; 5.分子(或分母)有理化;6.利用函数的 性; 7. 找中 量或放 法 ;8. 象法。
其中比 法(作差、作商)是最基本的方法。
三.重要不等式2 21. ( 1)若 a,bR , a 2b 22ab (2) 若 a, bR , abab (当且 当 ab 取“ =”)22. (1) 若a, b* ,a b ab(2)若a, b R *, ab2 ab (当且 当a b取“ ”)R2=a 2*, abb( 当且 当 ab 取“ =”)(3) 若 a, b R23. 若 x0 ,x1 2 (当且 当x1 取“ ”) ;x=1若 x0 ,x2 (当且 当x1 取“ ”)x=若 x11 1-2(当且 当 ab 取“ =”)0, x2即 x2或 xxxx若 ab0 ,ab 2( 当且 当 ab 取“ =”)ba若 ab0 ,ab 2即ab 2或 ab -2(当且 当a b 取“ ”)bababa=224. 若 a,bR , (ab 2ab(当且 当 ab 取“ =”))22注:(1)当两个正数的 定植 ,可以求它 的和的最小 ,当两个正数的和 定植 ,可以求它 的 的最小 ,正所 “ 定和最小,和定 最大” .( 2)求最 的条件“一正,二定,三取等”(3)均 定理在求最 、比 大小、求 量的取 范 、 明不等式、解决 方面有广泛的 用.5.a 3+b 3+c 3≥3abc ( a,b,cR +) ,a+b+c≥ 3 abc (当且 当 a=b=c 取等号);31na 1a 2 L a n (a+12 ni1 2n222≥ab+bc+ca; ab ≤( a+b 2+≤ a+b+c 3 +式: a +b +c) (a,b) (a,b,c R )2 R ) ; abc (32aba+b a 2+b 2 a ≤a+b≤ ab ≤2 ≤2≤b.(0<a ≤ b)b -n b b+m7. 度不等式: a -n < a < a+m ,a>b>n>0,m>0;用一:求最例 1:求下列函数的 域(1)y =3x 2+ 12( ) = +12x2 yxx技巧一:凑项例 1:已知 x5,求函数 y 4 x 21的最大值。
(完整版)高中不等式试题和答案

不等式一、选择题:1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且a c <0,那么下列选项中不一定成立的是 A .a b a c > B .c b a ()-<0C .c b a b 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 .15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14.415.②④ 三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。
高中数学不等式解法15种典型例题

x(2x + 5)(x − 3) 0
把方程
x(2x
+
5)(x
−
3)
=
0
的三个根
x1
=
0,
x2
=
−
5 2
,
x3
=
3
顺次标上数轴.然
后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.
∴原不等式解集为
x
−
5 2
x
0或 x
3
(2)原不等式等价于
(x + 4)(x + 5)2 (x − 2)3 0
或
(x (x
−1)(x − 5) 0, + 2)(x − 6) 0;
1 x 5, − 2 x
;或 6
x x
1,或x −2,或x
5, 6
1 x 5, 或 x −2 或 x 6 .∴原不等式解集是{x x −2,或1 x 5,或x 6} .
解法二:原不等式化为 (x −1)(x − 5) 0 . (x + 2)(x − 6)
例 8 解不等式 4x2 −10x − 3 3 .
分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可.
解答:去掉绝对值号得 − 3 4x2 −10x − 3 3 ,
∴原不等式等价于不等式组
− 3 4x2 −10x
4x
2
− 10 x
−
3
−3
3
4x2
4
x
2
−10x −10x
典型例题九
例 9 解关于 x 的不等式 x2 − (a + a2 )x + a3 0 . 分析:不等式中含有字母 a ,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程 x 2 − (a + a 2 )x + a3 = 0 的根,然后写出不等式的解,但由于方程的根含有字母 a ,故需比较两根的大小,从而引出讨论.
解不等式例题50道

解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
(完整word版)高考不等式经典例题

高考不等式经典例题【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小.【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a +1a -2(a >2),n =x -2(x ≥12),则m ,n 之间的大小关系为( )A.m <nB.m >nC.m ≥nD.m ≤n【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a +1a -2=a -2+1a -2+2≥2+2=4,而n =x -2≤(12)-2=4.【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ),所以⎩⎨⎧-=--=+1,94μγμγ⇒⎪⎪⎩⎪⎪⎨⎧=-=38,35μγ 故f (3)=-53(a -c )+83(4a -c )∈[-1,20].题型三 开放性问题【例3】已知三个不等式:①ab >0;② c a >db ;③bc >ad .以其中两个作条件,余下的一个作结论,则能组成多少个正确命题?【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ⇔bc -adab >0.(1)由ab >0,bc >ad ⇒bc -adab>0,即①③⇒②;(2)由ab >0,bc -adab >0⇒bc -ad >0⇒bc >ad ,即①②⇒③;(3)由bc -ad >0,bc -adab >0⇒ab >0,即②③⇒①.故可组成3个正确命题.【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况:(1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2m .所以不等式的解集为{x |x <-1或x >2m};(2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0, 其对应方程两根为x 1=-1,x 2=2m ,x 2-x 1=2m -(-1)=m +2m.①m <-2时,m +2<0,m <0,所以x 2-x 1>0,x 2>x 1, 不等式的解集为{x |-1<x <2m };②m =-2时,x 2=x 1=-1,原不等式可化为(x +1)2<0,解集为∅; ③-2<m <0时,x 2-x 1<0,即x 2<x 1,不等式解集为{x |2m <x <-1}.【变式训练2】解关于x 的不等式ax -1x +1>0. 【解析】原不等式等价于(ax -1)(x +1)>0.当a =0时,不等式的解集为{x |x <-1};当a >0时,不等式的解集为{x |x >1a 或x <-1};当-1<a <0时,不等式的解集为{x |1a <x <-1};当a =-1时,不等式的解集为∅;当a <-1时,不等式的解集为{x |-1<x <1a}.【例3】已知ax 2+bx +c >0的解集为{x |1<x <3},求不等式cx 2+bx +a <0的解集. 【解析】由于ax 2+bx +c >0的解集为{x |1<x <3},因此a <0, 解得x <13或x >1.(1)z =x +2y -4的最大值; (2)z =x 2+y 2-10y +25的最小值; (3)z =2y +1x +1的取值范围.【解析】作出可行域如图所示,并求出顶点的坐标A (1,3),B (3,1),C (7,9). (1)易知直线x +2y -4=z 过点C 时,z 最大. 所以x =7,y =9时,z 取最大值21. (2)z =x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方, 过点M 作直线AC 的垂线,易知垂足N 在线段AC 上, 故z 的最小值是(|0-5+2|2)2=92.(3)z =2·y -(-12)x -(-1)表示可行域内任一点(x ,y )与定点Q (-1,-12)连线斜率的2倍.因为k QA =74,k QB =38,所以z 的取值范围为[34,72].【例1】(1)设x ,y ∈R +,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .x +y ≤2(2+1) C. x +y ≤2(2+1)2 D. x +y ≥(2+1)2 (2)已知a ,b ∈R +,则ab ,a +b2,a 2+b 22,2aba +b的大小顺序是 . 【解析】(1)选A.由已知得xy =1+(x +y ),又xy ≤(x +y 2)2,所以(x +y2)2≥1+(x +y ). 解得x +y ≥2(2+1)或x +y ≤2(1-2). 因为x +y >0,所以x +y ≥2(2+1). (2)由a +b 2≥ab 有a +b ≥2ab ,即a +b ≥2ab ab ,所以ab ≥2aba +b .又a +b 2=a 2+2ab +b 24≤2(a 2+b 2)4,所以a 2+b 22≥a +b2, 所以a 2+b 22≥a +b 2≥ab ≥2aba +b. 【变式训练1】设a >b >c ,不等式1a -b +1b -c >λa -c 恒成立,则λ的取值范围是 .【解析】(-∞,4).因为a >b >c ,所以a -b >0,b -c >0,a -c >0.而(a -c )(1a -b +1b -c )=[(a -b )+(b -c )](1a -b +1b -c)≥4,所以λ<4. 【例2】(1)已知x <54,则函数y =4x -2+14x -5的最大值为 ;【解析】(1)因为x <54,所以5-4x >0. 所以y =4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立. 所以x =1时,y max =1.【变式训练2】已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,求(a +b )2cd 的取值范围.【解析】由等差数列、等比数列的性质得a +b =x +y ,cd =xy ,所以(a +b )2cd =(x +y )2xy =2+x y +y x ,当y x >0时,(a +b )2cd ≥4;当yx <0时,(a +b )2cd ≤0,故(a +b )2cd的取值范围是(-∞,0]∪[4,+∞).例 已知28,,0,1x y x y>+=,求xy 的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技巧一:凑项例1:已知 ,求函数 的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数
例1.当 时,求 的最大值。
技巧三:分离例3.求 的值域。
技巧四:换元
解析二:本题看似无法运用基本不等式,可先换元,令t=x+1,化简原式在分离求最值。
当 ,即t= 时, (当t=2即x=1时取“=”号)。
提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于 的不等式 的解集为 ,则不等式 的解集为__________(答:(-1,2))
例2.(1)求函数 的最大和最小值;
(2)设 ,函数 .
若 ,求 的最大值
1.不等式的性质:
二.不等式大小比较的常用方法:
1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;
2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;
6.利用函数的单调性;7.寻找中间量或放缩法;8.图象法。其中比较法(作差、作商)是最基本的方法。
三.重要不等式
7.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.如
(1)若 ,则 的取值范围是__________(答: 或 );
(2)解不等式
(答: 时, ; 时, 或 ; 时, 或 )
1.一元一次不等式的解法。2.一元二次不等式的解法
3.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现 的符号变化规律,写出不等式的解集。如
1.(1)若 ,则 (2)若 ,则 (当且仅当 时取“=”)
2. (1)若 ,则 (2)若 ,则 (当且仅当 时取“=”)
(3)若 ,则 (当且仅当 时取“=”)
3.若 ,则 (当且仅当 时取“=”);
若 ,则 (当且仅当 时取“=”)
若 ,则 (当且仅当 时取“=”)
4.若 ,则 (当且仅当 时取“=”)
例3.两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路牌的第10km和第20km处.现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次.要使两个施工队每天往返的路程之和最小,生活区应该建于何处?
七.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。).
(答: ).
5.指数和对数不等式。
6.绝对值不等式的解法:
(1)含绝对值的不等式|x|<a与|x|>a的解集
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
①|ax+b|≤c -c≤ax+b≤c;
②| ax+b|≥c ax+b≥c或ax+b≤-c.
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
常用的放缩技巧有:
如(1)已知 ,求证: ;
(2)已知 ,求证: ;
(3)已知 ,且 ,求证: ;
(4)若a、b、c是不全相等的正数,求证: ;
(5)已知 ,求证: ;
(6)若 ,求证: ;
(7)已知 ,求证: ;
(8)求证: 。
八.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)
若在区间 上存在实数 使不等式 成立,则等价于在区间 上的 .如
已知不等式 在实数集 上的解集不是空集,求实数 的取值范围____
(答: )
3).恰成立问题
若不等式 在区间 上恰成立,则等价于不等式 的解集为 ;
若不等式 在区间 上恰成立,则等价于不等式 的解集为 .
例:若不等变 恰有一解,求实数a的值
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数 的单调性。例:求函数 的值域。
解:令 ,则
因 ,但 解得 不在区间 ,故等号不成立,考虑单调性。
因为 在区间 单调递增,所以在其子区间 为单调递增函数,故 。
所以,所求函数的值域为 。
2.已知 ,求函数 的最大值.;3. ,求函数 的最大值.
解: a、b、c , 。 。同理 , 。上述三个不等式两边均为正,分别相乘,得
。当且仅当 时取等号。
应用三:基本不等式与恒成立问题
例:已知 且 ,求使不等式 恒成立的实数 的取值范围。
解:令 ,
。 ,
应用四:均值定理在比较大小中的应用:
例:若 ,则 的大小关系是.
分析:∵ ∴ (
∴R>Q
四.不等式的解法.
(答: )
4.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如
(1)解不等式
(答: );
(2)关于 的不等式 的解集为 ,则关于 的不等式 的解集为____________
方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;
方法二:利用“零点分段法”求解,体现了分类讨论的思想;
方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。
方法四:两边平方。
例1:解下列不等式:
【解析】:(1)解法一(公式法)
原不等式等价于x2-2x>x或x2-2x<-x解得x>3或x<0或0<x<1
(1)解不等式 。
(答: 或 );
(2)不等式 的解集是____
(答: 或 );
(3)设函数 、 的定义域都是R,且 的解集为 , 的解集为 ,则不等式 的解集为______
(答: );
(4)要使满足关于 的不等式 (解集非空)的每一个 的值至少满足不等式 中的一个,则实数 的取值范围是______.
注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.
(2)求最值的条件“一正,二定,三取等”
(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.
≤ ≤ ≤
应用一:求最值
例1:求下列函数的值域(1)y=3x2+ (2)y=x+
1).恒成立问题
若不等式 在区间 上恒成立,则等价于在区间 上
若不等式 在区间 上恒成立,则等价于在区间 上
如(1)设实数 满足 ,当 时, 的取值范围是______
(答: );
(2)不等式 对一切实数 恒成立,求实数 的取值范围_____
(答: );
(3)若不等式 对满足 的所有 都成立,则 的取值范围_____
引导分析:此题若解不等式组,就特别麻烦了。结合二次函数的图形就会容易得多。
图解:
由图象易知:a=2或者a=-2
九.线性规划
易知解集为
例3: 。
【解法1】令
令 ,分别作出函数g(x)和h(x)的图象,知原不等式的解集为
【解法2】原不等式等价于
令
分别作出函数g(x)和h(x)的图象,易求出g(x)和h(x)的图象的交点坐标为
所以不等式 的解集为
【解法3】由 的几何意义可设F1(-1,0),F2(1,0),M(x,y),若 ,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为( ,0),由双曲线的图象和|x+1|-|x-1|≥ 知x≥ .
∴原不等式的解集为﹛x︱x<0或0<x<1或x>3﹜
解法2(数形结合法)
作出示意图,易观察原不等式的解集为﹛x︱x<0或0<x<1或x>3﹜
第(1)题图第(2)题图
【解析】:此题若直接求解分式不等式组,略显复杂,且容易解答错误;若能结合反比例函数图象,则解集为 ,结果一目了然。
例2:解不等式:
【解析】作出函数f(x)=|x|和函数g(x)= 的图象,
条件求最值
1.若实数满足 ,则 的最小值是.
分析:“和”到“积”是一个缩小的过程,而且 定值,因此考虑利用均值定理求最小值,
解: 都是正数, ≥
当 时等号成立,由 及 得 即当 时, 的最小值是6.
变式:若 ,求 的最小值.并求x,y的值
技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。
2:已知 ,且 ,求 的最小值。
应用二:利用基本不等式证明不等式
1.已知 为两两不相等的实数,求证:
1)正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc
例6:已知a、b、c ,且 。求证:
分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又 ,可由此变形入手。
(答:( , ));
(4)若不等式 对于任意正);
(5)若不等式 对 的所有实数 都成立,求 的取值范围.
⑹若不等式 恒成立,则实数a的取值范围是
此题直接求解无从着手,结合函数
易知,a只需满足条件: