倒数与相反数
小升初第2讲:数轴、相反数与倒数

(小升初) 备课教员:×××第二讲 数轴、相反数和倒数一、教学目标: 1. 能正确掌握数的分类,理解数轴、相反数与倒数的重要概念。
2. 给一个数能求出它的相反数,并且在数轴上表示,掌握求倒数的方法。
3. 通过相反数的几何意义,进一步渗透数形结合的思想;经历倒数的意义和形成过程,培养学生观察、分析、归纳、举例及语言表达能力。
二、教学重点: 数形结合,理解相反数及倒数的意义 三、教学难点: 相反数及倒数,及比较有理数的大小。
四、教学准备: PPT ,温度计 五、教学过程:第一课时(50分钟)一、导入(5分种)师:同学们,还记得上节课我们学了什么吗?谁能来说说? 生:有理数。
师:上节课我们是不是学了有理数?还记得有理数的分类吗? 生:师:有理数是不是可以分为正有理数、负有理数和零?那同学们看老师手上拿的是什么?(温度计) 生:温度计。
师:是的,那它形状是什么样的?上面的刻度和数字有什么样的特点? 生:……师:是不是也有正的和负的还有零? 生:……师:好,那么今天就来学习和温度计有相似之处的数轴。
我们课本也给了数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
这三个统称为数轴的三要素。
三者缺一不可。
板书课题:数轴、相反数和倒数数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。
相反数:数值相反的两个数,我们就说其中一个数是另一个数的相反数。
倒数:设一个数a 与其相乘的积为1的数,得到的a1就是a 的倒数。
二、星海遨游(43分钟) 例题一:(9分钟)如下图所示,数轴中正确的是( )。
师:同学们先看看这些数轴,发现了什么? 生:……师:我们可以先看看哪个是错的?是不是B 肯定是错的?因为它连原点都没有,再看看选项A 它少什么? 生:……师:是不是少了正方向?所以它也是不对的。
再看选项C ,它是哪里错了呢? 生:……师:因为我们已经判断了选项A 和选项B 是错的,那C 和D 肯定有一个是正确的,同学们看看C 和D 有什么不同的呢? 生:……师:它们是不是都有原点和正方向?但是大家仔细看一下选项C 的单位长度是不是不一样?0到-1的长度和0到1的长度都是一个单位长度,然而它们长度不一样,所以C 也是错的。
数的相反数与倒数

数的相反数与倒数数学中,我们经常会遇到一些与数的相反数和倒数相关的概念。
这些概念在实际问题求解中扮演着重要的角色。
本文将分别介绍数的相反数和倒数,并探讨它们在数学中的应用。
一、数的相反数所谓数的相反数,指的是与原数相加等于0的数。
也就是说,对于任意数a来说,它的相反数一般表示为-b,满足以下条件:a + (-b) = 0。
其中,b即为a的相反数。
以整数为例,对于正整数a来说,其相反数是一个负整数;对于负整数a来说,其相反数是一个正整数。
例如,2的相反数为-2,而-5的相反数则为5。
相反数的定义使得数轴上的对称性成为可能。
我们可以发现,如果将一个数a在数轴上标记出来,那么它的相反数-b也可以在数轴上标记,且两者关于原点对称。
在实际应用中,数的相反数经常用于求解关于正负数的问题。
比如,如果在某次移动中向左走了3步,那么向右走的步数就可以表示为原步数的相反数,即3的相反数-3。
这种方式可以帮助我们更好地理解和解决与正负数相关的计算问题。
二、数的倒数与相反数类似,数的倒数也是数学中一个重要的概念。
所谓数的倒数,指的是与原数相乘等于1的数。
具体而言,对于非零数a来说,它的倒数一般表示为1/a,满足以下条件:a * (1/a) = 1。
以分数为例,如果一个数是3/4,那么它的倒数就是4/3。
倒数在分数的计算中起到了重要的作用,例如在比例和分数除法中。
除了分数,数的倒数在实数范围内也有广泛的应用。
例如,如果我们需要求取一个数的百分比,可以通过将该数的倒数乘以100来实现。
这种方法在计算中十分常见,可以帮助我们更快速地完成数值转换。
数的倒数也常常出现在物理学和工程学等学科中。
例如,在电路中,电阻的倒数称为电导,它衡量了电流通过电阻的能力。
总结:数的相反数和倒数在数学中是两个重要的概念。
相反数表示与原数相加等于0的数,倒数表示与原数相乘等于1的数。
通过理解和应用相反数和倒数,我们可以更好地解决正负数和分数相关的问题,并在实际应用中加快计算速度。
2021年中考数学知识点:实数的倒数、相反数和绝对值题型归纳

2021年中考数学知识点:实数的倒数、相反数和绝对值题型
归纳
新一轮中考复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《____中考数学知识点:实数的倒数、相反数和绝对值》,仅供参考!
实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a若|a|=-a,则a0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
1相反数和倒数

《数学思维与能力训练》辅导讲义姓名 辅导日期相 反 数 和 倒 数【知识要点】1、相反数是指绝对值相同而符号相反的两个数,两个互为相反数的和等于零。
如果两个数互为倒数,那么这两个数的积等于1,这是判断两个数互为倒数的方法。
2、在许多数学综合题中经常出现相反数和倒数,引进相反数,减法可以统一为加法,引进倒数,除法可以统一为乘法,灵活合理的运用相反数和倒数的概念及相关知识,解答某些数学问题往往起着非常重要且意想不到的作用。
【夯实基础】[例题1]若a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,求a + b + x 2 – cdx 值[例题2]若a 和b 互为相反数,b 和c 互为倒数,求23ac b ac 的值[例题3]若 | x – 1 | 与 | y + 2 | 互为相反数,试化简 (x + y ) 2003〖小试牛刀〗1、已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于2,求x 2 – c 2d 2x – a – b 的值2、若 | m + 5 | 与 ( n – 2 ) 4互为相反数,求m n 的值3、已知2 | 3a – 2b | + (4b – 12) 2 = 0,求)421(41312++--b b a a a 的值4、若| a + b | 与| a – b | 互为相反数,化简| a 1999 + b 1999 | + | a 1999– b 1999 |5、有理数a等于它的相反数,有理数b等于它的倒数,则a 2002 + b 2002的值为多少?6、若一个数的相反数与自身的绝对值的和为0,求这个数[例题4]设y = ax 17 + bx 13 + cx 11– 5,其中a、b、c为常数,已知当x = 7时y = 7,则x = – 7时y的值等于多少?〖小试牛刀〗已知y = ax 5 + bx 3 + cx + 665,且当x = 365时,y = 665,求x = – 365时y 的值【拓展探究】1、已知 | ab – 2 | 与 | b – 1 | 互为相反数,试求下列代数式的值)2002)(2002(1)2)(2(1)1)(1(11++++++++++a a b a b a ab2、若a 、c 是整数,b 是正整数,且满足a + b = c ,b + c = d ,c + d = a ,求a + b + c + d 的最大值。
倒数、相反数、绝对值

二、概念、比较大小、平方、绝对值、相反数、倒数有关知识1、正数和负数正数和负数是表示两个具有相反意义的量,即正数和负数是相对的,规定不同,则正数和负数的表示不一样。
2、任何一个数字母(未知数)都要分三种情况来分析(例如a a是正数a>0a是0 a=0a是负数a<0)3 相反数:1、互为相反数的两个数到原点的距离相等2、a的相反数是-a3、-a不一定是负数,-a是a的相反数。
(a=-3,则-a=3)4、相反数和为0(即ab互为相反数,则a+b=0或a= -b)4、绝对值:1正数的绝对值是他本身(|a|=a |A-B|=A-B(A>B))2负数的绝对值是他的相反数(|a|=-a |A-B|=B-A(A<B))3、0的绝对值是0 (|A-B|=0(A=B))4、绝对值要考虑两种情况|a| =3,则a= +3或-35、倒数:⑴a的倒数是1 a2、1a的倒数是a3、倒数积为1,(即ab互为倒数则ab=1,a=1 b)6、平方:y2=9 y= +3或-37、七年级中不能为负的数只有两种情况即1、(|a|>=0 )2、y 2 >=08、比较大小的方法一般有三种情况:1,数轴比较法:(数轴上右边的数总比左边的大、正数大于0、负数小于0、正数大于负数)(一般适用于数字间的比较)2、绝对值比较:两个负数比较大小,绝对值大的反而小3、做差法:一般用于多项式之间的比较(A-B>0则A>B ,A-B<0则A<B 。
A-B=0则A=B )例如2x-3和2x+1比较大小,(2x-3)-(2x+1)=-4所以2x-3<2x+14、平方法:一般用于幂次数之间的比较32 和23比较大小 练习题讲解1、-9的倒数的相反数是______ ;2、平方等于9的数是__________ ;(y2=9 y= +3或-3)3、比较各对数的大小: -0.5____-2/3 ;(两个负数比较大小,绝对值大的反而小,分数化小数)4、如果把长江的水位比警戒水位高0.2米,记作+0.2米,那么比警戒水位低0.15米,记作____米5、在数轴上,距原点2个单位长度的点表示的数是 。
相反数和倒数

相反数和倒数在数学中,相反数和倒数是两个相关而又不同的概念。
相反数指的是两个数在数轴上对称而成的数,而倒数则是指一个数与其倒数的乘积等于1的数。
本文将详细介绍相反数和倒数的概念以及它们的应用。
一、相反数相反数指的是两个数在数轴上对称而成的数。
具体而言,对于任意一个实数a,其相反数为-b(记作-a),满足a + (-a) = 0。
举个例子,2的相反数是-2,-2的相反数则是2。
相反数在数学运算中有着广泛的应用。
在代数运算中,相反数是实数加法的一个重要性质。
对于任意两个实数a和b,它们的相反数之和等于零,即a + (-a) = 0,b + (-b) = 0。
这一性质为数学推理和计算提供了很大的方便。
二、倒数倒数是指一个数与其倒数的乘积等于1的数。
具体而言,对于任意一个非零实数a,其倒数为1/a,满足a * (1/a) = 1。
举个例子,2的倒数是1/2,1/2的倒数则是2。
倒数在数学中有着广泛的应用。
在代数运算中,倒数是除法运算的一个重要性质。
对于任意两个非零实数a和b,它们的倒数之积等于1,即a * (1/a) = 1,b * (1/b) = 1。
这一性质在解方程和求解比例等问题中起到关键作用。
三、应用举例1. 相反数的应用相反数的应用不仅局限于数学运算中,还可以在现实生活中找到许多例子。
比如,温度的正负可以用相反数来表示。
当温度为正值时,其相反数为负值;当温度为负值时,其相反数为正值。
这种表示方式方便我们在气象、天气预报等领域进行温度的计算和比较。
另外,相反数还可以用于表示方向。
在地理或导航中,我们常用正负号来表示东西南北的方向,正值表示东和北,负值表示西和南。
这种表示方式基于相反数的性质,方便我们在导航和定位中进行方向的判断。
2. 倒数的应用倒数的应用同样广泛。
在比例问题中,倒数可以用于求解比例关系。
比如,如果两辆车的速度成反比,那么它们的倒数之和仍然为常数1。
这样一来,我们就可以通过已知条件求解未知速度,从而得到比例关系。
关于倒数的全部概念

关于倒数的全部概念倒数是指数学中的一个概念,它表示一个数与1之间的差的倒数,即倒数是1除以该数。
倒数在数学和科学中具有广泛的应用,可以帮助我们解决许多实际问题。
首先,倒数的定义:对于一个非零数a,它的倒数记作1/a。
倒数是指与a的乘积等于1的数。
例如,2的倒数是1/2,3的倒数是1/3,依此类推。
其次,关于倒数的运算规则:1. 倒数的运算规则:两个数a和b的倒数相乘等于它们的倒数的乘积的倒数,即(1/a) * (1/b) = 1/(ab)。
例如,2的倒数和3的倒数相乘等于6的倒数,即(1/2) * (1/3) = 1/6。
2. 相反数的倒数:如果一个数的倒数存在,那么它的相反数的倒数也存在,并且它们的倒数相同。
例如,2的倒数为1/2,那么-2的倒数也是1/2。
3. 零的倒数:零没有倒数,因为任何数乘以零都不等于1。
即0的倒数不存在。
4. 倒数的倒数:一个数的倒数的倒数等于它本身。
例如,对于非零数a,(1/a)的倒数是a本身。
倒数的概念在数学中有很多应用。
以下是一些常见的应用领域和例子:1. 分数的倒数:分数可以看作是两个整数的比值。
对于一个分数a/b,它的倒数是b/a。
例如,2/3的倒数是3/2。
2. 百分数的倒数:百分数可以看作是一个实数除以100。
对于一个百分数x%,它的倒数是100/x。
例如,25%的倒数是100/25 = 4。
3. 倒数的逆运算:倒数的逆运算即求倒数的操作。
对于一个实数a,如果a的倒数存在,则它的逆运算是求倒数,即1/(1/a) = a。
例如,2的倒数是1/2,那么1/(1/2) = 2。
4. 比例的倒数:在比例中,两个数的比值可以表示为一个数的倒数。
例如,如果一个县的人口是另一个县人口的2倍,那么这两个县人口的比值是2:1,可以表示为2的倒数1/2。
5. 倒数的逆运算应用于物理学中的速度和时间的关系:速度可以看作是路程除以时间得到的比值,即v = s/t。
倒数的逆运算将速度转化为时间与路程的比值,即t = 1/v。
数的相反数和倒数

数的相反数和倒数数学中,我们经常会遇到相反数和倒数的概念。
相反数是指与某个数相加后等于零的数,倒数则是指与某个数相乘后等于一的数。
这两个概念在数学运算和实际应用中都具有重要的意义。
本文将对相反数和倒数进行详细的介绍。
一、相反数相反数是一对数中的一种特殊关系。
对于任意一个实数a来说,其相反数记作−a,满足a + (−a) = 0。
简单来说,a的相反数就是与a相加后等于零的数。
例如,数1的相反数是−1,数−3的相反数是3。
相反数具有以下性质:1. 相反数的绝对值相等,符号相反。
例如,数a的相反数的绝对值等于a的绝对值,但符号相反。
2. 两个相反数的和是零。
例如,数a和其相反数−a相加等于零。
相反数在数轴上的表示方法:在数轴上,相反数的表示方法是在a 的位置上找到与之相对的点,这个点的坐标就是-a。
例如,在数轴上,数2的相反数是-2,在数轴上的表示就是从原点出发,往左移动2个单位长度。
二、倒数倒数是数学中另一个重要的概念。
对于任意一个非零实数a来说,其倒数记作1/a或a^(-1),满足a * (1/a) = 1。
简单来说,a的倒数就是与a相乘后等于1的数。
例如,数2的倒数是1/2,数3的倒数是1/3。
倒数具有以下性质:1. 零没有倒数。
因为任何数与0相乘都得0,所以零没有倒数。
2. 除数的倒数等于被除数的倒数。
如果a和b都是非零数,那么a/b 的倒数就等于b/a的倒数。
倒数在数轴上的表示方法:在数轴上,倒数的表示方法是通过分数来表示。
例如,数2的倒数是1/2,在数轴上就是将1等分成2份,所在的位置就是倒数的表示。
三、相反数和倒数的应用相反数和倒数在数学的运算和实际应用中具有广泛的应用,以下是一些常见的应用场景:1. 相反数常用于解决方程和平衡等式。
通过引入相反数,可以进行消元和抵消,简化问题的求解过程。
2. 倒数常用于分数的运算和比例的计算。
在分数的除法中,可以通过求倒数来将除法转化为乘法,简化运算过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倒数与相反数
把要满足的条件用代数方法具体化,这是初学数学时要逐步熟悉和习惯的方法。
下列是与倒数和相反数相关的5问话,你能从中感受到用字母表示数的重要性!
问1 你能找到两个数,它们互为相反数,它们的倒数也互为相反数吗?
分析与解答设这两个数为a与-a,我们可以发现,只要a=0,这两个数满足条件。
问2 你能找到两个有理数,它们既互为相反数,又互为倒数吗?
分析与解答设这两个数为a与-a,这两个数的乘积应等于1,即a(-a)=1,显然,有理数a是不存在的。
问3 若两个数互为倒数,它们和的倒数与它们的倒数也互为倒数吗?为什么?
分析与解答设这两个数为a和1/a,相信你按题意计算一下,一定能够得到正确结论。
这种绕口令式的问题在“用字母表示数”的代数思想方法面前便一清二楚了。