高中三年级数学培优补差辅导专题讲座_平面向量单元易错题分析与练习

合集下载

高三数学易错平面向量多选题 易错题难题测试提优卷

高三数学易错平面向量多选题 易错题难题测试提优卷

高三数学易错平面向量多选题 易错题难题测试提优卷一、平面向量多选题1.已知a ,b 是平面上夹角为23π的两个单位向量,c 在该平面上,且()()·0a c b c --=,则下列结论中正确的有( )A .||1ab += B .||3a b -=C .||3<cD .a b +,c 的夹角是钝角【答案】ABC 【分析】在平面上作出OA a =,OB b =,1OA OB ==,23AOB π∠=,作OC c =,则可得出C 点在以AB 为直径的圆上,这样可判断选项C 、D . 由向量加法和减法法则判断选项A 、B . 【详解】 对于A :()2222+2||+cos13a b a ba b a b π+=+=⨯⨯=,故A 正确; 对于B :设OA a =,OB b =,1OA OB ==,23AOB π∠=,则2222+c 32os3AB O OA O A O B B π-⋅==,即3a b -=,故B 正确; OC c =,由(a ﹣c )·(b ﹣c )=0得BC AC ⊥,点C 在以AB 直径的圆上(可以与,A B 重合).设AB 中点是M ,c OC =的最大值为13+3222+A b B O MC a M +==+<,故C 正确; a b +与OM 同向,由图,OM 与c 的夹角不可能为钝角.故D 错误. 故选:ABC .【点睛】思路点睛:本题考查向量的线性运算,考查向量数量积.解题关键是作出图形,作出OA a =,OB b =,OC c =,确定C 点轨迹,然后由向量的概念判断.2.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线x y e =和ln y x =上的动点,记12,I AQ AB I BP BA =⋅=⋅,则下列命题不正确的是( ) A .若12I I =,则()PQ AB R λλ=∈ B .若12I I =,则AP BQ = C .若()PQ AB R λλ=∈,则12I I = D .若AP BQ =,则12I I =【答案】ABD 【分析】作出两个函数的图象,利用图象结合平面向量共线知识和平面向量数量积的几何意义分析可得答案. 【详解】根据题意,在直线AB 上取点,P Q '',且满足||||AP BQ ''=,过,P Q ''分别作直线AB 的垂线,交曲线xy e =于1P ,2P ,交曲线ln y x =于12,Q Q ,在曲线xy e =上取点3P ,使13||||AP AP =,如图所示:1||||cos I AQ AB AQ AB QAB =⋅=⋅∠,令||cos ||AQ QAB AQ '∠=,则1||||I AQ AB '=⋅,2||||cos I BP BA BP BA PBA =⋅=⋅∠,令||cos ||BP PBA BP '∠=,则2||||I BP BA '=⋅,若||||AP BQ ''=,则||||AQ BP ''=,若12I I =,则||||AQ BP ''=即可,此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且||||AP BQ ≠,所以A 、B 不正确;对于选项C ,若PQ AB =λ,此时P 与1P 重合,且Q 与1Q 重合,或P 与2P 重合,且Q 与2Q 重合,所以满足12I I =,所以C 正确;对于D ,当P 与3P 重合时,满足13||||AP AP =,但此时3P 在直线AB 上的投影不在P '处,因而不满足||||AQ BP ''=,即12I I ≠,所以D 不正确. 故选:ABD 【点睛】关键点点睛:利用图象结合平面向量共线知识和平面向量数量积的几何意义求解是解题关键.3.设向量(1,1)a =-,(0,2)b =,则( ) A .||||a b = B .()a b a -∥C .()a b a -⊥D .a 与b 的夹角为4π 【答案】CD 【分析】根据平面向量的模、垂直、夹角的坐标运算公式和共线向量的坐标运算,即可对各项进行判断,即可求出结果. 【详解】 对于A ,(1,1)a =-,(0,2)b =,2,2a b ∴==,a b ∴≠,故A 错误; 对于B ,(1,1)a =-,(0,2)b =,()=1,1a b ∴---,又(0,2)b =,则()12100-⨯--⨯≠,()a b ∴-与b 不平行,故B 错误;对于C ,又()()()11110a b a -⋅=-⨯-+-⨯=,()a b a ∴-⊥,故C 正确;对于D ,又cos ,22a b a b a b⋅<>===⋅,又a 与b 的夹角范围是[]0,π,a ∴与b 的夹角为π4,故D 正确. 故选:CD. 【点睛】关键点点睛:本题考查了平面向量的坐标运算,熟记平面向量的模、垂直、夹角坐标运算公式及共线向量的坐标运算时解题的关键,考查学生的运算能力,属于基础题.4.已知向量(2,1),(3,1)a b ==-,则( ) A .()a b a +⊥B .|2|5a b +=C .向量a 在向量bD .向量a 的单位向量是55⎛ ⎝⎭【答案】ABD 【分析】多项选择题需要要对选项一一验证: 对于A:利用向量垂直的条件判断;对于B:利用模的计算公式; 对于C:利用投影的计算公式; 对于D:直接求单位向量即可. 【详解】(2,1),(3,1)a b ==-对于A: (1,2),()(1)2210,a b a b a +=-+⋅=-⨯+⨯=∴()a b a +⊥,故A 正确;对于B:222(2,1)2(3,1)(4,3),|2|(4)35a b a b +=+-=-∴+=-+=,故B 正确;对于C: 向量a 在向量b 上的投影是2210||(3)1a b b ⋅==--+,故C 错误;对于D: 向量a 的单位向量是255,⎛⎫⎪ ⎪⎝⎭,故D 正确.故选:ABD . 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.5.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++= B .24AB AC HM MO +=- C .3AH OM =D .OA OB OC ==【答案】ABD 【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.6.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π【答案】CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.7.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是( ) A .EG PG ⊥ B .EG BC ⊥ C .//FG BC D .FG EF ⊥ 【答案】ABD 【分析】取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG ,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案. 【详解】如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底, 则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233PG PH a b a b ==⨯+=+, 1121111,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,11113333FG PG PF a b b a =-=+-=,1121133333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;0FG EF ⋅=,D 正确.故选:ABD.【点睛】本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.8.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BCC .a b ⊥D .()6a b BC +⊥【答案】ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC ab AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.二、立体几何多选题9.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =.则下列结论正确的是( )A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC 【分析】对选项分别作图,研究计算可得. 【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,1112212224BEF S EF BB ∆∴=⋅=⨯=连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即2AO =112213312A BEF BEF V S AO -∆∴=⨯==A BEF V -∴是定值.选项B:连接11A C 与11B D 交于点M ,连接11,AD AB , 由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥ 在直角三角形EFT 中,221cos 452FT EF =⨯=⨯=12HG FT ∴== 选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角, 在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=2AR =由余弦定理得1cos AD R ∠= 故选:AC 【点睛】本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.10.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得A B '=.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()313BCDE f S λλλ=⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形,∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确.对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE ,则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=()f λ取得最大值()31231339f λ⎛⎫=-= ⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC.故选:ABC.【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.。

平面向量典型易错题分析

平面向量典型易错题分析
l 新 离蕾 数 学
平 面 向量 典 型 易错 题分 析
南 京 大 学 附属 中学 单铭 成
但 两条 直线 平行 不 包 含两 在平 面 向量 的学 习 中 , 同学 们 如 果 不 能 含两 个 向量共 线 , 正 确理解 平 面 向量 的基 础 知 识 , 或 在 某 些 概 条 直线 重合 , 所 以 A, B, C, D 可能 四点共 线 , 念及 公式 的理 解 上模 糊 不 清 , 就 会 造 成 一些 此 为 易 错 处 . 表 面上看 起来 正 确 而 实 际上 错 误 的 判 断 , 使 解 题思 路走 入误 区. 反 之④ 则正 确. ⑤ 正确 , 向量 的相 等具有 传递 性. ⑥ 对 于零 向量 的有关 概念 不 清 , 零 向量 的方 向是任 意 的 , 并 且 规 定 零 向量 和任 何 向
量 平行 .
膏 一、向量的基本概念不清
例 1 下列命题 : ① 若l n【 一l 6 l , 贝 4 口 一6 ;
答 案 ④ ⑤ 向量 的概 念 较 多 , 且 容易混淆 , 在学 习
理 解 各 概 念 的实 质 , 注 意 区 分 共 ② 两个 向量 相 等 的 等 价 条 件 是 它 们 的 中要分 清 、 线 向量 、 平 行 向 量 、 同 向 向量 、 反 向向量、 零 起 点相 同, 终点相 同;
2 O New Uni v e r s i t y En t r an c e Ex am i n at i o n
) , 点 P在 直线AB上 , 且l 能两边 同除以一个 向量 , 即两 边不 能约去 一个 2
向量( 如第⑤题) , 切记两 向量不能相 除( 相约) ; 求 点 P 的 坐标 . ( 2 )向 量 的 “ 乘 法” 不 满 足 结合 律 , 即

高三数学第二学期平面向量多选题单元 易错题难题测试提优卷

高三数学第二学期平面向量多选题单元 易错题难题测试提优卷

高三数学第二学期平面向量多选题单元 易错题难题测试提优卷一、平面向量多选题1.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有( ) A .()()a b a b λλ⊗=⊗ B .a b b a ⊗=⊗C .()()()a b c a c b c +⊗=⊗+⊗D .若()11,a x y =,()22,b x y =,则122a b x y x y ⊗=- 【答案】BD 【分析】对于A,B,只需根据定义列出左边和右边的式子即可,对于C,当λab 时,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然不会恒成立. 对于D,根据数量积求出cos ,a b ,再由平方关系求出sin ,a b 的值,代入定义进行化简验证即可. 【详解】解:对于A :()()sin ,a b a b a b λλ⊗=⋅,()sin ,a b a b a bλλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅,=sin ,b a b a b a ⊗⋅,故a b b a ⊗=⊗恒成立; 对于C ,若λab ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立; 对于D ,1212cos ,x x y y a b a b+=⋅,212sin ,1a b a b ⎛ ⎪=- ⎪⋅⎭,即有222121212121x x y y x x y y a b a b a b a a b ⎛⎫⎛⎫++ ⎪⊗=⋅⋅-=⋅- ⎪ ⎪ ⎪⋅⎭⎭===1221x y x y =-.则1221a b x y x y ⊗=-恒成立. 故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题.2.在ABC 中,D 、E 分别是AC 、BC 上的点,AE 与BD 交于O ,且AB BC BC CA CA AB ⋅=⋅=⋅,2AB AC AE +=,2CD DA =,1AB =,则( )A .0AC BD ⋅=B .0OA OE ⋅=C .3OA OB OC ++= D .ED 在BA 方向上的正射影的数量为712【答案】BCD 【分析】根据AB BC BC CA CA AB ⋅=⋅=⋅以及正弦定理得到sin cos sin cos C B B C ⋅=⋅,从而求出B C =,进一步得到B C A ==,ABC 等边三角形,根据题目条件可以得到E 为BC 的中点和D 为AC 的三等分点,建立坐标系,进一步求出各选项. 【详解】由AB BC BC CA CA AB ⋅=⋅=⋅得cos cos AB BC B CA BC C ⋅=⋅,||cos ||cos AB B CA C ⋅=⋅,正弦定理,sin cos sin cos C B B C ⋅=⋅,()0sin B C =-,B C =,同理:A C =,所以B C A ==,ABC 等边三角形.2AB AC AE +=,E 为BC 的中点,2CD DA =,D 为AC 的三等分点.如图建立坐标系,30,2A ⎛ ⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,13,63D ⎛⎫ ⎪ ⎪⎝⎭,解得30,4O ⎛ ⎝⎭, O 为AE 的中点,所以,0OA OE +=正确,故B 正确;1323,,,2233AC BD ⎛⎫⎛=-= ⎪ ⎪ ⎝⎭⎝⎭,AC BD ⋅=12331=023236⨯--≠,故A 错误; 32OA OB OC OA OE OE ++=+==,故C 正确; 136ED ⎛= ⎝⎭,13,22BA ⎛= ⎝⎭,投影712||ED BA BA ⋅=,故D 正确. 故选:BCD. 【点睛】如何求向量a 在向量b 上的投影,用向量a 的模乘以两个向量所成的角的余弦值就可以了,当然还可以利用公式a b b⋅进行求解.3.在平行四边形ABCD 中,2AB =,1AD =,2DE EC =,AE 交BD 于F 且2AE BD ⋅=-,则下列说法正确的有( )A .1233AE AC AD =+B .25DF DB =C .,3AB AD π=D .2725FB FC ⋅=【答案】BCD 【分析】根据向量的线性运算,以及向量的夹角公式,逐一判断四个选项的正误即可得正确选项. 【详解】对于选项A :()22233133AE AD DE AD DC AD AD D C A A A C =+=+=+-=+,故选项A 不正确; 对于选项B :易证DEF BFA ,所以23DF DE BF AB ==,所以2235DF FB DB ==,故选项B 正确;对于选项C :2AE BD ⋅=-,即()223AD A B D AB A ⎛⎫+-=- ⎪⎝⎭,所以 2221233AD AD AB AB -⋅-=-,所以1142332AD AB -⋅-⨯=-,解得:1AB AD ⋅=,11cos ,212AB AD AB AD AB AD⋅===⨯⨯,因为[],0,AB AD π∈,所以,3AB AD π=,故选项C 正确; 对于选项D :()()332555AB FB FC DB FD DC AD BD AB ⎛⎫⋅=⋅+=-⋅+ ⎪⎝⎭()()()3233255555AD AD AB AB AD A AB AB B AD ⎡⎤⎛⎫=-⋅-+=-⋅+ ⎪⎢⎥⎣⎦⎝⎭22969362734252525252525AB AB AD AD =⨯-⋅-⨯=⨯--=,故选项D 正确. 故选:BCD 【点睛】关键点点睛:选项B 的关键点是能得出DEF BFA ,即可得23DF DE BF AB ==,选项D 的关键点是由于AB 和AD 的模长和夹角已知,故将FB 和FC 用AB 和AD 表示,即可求出数量积.4.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 【答案】CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a ba b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.5.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=- 【答案】ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.6.设O ,A ,B 是平面内不共线的三点,若()1,2,3n OC OA nOB n =+=,则下列选项正确的是( )A .点1C ,2C ,3C 在同一直线上B .123OC OC OC ==C .123OC OB OC OB OC OB ⋅<⋅<⋅D .123OC OA OC OA OC OA ⋅<⋅<⋅【答案】AC 【分析】利用共线向量定理和向量的数量积运算,即可得答案;()12212()C C OC OC OA OB OA OB OB =-=+-+=,()()233232C C OC OC OA OB OA OB OB =-=+-+=,所以1223C CC C =,A 正确.由向量加法的平行四边形法则可知B 不正确.21OC OA OC OA OA OB ⋅-⋅=⋅,无法判断与0的大小关系,而()21OC OB OA OB OB OA OB OB ⋅=+⋅=⋅+,()2222OC OB OA OB OB OA OB OB⋅=+⋅=⋅+,同理233OC OB OA OB OB ⋅=⋅+,所以C 正确,D 不正确. 故选:AC . 【点睛】本题考查向量共线定理和向量的数量积,考查逻辑推理能力、运算求解能力.7.下列各式结果为零向量的有( ) A .AB BC AC ++ B .AB AC BD CD +++ C .OA OD AD -+ D .NQ QP MN MP ++-【答案】CD 【分析】对于选项A ,2AB BC AC AC ++=,所以该选项不正确;对于选项B ,2AB AC BD CD AD +++=,所以该选项不正确;对于选项C ,0OA OD AD -+=,所以该选项正确;对于选项D ,0NQ QP MN MP ++-=,所以该选项正确. 【详解】对于选项A ,2AB BC AC AC AC AC ++=+=,所以该选项不正确;对于选项B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,所以该选项不正确;对于选项C ,0OA OD AD DA AD -+=+=,所以该选项正确; 对于选项D ,0NQ QP MN MP NP PN ++-=+=,所以该选项正确. 故选:CD 【点睛】本题主要考查平面向量的加法和减法法则,意在考查学生对这些知识的理解掌握水平.8.ABC 是边长为2的等边三角形,已知向量a 、b 满足AB a =、AC a b =+,则下列结论正确的是( ) A .2b =B .a b ⊥C .2a b ⋅=D .(2)a b BC +⊥【分析】本题首先可以根据向量的减法得出BC b =,然后根据ABC 是边长为2的等边三角形得出A 正确以及B 错误,再然后根据向量a 、b 之间的夹角为120计算出2a b ⋅=-,C 错误,最后通过计算得出(2)0a b BC +⋅=,D 正确. 【详解】因为AB a =,AC a b =+,所以BC AC AB a b a b =-=+-=, 因为ABC 是边长为2的等边三角形,所以2b BC ==,A 正确, 因为AB a =,BC b =,所以向量a 、b 之间的夹角为120,B 错误,所以1cos1202222a b a b ⎛⎫⋅=⋅⋅=⨯⨯-=- ⎪⎝⎭,C 错误,因为()22(2)(2)22220a b BC a b b a b b +⋅=+⋅=⋅+=⨯-+=, 所以(2)a b BC +⊥,D 正确, 故选:AD. 【点睛】本题考查向量的减法运算以及向量的数量积,若向量a 、b 之间的夹角为θ,则cos a b a b θ⋅=⋅⋅,若0a b ⋅=,则a b ⊥,考查推理能力与计算能力,是中档题.9.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)- B .(6,15)C .(2,3)-D .(2,3)【答案】ABC 【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-.∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.10.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λa b ,则a b a b +=-【答案】AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.。

高中数学平面向量易错题精选

高中数学平面向量易错题精选

高中数学平面向量易错题精选一、选择题:1.在ABC ∆中,︒===60,8,5C b a ,则⋅的值为 ( )A 20B 20-C 320D 320-错误分析:︒==60C ,从而出错. 答案: B略解: ︒=120,故⋅202185-=⎪⎭⎫⎝⎛-⨯⨯=. 2.关于非零向量a 和b,有下列四个命题:(1)“b a b a +=+”的充要条件是“a 和b的方向相同”;(2)“b a b a -=+” 的充要条件是“a 和b 的方向相反”; (3)“b a b a -=+” 的充要条件是“a 和b 有相等的模”; (4)“b a b a -=-” 的充要条件是“a 和b 的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 4错误分析:对不等式b a b a b a+≤±≤-的认识不清.答案: B.3.已知O 、A 、B 三点的坐标分别为O(0,0),A(3,0),B(0,3),是P 线段AB 上且 =t(0≤t ≤1)则OA ²OP 的最大值为 ()A .3B .6C .9D .12正确答案:C 错因:学生不能借助数形结合直观得到当|OP |cos α最大时,² 即为最大。

4.若向量 a =(cos α,sin α) , b =()ββsin ,cos , a 与b 不共线,则a 与b 一定满足( )A . 与的夹角等于α-βB .∥C .(a +b )⊥(a -b )D . a ⊥b正确答案:C 错因:学生不能把a 、b 的终点看成是上单位圆上的点,用四边形法则来处理问题。

5.已知向量 =(2cos ϕ,2sin ϕ),ϕ∈(ππ,2), =(0,-1),则 与 的夹角为( )A .π32-ϕB .2π+ϕ C .ϕ-2π D .ϕ正确答案:A 错因:学生忽略考虑与夹角的取值范围在[0,π]。

6.O 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( -)²(+-2)=0,则∆ABC 是( )A .以AB 为底边的等腰三角形 B .以BC 为底边的等腰三角形 C .以AB 为斜边的直角三角形D .以BC 为斜边的直角三角形正确答案:B 错因:学生对题中给出向量关系式不能转化:2不能拆成(+)。

(规避易错题系列)第六章 平面向量及其应用 (原卷版)

(规避易错题系列)第六章 平面向量及其应用 (原卷版)

第六章 平面向量及其应用 典型易错题集易错点1.忽视0例题1.(2021·全国·高一课时练习)给出下列命题:①若a b =-,则||||a b =;②若||||a b <,则a b <;③若a b =,则//a b ;④若//,//a b b c ,则//a c .其中正确说法的个数是( ) A .0B .1C .2D .3【常见错解】D解:因为a b =-,则向量,a b 互为相反向量,所以||||a b =,故①正确; 因为向量不能比较大小,故②错误; 若a b =,则向量,a b 方向相同,故③正确;若//,//a b b c ,由平行的传递性,则//a c ,故④正确. 所以正确说法的个数是3个. 故选:D.【动手实战】1.(2021·上海·)判断下列命题:①两个有共同起点而且相等的非零向量,其终点必相同;②若//a b ,则a 与b 的方向相同或相反;③若//a b ,且//b c ,则//a c ;④若a b =,则2a b >.其中,正确的命题个数为( ) A .0B .1C .2D .32.(2020·宁夏育才中学)有下列命题:①若a b →→=,则a b →→=;②若AB DC →→=,则四边形ABCD 是平行四边形; ③若m n →→=,n k →→=,则m k →→=; ④若//a b →→,//b c →→,则//a c →→. 其中,假命题的个数是( ) A .1B .2C .3D .4易错点2.混淆向量模相等与向量相等例题1.(2022·江西·贵溪市实验中学高二期末)若向量a b =,则a b = ( )【常见错解】正确【错因分析】未能正确理解向量模与向量的关系,向量既有大小,又有方向,||||a b a b =⇔=且,a b 同向.本例中a b =,仅仅只是说明,a b 模相等,对于方向,无限可能,所以无法由a b =得到a b =. 【动手实战】1.(2021·全国·高一课时练习)命题“若m n =,n k =,则m k =” 的真假性为( ) 2.(2021·全国·高一课时练习)若a 与b 都是单位向量,则a b =.( )易错点3.误把两向量平行当成两向量同向例题1.(2021·云南·昆明二十三中高一期中)下列命题正确的是( ) A .a b a b =⇒= B .a b a b >⇒> C .//=0a b a b ⇒<>, D .00a a =⇒=【常见错解】C【错因分析】对于向量平行问题,//a b ,很多同学总是当做直线平行记忆,认为直线平行那不是成0角,想当然认为向量的平行也是成0,在刚学习向量时,特别要注意向量,直线的区别.【动手实战】1.(2022·全国·高三专题练习)已知向量a ,b 为非零向量,则“向量a ,b 的夹角为180°”是“//a b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2021·内蒙古·赤峰学院附属中学高一期末)下列说法正确的是( ) A .方向相同的向量叫做相等向量 B .共线向量是在同一条直线上的向量 C .零向量的长度等于0D .//AB CD 就是AB 所在的直线平行于CD 所在的直线易错点4.混淆向量数量积运算和数乘运算的结果例题1.(2021·全国·)设a ,b ,c 是三个向量,以下四个选项正确的是( ) A .若0a ≠,0b ≠,0c ≠,则()()a b c a b c ⋅=⋅ B .若0a b ⋅=,0a ≠,则0b = C .若a b b c ⋅=⋅,且0b ≠,则a c = D .a b b a ⋅=⋅ 【常见错解】A【错因分析】很同学看到A 中0a ≠,0b ≠,0c ≠,再看结论()()a b c a b c ⋅=⋅直接把向量的点乘和数乘,当做实数乘法运算了,()()ab c a bc =,混淆了向量的点乘结果,数乘结果.事实上对于()()a b c a b c ⋅=⋅,左边的本质是:c λ,右边的本质是:a μ,无法得到c a λμ=. 【动手实战】1.(2022·浙江·模拟预测)已知平面非零向量,,a b c ,则“()()a b c a c b ⋅⋅=⋅⋅”是“b c =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.(2021·海南·海口一中高三阶段练习)已知,,a b c 为非零平面向量,则下列说法正确的是( ) A .()()a b c a b c ⋅⋅=⋅⋅ B .若a c b c ⋅=⋅,则a b = C .若//a b ,则R,b a λλ∃∈=D .||||||a b a b ⋅=⋅3.(2020·河南·南阳中学(文))由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn nm =”类比得到“a b b a ⋅=⋅”;②“()m n t mt nt +=+”类比得到“()+⋅=⋅+⋅a b c a c b c ”; ③“()()m n t m n t ⋅=⋅”类比得到“()()a b c a b c ⋅⋅=⋅⋅”;④“0t ≠,mt xt m x =⇒=”类比得到“0p ≠,a p x p a x ⋅=⋅⇒=”; ⑤“m n m n ⋅=⋅”类比得到a b a b ⋅=⋅; ⑥“ac abc b =”类比得到“a c abc b⋅=⋅”. 以上式子中,类比得到的结论正确的个数是( ). A .1B .2C .3D .4易错点5.向量求模忘记开根号例题1.(2022·江西·高三阶段练习(理))已知向量,,||6,(3,4)a b a b ==-,若a 在b 的投影为14-,则|32|a b -=( )A .169B .13C .196D .14【常见错解】A解:因为(3,4)b =-,所以()235b =-,因为a 在b 的投影为14-,所以14a b b ⋅=-,所以1544a b b ⋅=-=-,所以222225(32)91249(6)12()451694a b a a b b -=-⋅+=⨯-⨯-+⨯= 故选:A【错因分析】典型的解题时忘记求模开根号,习惯没有养成要,先求2(32)a b -,再开根号为答案,往往学生求出2(32)a b -就忘记开根号,养成好的习惯对于求模问题()222|32|329124a b a b a a b b -=-=-⋅+,在平时训练时就注意开根号.【动手实战】1.(2022·广东·信宜市第二中学高三开学考试)已知非零向量,a b →→满足|2|||a b a b →→→→-=+,且3a b →→⋅=,则向量b →的模长为_________.2.(2022·湖南·高一课时练习)已知2a =,3b =,a 与b 的夹角为3π,试求: (1)a b +;(2)a b -.易错点6.忽视两个向量成为基底的条件1.(多选)(2022·全国·高一)在下列向量组中,可以把向量()3,2a →=表示出来的是( ) A .()()120,0,1,2e e →→== B .()()121,2,5,2e e →→=-=- C .()()123,5,6,10e e →→== D .()()122,3,2,3e e →→=-=【常见错解】BCD选项A :()10,0e →=,不能作为基底,对于BCD 都不含0,可以作为基底表示其它向量【错因分析】对基底的概念理解不够透彻,两个向量能否作为一组基底表示其它向量,判断的标准是这两个向量是否共线,对于选项C .()()123,5,6,10e e →→==,显然212e e →→=,说明12,e e →→共线,不能用来做基底.【动手实战】1.(多选)(2021·河北·大名县第一中学高一阶段练习)已知1e ,2e 是不共线的非零向量,则以下向量不可以作为基底的是( ) A .0a =,12b e e =+ B .1233a e e =+,12b e e =+ C .122a e e =-,12b e e =+D .122a e e =-,1224b e e =-2.(多选)(2021·浙江·高二期末)设12,e e 是平面内两个不共线的向量,则以下,a b 可作为该平面内一组基底的( ) A .121,a e e b e =+= B .1212112,24a e eb e e =+=+C .1212,a e e b e e =+=-D .12122,4a e e b e e =-=-+易错点7.记反了向量减法运算差向量的方向例题1.(2021·全国·高三专题练习)正三角形ABC 边长为2,设2BC BD =,3AC AE =,则·AD BE =_____. 【常见错解】因为2BC BD =,所以点D 是BC 的中点,所以()12AD AB AC =+, 3AC AE =,所以13BE AB AE AB AC =-=-,所以()2211133311·()22AB AC A AD BE AB AC ABC AC AB AB AC ⎛⎫=+⋅=--⋅+⋅⎪⎭- ⎝ 124(422cos60)2233=+⨯⨯⨯-= 【错因分析】本题选定了,AB AC 作为基底,在用基底,AB AC 表示向量13BE AB AE AB AC =-=-时,向量减法运算错误,a b -最后的结果应该指向a 向量,所以正确的表示应该是13BE AE AB AC AB =-=-.【动手实战】1.(2021·云南省泸西县第一中学高二期中)已知M ,N 分别是线段,OA OB 上的点,且,2OM MA ON NB ==,若MN OA OB λμ=+,则λμ+=___________.2.(2021·全国·高一课时练习)在三角形ABC 中,若3AB AC AP +=,且CP xAB y AC =+,则x y -=_______ 3.(2022·浙江·高三专题练习)设O 为四边形ABCD 的对角线AC 与BD 的交点,若AB a =,AD b =,OD c =,则OB =___________.易错点8.错误使用a b 的等价条件例题1.(2022·全国·高三专题练习(文))已知向量()2,1a →=,()1,b k →=,若2//a b k a →→→⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则实数k =___________.【常见错解】()24,12a b k →→+=+,()2,k a k k →=,若2//a b k a →→→⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则412122k k k k +=⇒= 【错因分析】错误的运用向量平行的等价条件,对于11(,)m x y =,22(,)n x y =,12210m n x y x y ⇔-=,而本题错误的运用为1122x y m n x y ⇔=,此时容易忽略0这个解.【动手实战】1.(2022·湖南·长沙一中高三阶段练习)已知向量a =(2,1),b =(1,k )(0k ≠),若()()2a b ka +∥,则非零实数k=________.2.(2021·全国·高一课时练习)已知向量a =(m ,1),b =(m ﹣6,m ﹣4),若a ∥b ,则m 的值为__.易错点9.忽视两向量夹角,a b <>的取值范围例题1.(2021·重庆·临江中学高三阶段练习)已知()1,2a =,(),3b μ=,向量a 与向量b 夹角为锐角,则μ的取值范围为________.【常见错解】因为()1,2a =,(),3b μ=,且向量a 与向量b 夹角为锐角,所以0a b ⋅> 所以:12306μμ⨯+⨯>⇒>-【错因分析】错误的认为向量a 与向量b 夹角为锐角0a b ⇔⋅>,事实上0a b ⋅>⇔向量a 与向量b 夹角为锐角或0角,本题错解忽略了0的情况.1.(2021·上海·高一课时练习)设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是___________.2.(2021·云南·昆明市外国语学校高一阶段练习)向量(2,)a t =,(1,3)b =-,若,a b 的夹角为钝角,则t 的范围是________.3.(2022·全国·高三专题练习(文))已知()()1,2,1,1a b ==,且a 与a λb +的夹角为锐角,则实数λ的取值范围为___________.易错点10.混淆向量点乘运算和实数乘法运算例题1.(2021·福建龙岩·高三期中)已知46a b ==,,且a 与b 的夹角为060,则2a b -=___________ 【常见错解】由题意可知,46a b ==,,()2222=2=4441642a b a b a a b b ---⋅+=⨯-【错因分析】本题错例是考试中常见的一种错误,混淆了向量a b ⋅和实数ab 相乘得运算法则.【动手实战】1.(2021·北京十五中高一期中)已知非零向量,a b 夹角为45,且2,2a a b =-=.则b 等于_________. 2.(2020·江苏·淮阴中学三模)已知向量a 与向量b 的夹角为60︒,||1a b ==,则a b -=______.易错点11.误把向量的投影当非负数1.(2022·黑龙江·哈师大附中高三期末(理))已知向量a 与b 的夹角为2π3,2a =,则a 在b 方向上的投影为( )A B C .D .【常见错解】B 向量a 与b 的夹角为2π3,2a =a 在b 方向上的投影为2π1|cos||32a ⎛⎫=-= ⎪⎝⎭【错因分析】未能正确理解向量的投影,习惯性认为投影是一个非负数,所以在求投影时,考生自己加了绝对值符号上去.特别提醒,向量的投影,可正可负可为零.1.(2022·四川叙州·高三期末(文))若向量,a b 满足()2,26a a b a =+⋅=,则b 在a 方向上的投影为( ) A .1B .-1C .12-D .122.(2021·四川·宁南中学高一开学考试)已知向量a ,b 的夹角为120°,4a =,1=b ,则a 在b 方向上的投影为( )A .2-B .12C .1-D .3.(2021·全国·高一课时练习)已知1a =,2b =,且()a ab ⊥+,则a 在b 上的投影向量为( ) A .b -B .bC .14b -D .14b易错点12.混淆向量的夹角定义例题1.(2021·全国·高一课时练习)在边长为2的正三角形中,设BC a =,CA b =,AB c =,则a b b c c a ⋅+⋅+⋅=______. 【常见错解】6因为ABC 是边长为2的等边三角形,所以2a b c ===, 所以12222a b b c c a ⋅=⋅=⋅=⨯⨯=, 所以2226a b b c c a ⋅+⋅+⋅=++=【错因分析】错误理解向量的夹角,在使用||||cos ,a b a b a b ⋅=<>求解时,特别注意,a b <>,要共起点才能找夹角,否则使用的可能是其补角造成错误。

高三培优补差下(易错题分析)精品!!

高三培优补差下(易错题分析)精品!!

高三培优补差下(易错题分析)精品!!5.数列单元易错题分析6.平面向量易错题分析7.解析几何易错题分析数列单元易错题分析1、如何判断等差数列、等比数列?等差数列、等比数列的通项公式和求和公式如何推导?2、解决等差(等比)数列计算问题通常的方法有哪两种?① 基本量方法:抓住)(,1q d a 及方程思想; ②利用等差(等比)数列性质).[问题]:在等差数列{}n a 中,369181716-==++a a a a ,其前n S n 项的和为,()求1n S 的最小值;()n n a a a T +++= 212求3、解决一些等比数列的前n 项和问题,你注意到要对公比1=q 及1≠q 两种情况进行讨论了吗?4、在“已知n S ,求n a ”的问题中,你在利用公式1--=n n n S S a 时注意到2≥n 了吗?(1=n 时,应有11S a =)5、解决递推数列问题通常有哪两种处理方法?(①猜证法;②转化为等差(比)数列问题) [问题]:已知:.,32,111n n n n a a a a 求+==-6、你知道nn q ∞→lim 存在的条件吗?()11≤<-q ,你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列}{n a 的前n 项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?7、数列的求和问题你能够找到一些办法吗?(倒序相加法、错位相减法、拆项裂项法)*8数学归纳法证明问题的基本步骤是什么?你注意到“用数学归纳法证明中,必须用上归纳假设”吗? 1、自然数有关的命题常用数学归纳法证明,其步骤是:(1)验证命题对于第一个自然数n =n 0 (k ≥n 0)时成立;(2)假设n=k 时成立,从而证明当n=k+1时命题也成立,(3)得出结论. 2、.(1)、(2)两个步骤在推理中的作用是:第一步是递推的基础,第二步是递推的依据,二者缺一不可。

第二步证明时要一凑假设,二凑结论. 例题选讲1、不能正确地运用通项与前n 项和之间的关系解题:例1、已知数列{a n }的前n 项和S n ,求通项公式a n :(1)S n =5n 2+3n ;(2)S n =n3-2; 【错解】由公式a n =s n -s n -1得:(1)a n =10n -2; (2)123n n a -=⋅【分析】应该先求出a 1,再利用公式a n =s n -s n -1()2n ≥求解.【正解】(1)a n =10n -2; (2)11 (1)23 (2)n n n a n -=⎧=⎨⋅≥⎩2、忽视等比数列的前n 项和公式的使用条件:例2、求和:(a -1)+(a 2-2)+(a 3-3)+…+(a n -n ) .【错解】S =(a +(a 2+a 3+…+a n) -(1+2+3+…+n )=(1)(1)12n a a n n a -+--.【分析】利用等比数列前n 项和公式时,要注意公比q 的取值不能为1.【正解】S =(a +(a 2+a 3+…+a n ) -(1+2+3+…+n )当a =1时,S =22n n -;当1a ≠时,S =(1)(1)12n a a n n a -+--3、 忽视公比的符号例3、已知一个等比数列{}n a 前四项之积为116【错解】 四个数成等比数列,可设其分别为33,,,,a a aq aq q q则有4116a a aq q ⎧=⎪⎪⎨⎪+=⎪⎩,解得1q =或1q =,故原数列的公比为23q =+23q =-【分析】按上述设法,等比数列{}n a 的公比是2q ,是正数,四项中各项一定同号,而原题中无此条件,所以增加了限制条件。

高三数学平面向量多选题专项训练单元 易错题难题提优专项训练

高三数学平面向量多选题专项训练单元 易错题难题提优专项训练

高三数学平面向量多选题专项训练单元 易错题难题提优专项训练一、平面向量多选题1.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是答案:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得R =ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()223B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.2.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( ) A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭答案:AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩,解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD 【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.3.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+答案:ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误;D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.4.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C答案:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题.5.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=-答案:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.6.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB +=D .0PA PB PC ++=答案:CD 【分析】转化为,移项运算即得解 【详解】 由题意: 故 即 , 故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.解析:CD 【分析】转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】由题意:3AB AC AP += 故())(AB AP AC AP AP +=-- 即PB PC AP +=0C PA PB P ++=∴,PA AB PB +=故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.7.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-答案:BD 【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】对于选项:,选项不正确; 对于选项: ,选项正确; 对于选项:,选项不正确; 对于选项: 选项正确. 故选:解析:BD 【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确; 对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确; 对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确. 故选:BD 【点睛】本题主要考查了向量的线性运算,属于基础题.8.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-答案:BC根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题. 9.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±答案:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ⋅=,故选项B 错误;因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确; 当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确. 故选:ACD. 【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.10.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-答案:AB 【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误;若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.11.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥D .1a b ⋅=-答案:CD 【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案. 【详解】分析知,,与的夹角是. 由,故B 错误,D 正确; 由,所以,故A 错误; 由,所以,故C 正确. 故选:CD 【点睛】解析:CD 【分析】分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案. 【详解】分析知1a =,2=b ,a 与b 的夹角是120︒.由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a ba ab b +=+⋅+=-+=,所以3a b +=,故A 错误;由()()2144440a b b a b b+⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确.故选:CD 【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.12.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形答案:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误解析:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论. 【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确;对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 13.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案:AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD 【解析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.14.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C处,,那么x 的值为( )A B .C .D .3答案:AB 【分析】由余弦定理得,化简即得解. 【详解】由题意得,由余弦定理得, 解得或. 故选:AB. 【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.解析:AB 【分析】由余弦定理得293cos306x x︒+-=,化简即得解.【详解】由题意得30ABC ︒∠=,由余弦定理得293cos306x x︒+-=,解得x =x 故选:AB.本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.15.题目文件丢失!二、平面向量及其应用选择题16.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】 设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-, 所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.17.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .4解析:C不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可. 【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值, 由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥,令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,x ≤≤(13)m m =≤≤2(2)178m --+=,当2m =2(2)171788m --+==,所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C. 【点睛】思路点睛:该题考查了平面向量的数量积的问题,解题思路如下: (1)先根据题意,设出向量的坐标; (2)根据向量数量积的运算律,将其展开; (3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题.18.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .83解析:C 【分析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值.【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=, 同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29,因此,52743431293λμ+=⨯+⨯=. 故选:C. 【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题. 19.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .4解析:B 【解析】 【分析】利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数. 【详解】逐一考查所给的命题:①由向量的减法法则可知:AB AC CB -=,题中的说法错误; ②由向量加法的三角形法则可得:0AB BC CA ++=,题中的说法正确; ③因为()(2)0OB OC OB OC OA -⋅+-=, 即()0CB AB AC ⋅+=; 又因为AB AC CB -=, 所以()()0AB AC AB AC -⋅+=, 即||||AB AC =,所以△ABC 是等腰三角形.题中的说法正确;④若0AC AB ⋅>,则cos 0AC AB A ⨯⨯>,据此可知A ∠为锐角,无法确定ABC ∆为锐角三角形,题中的说法错误. 综上可得,正确的命题个数为2. 故选:B . 【点睛】本题主要考查平面向量的加法法则、减法法则、平面向量数量积的应用,由平面向量确定三角形形状的方法等知识,意在考查学生的转化能力和计算求解能力. 20.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++()A .3B .3C .3D .解析:A 【分析】根据面积公式得到4c =,再利用余弦定理得到a =,再利用正弦定理得到答案.【详解】1sin 424ABC S bc A c c ∆==== 利用余弦定理得到:2222cos 116413a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b cA B C==故2sin 2sin sin sin 3a b c a A B C A ++===++ 故选A 【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力.21.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2 B .-2C .4D .-4解析:D 【分析】将已知向量关系变为:12333m OA OB OC +=,可得到3mOC OD =且,,A B D 共线;由AOB ABC O S S DCD∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】由2OA OB mOC +=得:12333mOA OB OC += 设3m OC OD =,则1233OA OB OD += ,,A B D ∴三点共线 如下图所示:OC 与OD 反向共线 3OD mm CD∴=- 734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D 【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系.22.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 解析:D 【分析】过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n nn AB n n ==--+,再根据AM mAB=可得231n m n =-,整理可得213m n+=,最后选出正确答案即可. 【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n=,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n nn AB n n ==--+,因为AM mAB =,所以231nm n =-, 整理可得213m n+=.故选:D . 【点睛】本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题. 23.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A 3B .1C .12D 3解析:B 【分析】先根据正弦定理化边得C 为直角,再根据余弦定理得角B ,最后根据直角三角形解得a. 【详解】因为222sin sin sin 0A B C +-=,所以222b c 0a +-=, C 为直角,因为2220a c b ac +--=,所以2221cosB ,223a cb B ac π+-===,因此13a ccos π==选B.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.24.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4 B .3C .-4D .5解析:C 【分析】先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影. 【详解】对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥,()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CACAθ⋅⋅-⋅=⋅===-⋅, 故选C . 【点睛】本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题. 25.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形 B .直角三角形C .等腰直角三角形D .钝角三角形解析:D 【分析】由数量积的定义判断B 角的大小,得三角形形状. 【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念.26.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( )A .1B .23-C .13-D .34-解析:B【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果.【详解】 13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+, 56λ∴=-,16μ=,23λμ∴+=-. 故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.27.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( )A .MB .NC .D .1 解析:C【分析】当直线CD AB ⊥时,由直角三角形的勾股定理和等面积法,可得出222+=a b c , 1ab c =⨯,再由基本不等式可得出2c ≥,从而得出M 的范围.当D 为边AB 的中点时,由直角三角形的斜边上的中线为斜边的一半和勾股定理可得2c =,2224a b c +==,由基本不等式可得出2ab ≤,从而得出N 的范围,可得选项.【详解】当直线CD AB ⊥时,因为90C ∠=︒,1CD =,所以222+=a b c ,由等面积法得1ab c =⨯,因为有222a b ab +≥(当且仅当a b =时,取等号),即()22>0c c c ≥,所以2c ≥,所以+M a b ===≥(当且仅当a b =时,取等号),当D 为边AB 的中点时,因为90C ∠=︒,1CD =,所以2c =,2224a b c +==, 因为有222a b ab +≥(当且仅当a b =时,取等号),即42ab ≥,所以2ab ≤,所以+N a b ===≤(当且仅当a b =时,取等号),当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为(此时,a b =);故选:C.【点睛】本题考查解直角三角形中的边的关系和基本不等式的应用,以及考查对新定义的理解,属于中档题.28.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b 的范围是)+∞.以上结论中正确的有( )A .1个B .2个C .3个D .4个 解析:B【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误.【详解】①由正弦定理及大边对大角可知①正确;②可得A B =或2A B π+=,ABC 是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sin A B B A C -=,结合()sin sin sin cos sin cos C A B A B B A =+=+可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =,因为0A π<<,所以2A π=,因此③正确;④由正弦定理sin sin a b A B =得sin sin sin a B b A A ==, 因为三角形有两解,所以2,332A B A πππ>>=≠所以sin 2A ⎛⎫∈ ⎪ ⎪⎝⎭,即)b ∈,故④错误. 故选:B【点睛】本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题.29.若向量123,,OP OP OP ,满足条件1230OP OP OP ++=,1231OP OP OP ===,则123PP P ∆的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .不能确定 解析:C【分析】根据三角形外心、重心的概念,以及外心、重心的向量表示,可得结果.【详解】由123||||||1OP OP OP ===,可知点O 是123PP P ∆的外心, 又1230OP OP OP ++=,可知点O 是123PP P ∆的重心, 所以点O 既是123PP P ∆的外心,又是123PP P ∆的重心,故可判断该三角形为等边三角形,故选:C【点睛】本题考查的是三角形外心、重心的向量表示,掌握三角形的四心:重心,外心,内心,垂心,以及熟悉它们的向量表示,对解题有事半功倍的作用,属基础题.30.在ABC ∆中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=,设ABC ∆、PBC ∆、PCA ∆、PAB ∆的面积分别为S 、1S 、2S 、3S ,记i i S Sλ=(1,2,3i =),则23λλ⋅取到最大值时,2x y +的值为( ) A .-1 B .1 C .32- D .32解析:D 【分析】 根据三角形中位线的性质,可得P 到BC 的距离等于△ABC 的BC 边上高的一半,从而得到12312S S S S ==+,由此结合基本不等式求最值,得到当23λλ⋅取到最大值时,P 为EF 的中点,再由平行四边形法则得出11022PA PB PC ++=,根据平面向量基本定理可求得12x y ==,从而可求得结果. 【详解】如图所示:因为EF 是△ABC 的中位线,所以P 到BC 的距离等于△ABC 的BC 边上高的一半, 所以12312S S S S ==+, 由此可得22232322322()1216S S S S S S S S S S λλ+=⨯=≤=, 当且仅当23S S =时,即P 为EF 的中点时,等号成立,所以0PE PF +=,由平行四边形法则可得2PA PB PE +=,2PA PC PF +=,将以上两式相加可得22()0PA PB PC PE PF ++=+=, 所以11022PA PB PC ++=, 又已知0PA xPB yPC ++=, 根据平面向量基本定理可得12x y ==, 从而132122x y +=+=. 故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.。

专题07 平面向量(3大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版)

专题07 平面向量(3大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版)

专题07平面向量易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB的长度,记作||AB .(3)特殊向量:①零向量:长度为0的向量,其方向是任意的.②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.④相等向量:长度相等且方向相同的向量.⑤相反向量:长度相等且方向相反的向量.2.向量的线性运算和向量共线定理(1)向量的线性运算运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则①交换律a b b a +=+ ②结合律()a b c ++ =()a b c ++减法求a 与b 的相反向量b -的和的运算叫做a与b的差三角形法则()a b a b -=+-数乘求实数λ与向量a的积的运算(1)||||||a a λλ=(2)当0λ>时,a λ 与a的方向相同;当0λ<时,a λ 与a的方向相同;当0λ=时,0a λ=()()a a λμλμ= ()a a aλμλμ+=+()a b a bλλλ+=+共线向量定理向量()0a a ≠ 与b 共线,当且仅当有唯一的一个实数λ,使得b a λ=.共线向量定理的主要应用:(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a b λ=,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.解决向量的概念问题应关注以下七点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(6)非零向量a 与||a a 的关系:||a a是a方向上的单位向量.(7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小易错提醒:(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -= ,AM AN NM -= ,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.A .AB AD AC+= C .AB AD CD AD++=uu u r uuu r uu u r uuu r 变式1:给出下列命题,其中正确的命题为(A .若AB CD = ,则必有B .若1233AD AC AB =+ C .若Q 为ABC 的重心,则D .非零向量a ,b ,c 变式2:如图所示,在平行四边形(1)试用向量,a b来表示DN (2)AM 交DN 于O 点,求AO 变式3:如图所示,在矩形1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则()A .ABC ,,三点共线C .A BD ,,三点共线2.如图,在平行四边形ABCD A .1233AB AD-+C .1536AB AD - 3.在四边形ABCD 中,若AC AB = A .四边形ABCD 是平行四边形C .四边形ABCD 是菱形4.已知,AD BE 分别为ABC 的边A .43a +23bC .23a 43-b 5.如果21,e e是平面α内两个不共线的向量,那么下列说法中不正确的是(①(12,R a e e λμλμ=+∈②对于平面α内任一向量③若向量1112e e λμ+ 与λ④若实数λ、μ使得1e λ+ A .①②B 6.给出下列各式:①AB 对这些式子进行化简,则其化简结果为A .4B 7.已知平面向量a ,bA .若a b ∥,则a = C .若a b ∥,b c ∥,则8.设1e 与2e 是两个不共线的向量,k 的值为()41.平面向量基本定理和性质(1)共线向量基本定理如果()a b R λλ=∈ ,则//a b ;反之,如果//a b 且0b ≠ ,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+ 叫做向量a关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+ 叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==.推论2:若11220a e e λλ=+=,则120λλ==.(3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB AC AD λλ+=+ .在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.DACB(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=;⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+;⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+ )AC,反之亦正确.DACB2.平面向量的坐标表示及坐标运算(1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a,有且只有一对实数,x y 使a xi yj =+ ,我们把有序实数对(,)x y 叫做向量a的坐标,记作(,)a x y = .(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有向量(,)x y 一一对应向量OA 一一对应点(,)A x y .(3)设11(,)a x y = ,22(,)b x y = ,则1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y = ,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||AB ②已知11(,)a x y = ,22(,)b x y = ,则a b ±1212()x x y y =±±,,11(,)a x y λλλ= ,∥12211212向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为a λ (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ 即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y = ,则a b∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.易错提醒:(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量易错题解析赵玉苗整理1你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗?2 ___________2、你通常是如何处理有关向量的模(长度)的问题?(利用|a|2a ;|a| x2—y2)3、你知道解决向量问题有哪两种途径?(①向量运算;②向量的坐标运算)4、你弄清"a b x1x2 y°2 0 ”与"a//b 捲y2x2y1 0” 了吗?[问题]:两个向量的数量积与两个实数的乘积有什么区别?(1)在实数中:若a 0,且ab=0,则b=0,但在向量的数量积中,若a 0,且a? b 0,不能推出b 0 .(2)已知实数a, b,c, (b o),且ab bc,则a=c,但在向量的数量积中没有a? b b? c a c .(3) 在实数中有(a ?b) ?c a ?(b ?c),但是在向量的数量积中(a? b) ? c a?(b?c),这是因为左边是与c共线的向量,而右边是与a共线的向量.5、向量的平移公式、函数图象的平移公式你掌握了吗?6、正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点?1、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注uuu意不能说向量就是有向线段,为什么?(向量可以平移)。

如已知A(1,2),B(4,2 ),则把向量A B按向量a =(- 1,3 )平移后得到的向量是__________ (答:(3,0 ))(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;uuu(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是AB );|AB| (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作: a // b , 规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直r uuu umr线重合;③平行向量无传递性!(因为有0);④三点A B、C共线AB AC共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。

a的相反向量是一a。

如下列命题:(1)若a b,则a b。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

uuu umr uur uuir r r r r (3)若AB DC , UABCD是平行四边形。

(4)若ABCD是平行四边形,则AB DC。

(5)若a b,b c , 则a c。

(6)若a//b,b//c,贝U ;//:。

其中正确的是_________ (答: (4)(5))2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如 a , b , c等;(3)坐标表示法:在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量i , j为基底,则平面内的任一向量a可表示为a xi y j x, y ,称x, y 为向量a 的坐标,a = x, y 叫做向量a 的坐标表示。

如果 向量的起点在 原点,那么向量的坐标与向量的终点坐标相同。

3.平面向量的基本定理:如果e i 和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量 a ,有且只有一对实数 1、 2,使a = 心+ 2 e 2O 女口( 1)若a (1,1)br r 1 r 3r一 (1, 1),c (1,2),则c __________ (答:—a -b ); (2)下列向量组中,能作为平面内所有向量基底的是A.2 2um IT in IT uu irmi13 e (0,0), e 2 (1, 2) B. q ( 1,2)0 (5,7) C. q (3,5)(2 (6,10) D.耳(2, 3)忌(-,-)urnr uuu uuir r uuu r uurr r(答:B );( 3)已知AD,BE 分别是 ABC 的边BC,AC 上的中线,且AD a,BE b ,则BC 可用向量a,b 表2 r 4 r示为______ (答:2a -b );( 4)已知 ABC 中,点 D 在 BC 边上,且 CD 2 DB , CD r AB sAC ,3 3则r s 的值是—(答: 0)4、 实数与向量的积 :实数 与向量a 的积是一个向量,记作a ,它的长度和方向规定如下:r r — — _ _1 a a , 2当 >0时, a 的方向与a 的方向相同,当 <0时, a 的方向与a 的方向相反,当 r r 〜=0 时, a 0 ,注意: a M 0。

5、 平面向量的数量积:- uuu r uuu r (1)两个向量的夹角:对于非零向量a , b ,作OA a, OB b , AOB称为向量a , b 的夹角,当=0时,a , b 同向,当= 时,a , b 反向,当 =一时,2—fe-fa ,b 垂直。

f _r r(2)平面向量的数量积:如果两个非零向量 a , b ,它们的夹角为,我们把数量|a||b|cos 叫做a 与b 的数量积(或内积或点积),记作:a ? b ,即卩a ? b = a b cos 。

规定:零向量与任一向量的数 量积是0,注意数量积是一个实数,不再是一个向量。

如(1) △ ABC 中, | AB | 3 , | AC | 4 , | BC | 5,则 AB BC __________ (答:- 9);r 1 r 1 r r r u r r r u (2) 已知 a (1-),b(0, -),c a kb,d a b , c 与 d 的夹角为—,则 k 等于 ___ (答:1 ); 2 2 4 r r(3) 已知a 2, b 5,ago ___ 3,贝U a b 等于 (答:J23 );(4)已知a,b 是两个非零向量,且a b a b ,则a 与a b 的夹角为 _____________ (答: 3。

°)(3) b 在a 上的投影为| b | cos ,它是一个实数,但不一定大于 0。

如已知|a| 3 , | b | 5,且(4) a ?b 的几何意义:数量积a ?b 等于a 的模| a |与b 在a 上的投影的积。

(5)向量数量积的性质:设两个非零向量 a , b ,其夹角为则:r r r r ① a b a ?b 0 ;—b- f —r r r2 r r r 2 r f T 2 f T T r②当a , b 同向时,a ? b = a b ,特别地,a a?a a , a va ;当a 与b 反向时,a ? b =r r r rr r r r— a b ;当为锐角时,a ? b >0, 且a 、b 不同向,a b 0是为锐角的必要非充分条件;当为钝 12,则向量a 在向量b 上的投影为 _________ 12 (答:—)5角时,L r ra ?b v 0,且a、b不反向,ra b 0是为钝角的必要非充分条件;-一a?b r r r r③非零向量a , b夹角的计算公式:cos ?卡:④| a ?b | | a || b |。

如(1)已知a ( ,2 ),b (3 ,2),如果a 与b 的夹角为锐角,则的取值范围是(答:4或 0 且 1 ); (2)33已知 OFQ 的面积为S ,且OF FQ 1 , S —,贝U OF , FQ 夹角的取值范围是 2(cosx,s in x),b (cosy,si n y), a 与 b 之间有关系式 ka(—,—));(3 )已知 a 4 373 a kb ,其中k 0 ,①用k 表示a b ;②求a b 的最小值,并求此时a 与b 的夹角 的大小(答: --(k 0);②最小值为— 4k 2 60o ) 6、向量的运算: (1)几何运算: ① 向量加法:利用“平行四边形法则” 外,向量加法还可利用“三角形法则” uuu uuu uuu a b AB BC AC ; ② 向量的减法:用 点指向被减向量的终点。

iuu uuiu nur ② AB AD DC 进行,但“平行四边形法则”只适用于不共线的向量,如此之 :设 unr T uuu T AB a, BC b ,那么向量 uur T TAC 叫做a 与b 的和,即 uur :设AB T uuur TT a, AC b,那么 a“三角形法则” 注意:此处减向量与被减向量的起点相同。

uuu uuu uuiT uuiT ③(AB CD) (AC BD) uuu T uuu 形ABCD 的边长为1, AB a,BC I uuu UULT OB OC 所在平面内一点,且满足 T uuiT T T b, AC c ,则 |a uuu uuur uuu OB OC 2OA ,则 VABC 若D 为 ABC 的边BC 的中点, ABC 所在平面内有一点 则 的值为—(答:2); ( 5)若点O 是厶ABC 的外心, (答: 120o ); T T(2)坐标运算:设 a (x 1, y 1), b (x 2, y 2),则:T T①向量的加减法运算:a b (x 1 x 2, y 1 y 2)。

LUU UUT UULT AP AB AC( R),则当 时, uu u AB unr uuuA C C A ,由减向量的终 • uuu uuu uuu如(1)化简:①AB BC CD ; uuu uuu T(答:①AD :②CB :③0 ); (2)若正方 (答:2 近);(3)若 O 是 VABC 的形状为 P ,满足 uu u PA uu u BP UU U OA uu u OB UU LT CO_(答:直角三角形);(4) UJUUUU T | API CP 0,设电UQ, |PD|则△ ABC 的内角C 为已知点 A(2,3), B(5,4) , C(7,10),若 1点P 在第一、三象限的角平分线上(答: —);(2)已知 21 uuu A(2,3),B(1,4),且 AB2 用在点A(1,1)的三个力 (答: (9,1 )) ②实数与向量的积 (sin x,cos y) , x,y uu F 1 uu (3,4), F 2 (2, (--),贝y x y ____________ (答:一或 );(3)已知作 2 2 6 2 UT LT uu uu uu 5),F3 (3,1),则合力F F 1 F 2 F 3的终点坐标是 ________h uuu ③若 A(X 1,y 1), B(x>,Y 2),则 AB N , y i 。

相关文档
最新文档