(完整版)高中数学不等式习题及详细答案
不等式练习题及讲解高中答案

不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。
2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。
3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。
4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。
5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。
#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。
题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。
题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。
题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。
(完整)高中数学不等式习题及详细答案

第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27 C .4 D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x2=241x ,x =22时取等号; 41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; x yy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx 均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+ =yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)第 11 页 共 11 页 (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。
高中不等式试题和答案

不等式一、选择题:1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且a c <0,那么下列选项中不一定成立的是 A .a b a c > B .c b a ()-<0C .c b a b 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 . 15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x=+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14 15.②④ 三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。
高中数学不等式经典练习题1(含答案)

高中数学不等式经典练习题1(含答案) 高中数学不等式经典练题【编著】黄勇权一、选择题1、若a∈R,下列不等式恒成立的是()A、a²+1≥a2、已知x>y>0,若x+y=1,则下列数中最大的是()D、x²+y²3、a∈R,b∈R,若a²+b²=1,则a+b()C、有最小值24、a,b为任意实数,若a>b,则有()A、a²>b²5、实数a,b>0,则a+b的最大值是。
C、36、已知x>0,y>0,z>0,且x+y+z=3,则xy+xz+yz的最大值是。
B、37、已知a,b,c∈R,若a>b,则以下不等式成立的是()A、ac>bc。
8、实数a≥1,b≥0,若3a²+6a+2b²=3,则(a+1)3b²+1的最大值。
D、39、已知a、b为正实数,且满足2ab=2a+b+3,则a+b/2的最小值是。
B、310、已知x,y,z为正数,若ab+bc+ca=1,则a+b+c的最小值是A、2.二、填空题1、已知实数x,y满足x+y=2xy,则xy的最小值是1/2.2、已知m>0,n>0,且m+n=1,则(m-1)(n-1)的最小值是1/4.3、函数y=x+2-x的最大值是2.4、已知x、y为正数,若2x+3y=4,则x/2+y/3的最小值是8/15.5、函数f(a)=a-a²的最大值是1/4.6、m、n均为正数,若m+n=1,则mn最小值是1/4.7、已知x,y,z为正数,若3x+2y+z=2,则9x²+4y²+z²的最小值是13/9.8、x+2y=4,则x/2+3y/4的最大值是8/3.9、已知a、b、c为正实数,若a+b+c=1,则ab+bc+ca的最小值为1/3.三道数学题的解答1.已知实数 $x,y,z$ 满足$x^2+y^2=2,y^2+z^2=3,z^2+x^2=3$,求$xy+yz+zx$ 的最大值。
高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知变量满足:,则的最大值为()A.B.C.2D.4【答案】D【解析】由约束条件画出可行域,令,可知在点处取得最大值,所以的最大值为。
【考点】线性规划及指数函数的单调性。
2.若二元一次线性方程组无解,则实数的值是__________.【答案】-2【解析】二元一次线性方程组无解,则直线x+ay=3与ax+4y=6平行,则解得.【考点】二元一次方程组.3.若实数,满足,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出可行域,由图可知,可行域三个顶点分别为,将三个点的坐标分别代入目标函数得,所以目标函数的取值范围为,故选A.【考点】线性规划.4.(本题满分10分)选修4—5:不等式选讲设对于任意实数,不等式≥恒成立.(1)求的取值范围;(2)当取最大值时,解关于的不等式:.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将不等式≥恒成立,转化为,用零点分段法,将转化为分段函数,再每一段分别求最值;第二问,结合第一问的结论,将m的值代入,利用零点分段法将绝对值不等式转化成不等式组,分别求解.试题解析:(1)设,则有当时有最小值8当时有最小值8当时有最小值8综上有最小值8所以(2)当取最大值时原不等式等价于:等价于:或等价于:或所以原不等式的解集为【考点】绝对值不等式的解法、恒成立问题.5.(本小题满分10分)选修4—5:不等式选讲设函数.(1)当时,解不等式;(2)若的解集为,,求证:.【答案】(1);(2)证明详见解析.【解析】本题主要考查绝对值不等式的解法、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用零点分段法去掉绝对值符号,转化为不等式组,解不等式;第二问,先解不等式,再结合的解集为,从而得到a的值,再利用特殊值1将转化为,再利用基本不等式求函数的取值范围.试题解析:(1)当a=2时,不等式为,不等式的解集为;(2)即,解得,而解集是,,解得,所以所以.【考点】绝对值不等式的解法、基本不等式.6.已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是()A.B.C.D.【答案】C【解析】满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式,当时,;当时,;当时,;故取值范围为,故选C.【考点】1.简单的线性规划;2.向量的数量积.7.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.(Ⅱ)【解析】(Ⅰ)这是含绝对值的不等式工,解法是由绝对值的定义对变量的范围进行分类讨论以去掉绝对值符号,化为普通的不等式(不含绝对值);(Ⅱ)不等式为,可两边平方去掉绝对值符号,再作差可证.试题解析:(Ⅰ)由题意,原不等式等价为,令 3分不等式的解集是 5分(Ⅱ)要证,只需证,只需证而,从而原不等式成立. 10分【考点】含绝对值不等式的解法,绝对值不等式的证明,分析法.8.若是任意实数,且,则下列不等式成立的是()A.B.C.D.【答案】D【解析】因为函数在上是减函数,又,所以,故选D.【考点】不等式的性质.9.选修4-5:不等式选讲已知x,y为任意实数,有(1)若求的最小值;(2)求三个数中最大数的最小值.【答案】(1);(2).【解析】(1)利用消元法可得关于x的二次三项式,从而用配方法可求得最小值.(2)利用绝对值不等式可求最大值的最小值.试题解析:(1)解:当时,最小值为(2)设,则所以即中最大数的最小值为【考点】配方法,绝对值不等式,最值.10.若实数,满足不等式组.则的最大值是()A.10B.11C.13D.14【答案】D【解析】画出可行域如图:当时,作出目标函数线,平移目标函数线使之经过可行域,当目标函数线过点时纵截距最大同时也最大, 最大值为;当时,作出目标函数线,平移目标函数线使之经过可行域四边形但不包括边,当目标函数线经过点时纵截距最大同时也最大, 的最大值为.综上可得的最大值为14.【考点】简单的线性规划.11.已知函数,.(1)若,解不等式;(3)若,且对任意,方程在总存在两不相等的实数根,求的取值范围.【答案】(1):,:;(2).【解析】(1)根据的取值情况进行分类讨论,将表达式中的绝对值号去掉,再利用二次函数的单调性讨论即可求解;(2)利用二次函数的单调性首先课确定的大致范围,再利根据条件方程在总存在两不相等的实数根,建立关于的不等式组,从而求解.试题解析:(1)∵,∴在单调递增,在单调递减,在单调递增,若:令解得:∴不等式的解为:;若:令,解得:,,根据图象不等式的解为:,综上::不等式的解为;:不等式的解为;(3),∵,∴在单调递增,在单调递减,在单调递增,∴或,∴在单调递增,∴,若:在单调递减,在单调递增,∴必须,即;若:在单调递增,在单调递减,,即;综上实数的取值范围是.【考点】1.二次函数的综合题;2.分类讨论的数学思想.【方法点睛】解决二次函数综合题常见的解题策略有:1.尽可能画图,画图时要关注已知确定的东西,如零点,截距,对称轴,开口方向,判别式等;2.两个变元或以上,学会变换角度抓主元;3.数形结合,务必要保持数形刻画的等价性,不能丢失信息;3.掌握二次函数,二次不等式,二次方程的内在联系,熟练等价转化和准确表述;4.恒成立问题可转化为最值问题.12.设函数.(1)若,解不等式;(2)如果,,求的取值范围.【答案】(1);(2).【解析】(1)当,圆不等式变为,可利用绝对值的集合意义求解,从而得到不等式的解集;(2)求当,,a的取值范围,可先对a进行分类讨论:,对后两种情形,只需求出的最小值,最后“,”的充要条件是,即可求得结果.试题解析:由题意得,(Ⅰ)当时,.由,得,(ⅰ)时,不等式化为,即.不等式组的解集为.(ⅱ)当时,不等式化为,不可能成立.不等式组的解集为.(ⅲ)当时,不等式化为,即.不等式组的解集为.综上得,的解集为.(Ⅱ)若,不满足题设条件.若的最小值为.若的最小值为.所以的充要条件是,从而的取值范围为.【考点】绝对值不等式的求解及其应用.13.变量满足约束条件,当目标函数取得最大值时,其最优解为.【答案】.【解析】作出可行域,画出目标函数的图象,由图知最优解为.【考点】线性规划.14.(1)选修4—4:坐标系与参数方程已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是(为参数),直线和曲线相交于两点,求线段的长.(2)选修4—5:不等式选讲已知正实数满足,求证:.【答案】(1);(2)证明见解析.【解析】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;曲线的参数方程化为直角坐标方程,把直线的参数方程与曲线联立,利用韦达定理求线段的长.(2)利用基本不等式得,,再根据不等式的性质得,因为,得证.试题解析:(1)由直线的极坐标方程是,可得由直线的直角坐标方程是,化为参数方程为(为参数);曲线(为参数)可化为.将直线的参数方程代入,得.设所对应的参数为,,,所以.(2)证明:因为正实数,所以.同理可证:..,.当且仅当时,等号成立.【考点】1、极坐标方程;2、参数方程;3、直线与椭圆;4、基本不等式;5、不等式的性质.【方法点睛】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;再把曲线的参数方程化为直角坐标方程,然后把直线的参数方程与曲线联立,利用韦达定理和弦长公式求出线段的长.把直线的参数方程与曲线的直角坐标方程联立能够简化解题过程;(2)利用基本不等式及不等式的性质进行证明.15.已知满足约束条件,若的最大值为4,则()A.3B.2C.-2D.-3【答案】B【解析】将化为,作出可行域(如图所示),当时,当直线向右下方平移时,直线在轴上的截距减少,当直线过原点时,(舍);当时,当直线向右上方平移时,直线在轴上的截距增大,若,即时,当直线过点时,,解得(舍),当,即时,则当直线过点时,,解得;故选B.【考点】1.简单的线性规划;2.数形结合思想.【易错点睛】本题主要考查简单的线性规划与数形结合思想的应用,属于中档题;处理简单的线性规划问题的基本方法是:先画出可行域,再结合目标函数的几何意义进行解决,往往容易忽视的是目标函数基准直线与可行域边界的倾斜程度,如本题中,不仅要讨论斜率的符号,还要讨论斜率与边界直线斜率的大小关系.16.如果实数满足关系,则的最小值是.【答案】2【解析】满足不等式组的平面区域,如图所示,因表示定点到平面区域内的点的距离,由图易知其最小距离为点到直线的距离,即,所以的最小值为2.【考点】1、平面区域;2、点到直线的距离公式.【方法点睛】(1)平面区域的确定,已知,则,表示的区域为直线的右方(右下方或右上方),表示的区域为直线的左方(左下方或左上方);(2)具有一定的几何意义,即几何意义为点到的距离的平方.17.(2014•河南模拟)已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(1)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【答案】(1)原不等式的解集为{x|x≤0,或}.(2)[﹣].【解析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].【考点】绝对值不等式的解法.18.不等式的解集是()A.B.C.D.【答案】B【解析】或.故B正确.【考点】一元二次不等式.19.直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,则+的最小值为()A.3+2B.4+2C.6+4D.8【答案】C【解析】根据已知条件得到a+b=,将其代入+,结合基本不等式的性质计算即可.解:∵直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,∴圆x2+y2+4x﹣2y﹣1=0的圆心(﹣2,1)在直线上,可得﹣2a﹣2b+1=0,即a+b=,因此2(+)(a+b)=2(3++)≥6+4,当且仅当:=时“=”成立,故选:C.【考点】直线与圆的位置关系.20.已知实数满足不等式组,则的最大值为________.【答案】9.【解析】作出不等式组表示的平面区域如下图:由图可知,当直线经过点时,取得最大值为:.故答案应填:9.【考点】线性规划.21.已知.(Ⅰ)求证:;(Ⅱ)若对任意实数都成立,求实数的取值范围.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)利用零点分段讨论法将绝对值符号去掉,得到分段函数,再求各段的值域即可;(Ⅱ)利用基本不等式和不等式恒成立进行求解.试题解析:(Ⅰ)∵,∴的最小值为5,∴.(Ⅱ)解:由(Ⅰ)知:的最大值等于5.∵,“=”成立,即,∴当时,取得最小值5.当时,,又∵对任意实数,都成立,∴.∴的取值范围为.【考点】1.零点分段讨论法;2.基本不等式.22.设函数,其中.(I)当时,解不等式;(II)若对于任意实数,恒有成立,求的取值范围.【答案】(I);(II).【解析】(I)采用零点分区间法求解;(II)先求出的最大值为,把问题转化为求解.试题解析:(Ⅰ)时,就是当时,,得,不成立;当时,,得,所以;当时,,即,恒成立,所以.综上可知,不等式的解集是.(Ⅱ) 因为,所以的最大值为.对于任意实数,恒有成立等价于.当时,,得;当时,,,不成立.综上,所求的取值范围是【考点】.绝对值不等式的解法;不等式恒成立问题23.已知函数.(1)解不等式;(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1) 不等式的解集为;(2) .【解析】(1)分区间去掉绝对值符号,将函数表示成分段函数的形式,在每个区间上分别解不等式,最后再求并集即可;(2) 不等式对任意的恒成立,由(1)求出函数的最小值,解不等式即可.试题解析:(1).当时,由,得,此时无解;当时,由,得,所以;当时,由,得,所以.综上,所求不等式的解集为.(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为不等式对任意的恒成立,即,解得,故的取值范围为.【考点】1.含绝对值不等式的解法;2.函数与不等式.24.设,若对任意的正实数,都存在以为三边长的三角形,则实数的取值范围是()A.B.C.D.以上均不正确【答案】A【解析】因为正实数,则,要使为三边的三角形存在,则,即恒成立,故,令,则,取,递减,所以时,;同理取,递增,可知时,,故实数的取值范围是,故选A.【考点】基本不等式的应用.方法点睛:本题结合三角形的基本性质考查了基本不等式的应用,属于中档题.解答本题应先根据基本不等式求得,再三角形的性质任意两边之和大于第三边,任意两边之差小于第三边得到即得的不等式组,再利用基本不等式结合函数的单调性求出的取值范围.25.已知函数(是常数)和是定义在上的函数,对任意的,存在使得,,且,则在集合上的最大值为()A.B.C.4D.5【答案】D【解析】由题知,易知在上是减函数,在上是增函数,所以,又因为,所以,化简得,再由,可求得,所以,并且可判定在上是减函数,在上是增函数,由于,所以在集合上的最大值为,故选D.【考点】1、导数在函数研究中的应用;2、函数的最值.【思路点睛】本题是一个利用导数研究函数的单调性、最值方面的综合性问题,属于难题.解决本题的基本思路是,首先根据题意判断出的最值关系,再由条件求出函数在定义域上的最小值,进而判断出的最值情况,并据此求出的值,从而得到的解析式,进一步可求出的最大值,问题得以解决.26.已知直线经过点,则的最小值为()A.B.C.D.【答案】B【解析】因为直线经过点,所以,故,当且仅当时,等号成立.【考点】基本不等式.27.已知函数.(1)求不等式的解集;(2)若关于的表达式的解集,求实数的取值范围.【答案】(1);(2)或.【解析】(1)由绝对值的定义可分类讨论去绝对值,再分别解不等式即可;(2)由题意可得的值域为,要,需,解得实数的取值范围是或.试题解析:(1)由题意得:,则不等式等价于或,解得:或,∴不等式的解集.(2)∵,∴的值域为,∴的解集.要,需,即或,∴或,∴实数的取值范围是或.【考点】含绝对值不等式的解法.28.设函数.(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若不等式的解集非空,求实数的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式、存在性问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,解绝对值不等式,先得到与解集对应系数相等,解出的值;第二问,先整理,构造函数,画出函数图象,结合图象,得到,或,从而解出的取值范围.试题解析:(1)∵,∴,∴,∴,因为不等式的解集为,所以,解得.(2)由(1)得.∴,化简整理得:,令,的图象如图所示:要使不等式的解集非空,需,或,∴的取值范围是【考点】本题主要考查:1.绝对值不等式;2.存在性问题.29.若,若的最大值为3,则的值是___________.【答案】【解析】画出可行域如下图所示,为最优解,故.【考点】线性规划.30.选修4-5:不等式选讲若,且.(1)求的最小值;(2)是否存在,使得?并说明理由.【答案】(1)(2)不存在【解析】(1)利用基本不等式得,即,而,等号都是取得,(2)利用基本不等式得,即与矛盾,故不存在试题解析:解:(Ⅰ)由,得,且当时等号成立,故,且当时等号成立,∴的最小值为.(Ⅱ)由,得,又由(Ⅰ)知,二者矛盾,所以不存在,使得成立.【考点】基本不等式【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.31.已知x、y满足,那么z=3x+2y的最大值为 .【答案】【解析】由题意得,作出不等式组表示平面区域,如图所示,可得平面区域为一个三角形,当目标函数经过点时,目标函数取得最大值,此时最大值为.【考点】简单的线性规划.32.已知实数x,y满足,则z=4x+y的最大值为()A.10B.2C.8D.0【答案】C【解析】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当过点时,取最大值8.【考点】简单的线性规划问题.33.若实数满足约束条件,则的最大值为()A.B.1C.D.【答案】A【解析】因画出不等式组表示的区域如图, 的几何意义是区域内的动点与定点连线的斜率,借助图形不难看出区域内的点与定点连线的斜率最大,最大值为,所以的最大值为,应选A.【考点】线性规划的知识及运用.34.已知,使不等式成立.(1)求满足条件的实数的集合;(2)若,对,不等式恒成立,求的最小值.【答案】(1);(2).【解析】(1)运用分类讨论的方法分段求解;(2)借助题设条件及基本不等式求解.试题解析:(1)令,则,由于使不等式成立,有(2)由(1)知,,根据基本不等式,从而,当且仅当时取等号,再根据基本不等式当且仅当时取等号,所以的最小值为6【考点】绝对值不等式、基本不等式及运用.35.设变量满足不等式组则目标函数的最小值是______.【答案】7【解析】不等式组对应的可行域如图,由图可知,,目标函数表示斜率为的一组平行线当目标函数经过图中点时取得最小值.故填:7.【考点】线性规划36.设x,y满足约束条件且的最大值为4,则实数的值为____________.【答案】-4【解析】作出可行域,令得 .结合图象可知目标函数在处取得最大值,代入可得.故本题答案应填.【考点】线性规划.37.已知函数,其中为常数.(1)当时,求不等式的解集;(2)设实数,,满足,若函数的最小值为,证明:.【答案】(1);(2)证明见解析.【解析】(1)由.再由或或解集为;(2)由当且仅当,即时取等号,,则.解法一:由题设.解法二:由题设,,即,.试题解析:(1)当时,由,得或,即或所以不等式的解集为(2)因为,当且仅当,即时取等号,则.由已知,,则解法一:由题设,则,,解法二:由题设,,据柯西不等式,有,即,所以【考点】1、绝对值不等式;2、重要不等式;3、柯西不等式.38.若满足约束条件,则的最大值为.【答案】【解析】作出可行域,如图内部(含边界),,,表示可行域内点与的连线的斜率,,因此最大值为.【考点】简单线性规划的非线性运用.39.已知变量满足约束条件,目标函数的最大值为10,则实数的值等于()A.4B.C.2D.8【答案】A【解析】由不等式组可得可行域(如图),当直线经过点时,取得最大值,且由已知,解得.【考点】简单线性规划.【方法点睛】本题主要考查简单线性规划问题,属于基础题.处理此类问题时,首先应明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围等.40.已知变量满足约束条件,则的最大值为__________.【答案】1【解析】可行域为一个三角形ABC及其内部,其中,直线过点C时取最大值1.【考点】线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.41.设,则a, b,c的大小关系是()A.a>c>b B.a>b>cC.c>a>b D.b>c>a【答案】A【解析】,考察函数,该函数在上单调递减,,考察函数,该函数在上单调递增,,故选A.【考点】指数函数的单调性与幂函数的单调性.42.若满足约束条件,则当取最大值时,的值为()A.B.C.D.【答案】D【解析】作出可行域如图中阴影部分所示,的几何意义是:过定点与可行域内的点的直线的斜率,由图可知,当直线过点时,斜率取得最大值,此时的值分别为,所以.故选D.【考点】简单线性规划.43.若,则()A.B.C.D.【答案】A【解析】因为即,,所以,故选A.【考点】指数函数、对数函数的性质.44.已知实数满足不等式组则的最大值是___________.【答案】6【解析】作出不等式组表示的平面区域,如图所示,由图知当目标函数经过点时取得最大值,即.【考点】简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值,正确作出可行域是解答此类问题的前提条件.45.选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集为非空集,求的取值范围.【答案】(1)详见解析;(2)(-1,0)【解析】(1)(当且仅当时取等号);(2)作出函数的图象,由图像可求出结果.试题解析:解:(1)(当且仅当时取等号)(2)函数的图象如图所示.当时,,依题意:,解得,∴的取值范围是(-1,0).【考点】1.绝对值不等式;2.基本不等式.46.选修4—5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若存在实数,使得,求实数的取值范围.【答案】(I);(II).【解析】(I)分,,三种情况讨论,去掉绝对值符号,转化不等式求出解集,取并集即可;(II)移项可得,根据绝对值的几何意义,求出的最大值,即可求得实数的取值范围.试题解析:(I)①当时,,所以②当时,,所以为③当时,,所以综合①②③不等式的解集(II)即由绝对值的几何意义,只需【考点】绝对值不等式的解法和绝对值的几何意义.47.设,满足约束条件则的取值范围为.【答案】【解析】画出可行域如下图所示,由图可知,目标函数在点处取得最小值为,在点处取得最大值为.【考点】线性规划.48.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处的最大值是,在最小值是,所以而,所以的最大值是,故选B.【考点】1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.49.选修4-5:不等式选讲已知函数.(Ⅰ)若,解不等式;(Ⅱ)若存在实数,使得不等式成立,求实数的取值范围.【答案】(I)(II)【解析】(I)先根据绝对值定义将不等式转化为三个不等式组:,或,或,最后求三个不等式组解集的并集得原不等式的解集(II)先化简不等式为,再利用绝对值三角不等式求最值:,再转化解不等式得实数的取值范围.试题解析:不等式化为,则,或,或,……………………3分解得,所以不等式的解集为.……………………5分(2)不等式等价于,即,由绝对值三角不等式知.……………………8分若存在实数,使得不等式成立,则,解得,所以实数的取值范围是.……………………10分【考点】绝对值三角不等式,绝对值定义【名师】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.50.选修4-5:不等式选讲已知函数.(1)解不等式;。
高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023不等式是高中数学中重要的概念之一,也是很多考试中必考的内容。
为帮助大家复习巩固,本文整理了十道高中数学不等式练习题及参考答案,供大家练习参考。
1. 已知 $x>0$,求证:$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}>1$【参考答案】$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}=\frac{1}{1+x}+\frac{x}{x+1}=\frac{x+1}{x+1}=1$。
2. 解不等式 $\frac{2-x}{x+1}\geq 1$。
【参考答案】$\frac{2-x}{x+1}\geq 1$,移项得 $\frac{1-x}{x+1}\geq 0$,即$\frac{x-1}{x+1}\leq 0$。
因此,$x\in(-\infty,-1]\cup[1,+\infty)$。
3. 解不等式 $\log_{\frac{1}{2}}(x^2-3x+2)<2$。
【参考答案】$\log_{\frac{1}{2}}(x^2-3x+2)<2$,移项得 $x^2-3x+2>4$。
解得 $x\in(-\infty,1)\cup(3,+\infty)$。
4. 已知 $a+b=1$,$a>0$,$b>0$,求证:$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。
【参考答案】By Jensen 不等式,$\frac{1}{2}(a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}) \geq\log_{\frac{1}{2}}(\frac{1}{2}(a+b))=\log_{\frac{1}{2}}\frac{1}{ 2} =1$。
所以,$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。
高中不等式练习题及答案

高中不等式练习题及答案高中不等式练习题及答案在高中数学学习中,不等式是一个重要的概念和工具。
不等式是数学中描述数值大小关系的一种方式,它可以帮助我们解决各种实际问题。
在学习不等式的过程中,练习题是必不可少的,下面我将为大家提供一些高中不等式练习题及其答案。
1. 练习题一:解不等式:2x - 5 < 3x + 2解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 3x < 2 + 5化简得:-x < 7由于系数为负数,所以不等号方向需要翻转,得到:x > -72. 练习题二:解不等式:3(x - 2) > 2(x + 3)解答:先进行分配律的运算,得到:3x - 6 > 2x + 6将变量移到一边,常数移到另一边,得到:3x - 2x > 6 + 6化简得:x > 123. 练习题三:解不等式:4x + 5 > 3 - 2x解答:将变量移到一边,常数移到另一边,得到:4x + 2x > 3 - 5化简得:6x > -2由于系数为正数,所以不等号方向不需要翻转,得到:x > -1/34. 练习题四:解不等式:2x - 3 > 5x + 1解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 5x > 1 + 3化简得:-3x > 4由于系数为负数,所以不等号方向需要翻转,得到:x < -4/35. 练习题五:解不等式:2x + 1 < 3(x - 2)解答:先进行分配律的运算,得到:2x + 1 < 3x - 6将变量移到一边,常数移到另一边,得到:2x - 3x < -6 - 1化简得:-x < -7由于系数为负数,所以不等号方向需要翻转,得到:x > 7通过以上的练习题,我们可以看到解不等式的基本步骤。
首先,将不等式中的变量移到一边,常数移到另一边;然后,化简不等式;最后,根据系数的正负确定不等号的方向。
高中数学不等式问题练习题及其参考答案(完整版)

[基础训练A 组]一、选择题(六个小题,每题5分,共30分)1.若02522>-+-x x ,则221442-++-x x x 等于( )A .54-xB .3-C .3D .x 45-2.函数y =log 1(x +11+x +1) (x > 1)的最大值是 ( )A .-2B .2C .-3D .33.不等式xx --213≥1的解集是 ( ) A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( )A .ba 11< B .b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( )A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小,则a 的取值范围是 ( )A .-3<a <1B .-2<a <0C .-1<a <0D .0<a <2二、填空题(五个小题,每题6分,共30分) 1.不等式组⎩⎨⎧->-≥32x x 的负整数解是____________________。
2.一个两位数的个位数字比十位数字大2,若这个两位数小于30,则这个两位数为____________________。
3.不等式0212<-+xx 的解集是__________________。
4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。
5.若f(n)=)(21)(,1)(,122N n nn n n n g n n ∈=--=-+ϕ,用不等号 连结起来为____________.三、解答题(四个小题,每题10分,共40分)1.解log (2x – 3)(x 2-3)>02.不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27 C .4 D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x2=241x ,x =22时取等号; 41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; x yy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx 均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+ =yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)第 11 页 共 11 页 (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。