BP神经网络非线性回归研究

合集下载

基于SVM和BP神经网络的预测模型

基于SVM和BP神经网络的预测模型

基于SVM和BP神经网络的预测模型随着社会的不断发展和技术的日益进步,各种预测模型的应用越来越广泛。

其中,基于支持向量机(SVM)和反向传播神经网络(BP神经网络)的预测模型备受关注。

它们不仅可以对数据进行分类和回归预测,还可以在信号、音频、图像等领域中得到广泛应用。

本文将介绍SVM和BP神经网络的基本原理及其在预测模型中的应用。

一、支持向量机(SVM)的基本原理支持向量机是一种基于统计学习理论的分类和回归分析方法。

它的基本原理是通过将原始样本空间映射到高维空间,将不可分的样本转化为可分的线性空间,从而实现分类或者回归分析。

SVM的关键是选择合适的核函数,可以将样本映射到任意高维空间,并通过最大化间隔来实现对样本的分类。

在SVM的分类中,最大间隔分类被称为硬间隔分类,是通过选择支持向量(即距离分类界线最近的样本)来实现的。

而在实际中,可能存在一些噪声和难以分类的样本,这时采用软间隔分类可以更好地适应于数据。

软间隔SVM将目标函数添加一个松弛变量,通过限制松弛变量和间隔来平衡分类精度和泛化能力。

二、反向传播神经网络(BP神经网络)的基本原理BP神经网络是一种典型的前馈型神经网络,具有非线性映射和逼近能力。

它可以用于分类、回归、时间序列预测、模式识别等问题,被广泛应用于各个领域。

BP神经网络由输入层、隐含层和输出层组成,其中隐含层是核心层,通过数学函数对其输入进行加工和处理,将处理的结果传递到输出层。

BP神经网络的训练过程就是通过调整网络的权值和阈值来减小训练误差的过程。

BP神经网络的训练过程可以分为前向传播和反向传播两部分。

前向传播是通过给定的输入,将输入信号经过网络传递到输出层,并计算输出误差。

反向传播是通过计算误差梯度,将误差传递回隐含层和输入层,并调整网络的权值和阈值。

三、SVM与BP神经网络在预测模型中的应用SVM和BP神经网络的预测模型在实际中广泛应用于各个领域,如无线通信、金融、物流、医疗等。

基于SARIMA-Intervention-SVR-BP神经网络的串联预测模型

基于SARIMA-Intervention-SVR-BP神经网络的串联预测模型

基于SARIMA-Intervention-SVR-BP神经网络的串联预测模型随着人们对数据分析和预测的需求增长,各种预测模型被提出并应用于不同领域。

在时间序列预测中,很多经典的模型已经显示出了一定的效果,例如,自回归综合移动平均模型(SARIMA)。

然而,传统的模型也存在一些不足之处,例如它们很难处理非线性和复杂的数据关系。

因此,结合多种模型的串联预测方法逐渐引起了人们的关注。

本文提出了一种基于SARIMA-Intervention-SVR/BP神经网络的串联预测模型。

该模型主要由三个部分组成,分别是SARIMA模型、干预项和支持向量回归(SVR)/BP神经网络。

下面将详细介绍每个部分的作用和特点。

首先,SARIMA模型能够很好地处理时间序列的自相关和季节性。

它通过考虑当前值与滞后值之间的关系,以及周期性的波动,来建立准确的预测模型。

SARIMA模型的参数设置是关键,需要经过对数据进行分析和合理的调整。

它在时间序列的长期趋势和季节性预测中具有较好的性能。

其次,干预项是串联预测模型中的一个重要组成部分,用于处理外部因素对时间序列数据的影响。

干预项可以是一个二进制变量,也可以是一个连续变量。

通过引入干预项,我们可以更准确地描述时间序列数据中的异常情况和外部影响。

对于那些受外部环境变化较大的时间序列数据,干预项能够提高预测的准确性和稳定性。

最后,我们采用支持向量回归(SVR)或BP神经网络作为后续的预测模型。

SVR是一种常用的非线性回归模型,它能够处理非线性和复杂的数据关系。

SVR通过引入核函数,将输入数据映射到高维特征空间,从而能够有效地处理非线性问题。

另外,我们也可以选择BP神经网络作为后续模型,它具有较强的拟合能力和泛化能力。

BP神经网络通过反向传播算法不断优化参数,从而提高模型的预测精度。

通过串联上述三个部分,我们可以建立一个完整的预测模型。

首先,使用SARIMA模型对时间序列的长期趋势和季节性进行预测。

MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合

MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合

MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。

在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。

该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。

本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。

t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。

2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。

net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。

包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

非线性回归分析的方法研究

非线性回归分析的方法研究

非线性回归分析的方法研究在科学和工程领域,回归分析是一种广泛使用的数据分析方法,旨在探索变量之间的相互关系。

然而,许多实际问题是非线性的,传统的线性回归方法无法很好地解决这些问题。

因此,非线性回归分析的研究变得越来越重要。

本文将介绍非线性回归分析的基本概念、方法、应用领域以及所面临的挑战,并讨论未来的研究方向。

非线性回归分析方法可以解决许多复杂的问题,如生物医学、经济学、工程等领域中的非线性关系。

例如,在生物医学领域,药物浓度与治疗效果之间的关系往往是非线性的;在经济学领域,价格和需求之间的关系也往往是非线性的。

因此,研究非线性回归分析的方法对于解决这些实际问题具有重要的意义。

参数非线性回归是一种常用的非线性回归方法,它通过建立一个包含参数的数学模型来描述变量之间的非线性关系。

这种方法通常包括确定参数的初始值、使用最小二乘法等优化算法来拟合模型以及验证模型的可靠性等步骤。

基于核的非线性回归方法使用核函数来计算变量之间的相似性,并将这些相似性用于建立回归模型。

这种方法不需要明确的数学表达式,因此可以处理一些难以描述的复杂非线性关系。

支持向量回归是一种基于支持向量机(SVM)的非线性回归方法。

它通过建立一个SVM模型来描述变量之间的非线性关系,并使用优化算法来寻找最优的模型参数。

非线性回归分析方法在各个领域都有广泛的应用。

例如,在生物医学领域,非线性回归分析可以用于研究药物浓度与治疗效果之间的关系,为新药研发提供指导;在经济学领域,非线性回归分析可以用于研究价格和需求之间的关系,帮助企业制定更加合理的定价策略。

非线性回归分析还广泛应用于工程、环境科学、社会科学等领域。

数据处理:非线性回归分析需要处理的数据往往比较复杂,需要采取合适的数据预处理方法来提高分析的准确性。

模型选择:不同的非线性回归方法适用于不同的问题,如何根据实际问题选择合适的模型是一个重要的挑战。

模型优化:非线性回归模型需要通过优化算法来寻找最优的模型参数,如何选择合适的优化算法也是一个重要的挑战。

基于BP神经网络的企业经营绩效分析模型

基于BP神经网络的企业经营绩效分析模型

基于BP神经网络的企业经营绩效分析模型绪论企业的经营绩效是评估企业运营状况和发展潜力的重要指标。

为了提升企业的竞争力和盈利能力,许多研究者通过构建模型来预测和评估企业的经营绩效。

本文将介绍一种基于BP神经网络的企业经营绩效分析模型,探讨该模型在实际应用中的优势和潜在挑战。

一、BP神经网络简介BP神经网络是一种常用的人工神经网络模型,通过反向传播算法训练网络权值,实现对输入数据的模式识别和预测。

BP神经网络具有非线性、自适应和并行处理能力,能够应用于复杂问题的解决。

因此,它被广泛应用于企业的经营预测和绩效评估。

二、BP神经网络在企业经营绩效分析中的应用1. 数据收集和预处理在建立BP神经网络模型之前,需要收集并整理企业的经营数据。

这些数据可以包括营业收入、成本、净利润、资产负债表等信息。

同时,还需要进行数据预处理,包括数据清洗、特征提取和数据归一化等,以提高模型的准确性和鲁棒性。

2. 网络结构设计BP神经网络的网络结构对于模型的性能至关重要。

在企业经营绩效分析中,一般采用三层结构的BP神经网络,包括输入层、隐含层和输出层。

输入层接收经营数据作为网络的输入,隐含层用于处理数据特征的提取和映射,输出层给出对企业经营绩效的评估结果。

3. 训练和学习算法BP神经网络的学习过程包括正向传播和反向传播。

正向传播阶段将输入样本通过网络前向传递,生成输出结果。

反向传播阶段根据输出结果与实际值之间的误差,通过调整网络权值,更新网络参数,以实现权值的自适应调整和误差最小化。

4. 绩效预测和评估通过训练好的BP神经网络模型,可以对未来的企业经营绩效进行预测。

根据输入数据,通过网络的反向传播算法,可以得到与企业实际绩效相符的输出结果。

同时,还可以通过对网络权值和输出误差的分析,评估企业绩效的影响因素和关键驱动因素。

三、基于BP神经网络的企业经营绩效分析模型的优势1. 非线性建模能力BP神经网络模型具有强大的非线性建模能力,能够更好地适应复杂的经营环境和数据关系。

多元线性回归与BP神经网络预测模型对比与运用研究

多元线性回归与BP神经网络预测模型对比与运用研究

多元线性回归与BP神经网络预测模型对比与运用研究一、本文概述本文旨在探讨多元线性回归模型与BP(反向传播)神经网络预测模型在数据分析与预测任务中的对比与运用。

我们将首先概述这两种模型的基本原理和特性,然后分析它们在处理不同数据集时的性能表现。

通过实例研究,我们将详细比较这两种模型在预测准确性、稳健性、模型可解释性以及计算效率等方面的优缺点。

多元线性回归模型是一种基于最小二乘法的统计模型,通过构建自变量与因变量之间的线性关系进行预测。

它假设数据之间的关系是线性的,并且误差项独立同分布。

这种模型易于理解和解释,但其预测能力受限于线性假设的合理性。

BP神经网络预测模型则是一种基于神经网络的非线性预测模型,它通过模拟人脑神经元的连接方式构建复杂的网络结构,从而能够处理非线性关系。

BP神经网络在数据拟合和预测方面具有强大的能力,但模型的结构和参数设置通常需要更多的经验和调整。

本文将通过实际数据集的应用,展示这两种模型在不同场景下的表现,并探讨如何结合它们各自的优势来提高预测精度和模型的实用性。

我们还将讨论这两种模型在实际应用中可能遇到的挑战,包括数据预处理、模型选择、超参数调整以及模型评估等问题。

通过本文的研究,我们期望为数据分析和预测领域的实践者提供有关多元线性回归和BP神经网络预测模型选择和应用的有益参考。

二、多元线性回归模型多元线性回归模型是一种经典的统计预测方法,它通过构建自变量与因变量之间的线性关系,来预测因变量的取值。

在多元线性回归模型中,自变量通常表示为多个特征,每个特征都对因变量有一定的影响。

多元线性回归模型的基本原理是,通过最小化预测值与真实值之间的误差平方和,来求解模型中的参数。

这些参数代表了各自变量对因变量的影响程度。

在求解过程中,通常使用最小二乘法进行参数估计,这种方法可以确保预测误差的平方和最小。

多元线性回归模型的优点在于其简单易懂,参数估计方法成熟稳定,且易于实现。

多元线性回归还可以提供自变量对因变量的影响方向和大小,具有一定的解释性。

BP神经网络算法

BP神经网络算法
BP神经网络算法
1


一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方

= 1 ෍
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:

j = 2 ෍ ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(声明:此程序为GreenSim团队的原创作品,我们删除了程序中的若干行,一般人是难以将其补充完整并正确运行的,如果有意购买此程序,请与我们联系,Email:greensim@)function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF)%%% SVMNR.m% Support Vector Machine for Nonlinear Regression% ChengAihua,PLA Information Engineering University,ZhengZhou,China% Email:aihuacheng@% All rights reserved%%% 支持向量机非线性回归通用程序% 程序功能:% 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,% 求解二次规划时调用了优化工具箱的quadprog函数。

本函数在程序入口处对数据进行了% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测% 试需使用与本函数配套的Regression函数。

% 主要参考文献:% 朱国强,刘士荣等.支持向量机及其在函数逼近中的应用.华东理工大学学报% 输入参数列表% X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数% Y 输出样本原始数据,1×l的矩阵,l为样本个数% Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少% C 惩罚系数,C过大或过小,泛化能力变差% TKF Type of Kernel Function 核函数类型% TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归% TKF=2 多项式核函数% TKF=3 径向基核函数% TKF=4 指数核函数% TKF=5 Sigmoid核函数% TKF=任意其它值,自定义核函数% 输出参数列表% Alpha1 α系数% Alpha2 α*系数% Alpha 支持向量的加权系数(α-α*)向量% Flag 1×l标记,0对应非支持向量,1对应边界支持向量,2对应标准支持向量% B 回归方程中的常数项%--------------------------------------------------------------------------%%%-----------------------数据归一化处理--------------------------------------nntwarn offX=premnmx(X);Y=premnmx(Y);%%%%%-----------------------核函数参数初始化------------------------------------ switch TKFcase 1%线性核函数K=sum(x.*y)%没有需要定义的参数case 2%多项式核函数K=(sum(x.*y)+c)^pc=0.1;p=2;case 3%径向基核函数K=exp(-(norm(x-y))^2/(2*sigma^2))sigma=10;case 4%指数核函数K=exp(-norm(x-y)/(2*sigma^2))sigma=10;case 5%Sigmoid核函数K=1/(1+exp(-v*sum(x.*y)+c))v=0.5;c=0;otherwise%自定义核函数,需由用户自行在函数内部修改,注意要同时修改好几处!%暂时定义为K=exp(-(sum((x-y).^2)/(2*sigma^2)))sigma=8;end%%%%%-----------------------构造K矩阵------------------------------------------- l=size(X,2);K=zeros(l,l);%K矩阵初始化for i=1:lfor j=1:lx=X(:,i);y=X(:,j);switch TKF%根据核函数的类型,使用相应的核函数构造K矩阵case 1K(i,j)=sum(x.*y);case 2K(i,j)=(sum(x.*y)+c)^p;case 3K(i,j)=exp(-(norm(x-y))^2/(2*sigma^2));case 4K(i,j)=exp(-norm(x-y)/(2*sigma^2));case 5K(i,j)=1/(1+exp(-v*sum(x.*y)+c));otherwiseK(i,j)=exp(-(sum((x-y).^2)/(2*sigma^2)));endendend%%%%%------------构造二次规划模型的参数H,Ft,Aeq,Beq,lb,ub------------------------ %支持向量机非线性回归,回归函数的系数,要通过求解一个二次规划模型得以确定Beq=0;lb=eps.*ones(2*l,1);ub=C*ones(2*l,1);%%%%%--------------调用优化工具箱quadprog函数求解二次规划------------------------ OPT=optimset;rgeScale='off';OPT.Display='off';%%%%%------------------------整理输出回归方程的系数------------------------------ Alpha1=(Gamma(1:l,1))';Alpha=Alpha1-Alpha2;Flag=2*ones(1,l);%%%%%---------------------------支持向量的分类----------------------------------Err=0.000000000001;for i=1:lAA=Alpha1(i);BB=Alpha2(i);if (abs(AA-0)<=Err)&&(abs(BB-0)<=Err)Flag(i)=0;%非支持向量endif (AA>Err)&&(AA<C-Err)&&(abs(BB-0)<=Err)Flag(i)=2;%标准支持向量endif (abs(AA-0)<=Err)&&(BB>Err)&&(BB<C-Err)Flag(i)=2;%标准支持向量endif (abs(AA-C)<=Err)&&(abs(BB-0)<=Err)Flag(i)=1;%边界支持向量endif (abs(AA-0)<=Err)&&(abs(BB-C)<=Err)Flag(i)=1;%边界支持向量endend%%%%%--------------------计算回归方程中的常数项B--------------------------------- B=0;counter=0;for i=1:lAA=Alpha1(i);BB=Alpha2(i);if (AA>Err)&&(AA<C-Err)&&(abs(BB-0)<=Err)%计算支持向量加权值SUM=0;for j=1:lif Flag(j)>0switch TKFcase 1SUM=SUM+Alpha(j)*sum(X(:,j).*X(:,i));case 2SUM=SUM+Alpha(j)*(sum(X(:,j).*X(:,i))+c)^p;case 3SUM=SUM+Alpha(j)*exp(-(norm(X(:,j)-X(:,i)))^2/(2*sigma^2));case 4SUM=SUM+Alpha(j)*exp(-norm(X(:,j)-X(:,i))/(2*sigma^2));case 5SUM=SUM+Alpha(j)*1/(1+exp(-v*sum(X(:,j).*X(:,i))+c));otherwiseSUM=SUM+Alpha(j)*exp(-(sum((X(:,j)-X(:,i)).^2)/(2*sigma^2)));endendendB=B+b;counter=counter+1;endif (abs(AA-0)<=Err)&&(BB>Err)&&(BB<C-Err)SUM=0;for j=1:lif Flag(j)>0switch TKFcase 1SUM=SUM+Alpha(j)*sum(X(:,j).*X(:,i));case 2SUM=SUM+Alpha(j)*(sum(X(:,j).*X(:,i))+c)^p;case 3SUM=SUM+Alpha(j)*exp(-(norm(X(:,j)-X(:,i)))^2/(2*sigma^2));case 4SUM=SUM+Alpha(j)*exp(-norm(X(:,j)-X(:,i))/(2*sigma^2));case 5SUM=SUM+Alpha(j)*1/(1+exp(-v*sum(X(:,j).*X(:,i))+c));otherwiseSUM=SUM+Alpha(j)*exp(-(sum((X(:,j)-X(:,i)).^2)/(2*sigma^2)));endendendb=Y(i)-SUM+Epsilon;counter=counter+1;endendif counter==0B=0;elseB=B/counter;end为检验支持向量机非线性回归的泛化能力,本文做了如下实验:把第i(i=1,2,…,21)组原始数据样本抽取出来,把剩下的20组数据作为学习样本,输入支持向量机非线性回归的程序,计算相应的非线性回归方程,并把抽取出来的那一组数据作为测试数据,计算输出值,并与其原始值做比较,计算绝对误差和相对误差。

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21绝对误差-0.02 0.04 0.05 0.10 0.00 -0.03 -0.05 -0.03 -0.03 -0.08 0.07 -0.09 -0.01 -0.01 -0.02 0.03 -0.02 0.00 0.18 0.13 -0.12相对误差-0.05 0.06 0.09 0.17 0.00 -0.04 -0.08 -0.04 -0.05 -0.11 0.16 -0.16 -0.01 -0.02 -0.04 0.04 -0.02 0.00 0.51 0.26 -0.14平均相对误差为0.0978BP神经网络有着很强的非线性拟合能力,能以任意精度逼近任意非线性连续函数,当然其前提条件是——神经网络构造适当并且训练充分。

相关文档
最新文档