高考数学模拟复习试卷试题模拟卷132130
高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学模拟复习试卷试题模拟卷2331 13

高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB 的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22 【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知:2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4 【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π 【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π. 13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4 【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【解析】解:(1)由该四面体的三视图可知, BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1, ∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH. 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形. 【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线 答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3 答案 D解析 正四棱柱的外接球的球心为上下底面的中心连线的中点, 所以球的半径r =222+222=1,球的体积V =4π3r3=4π3.故选D.4.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72cm3B .90cm3C .108cm3D .138cm3 答案 B解析 该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示. V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm3).5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()答案B解析由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故A不正确.6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.答案2π2π+17.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.答案 8π解析 由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V =43×π×23×34=8π.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A1B1C1中,O 、O1分别为两底面中心,D 、D1分别为BC 和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB =30, 则OD =53,O1D1=1033,由S 侧=S 上+S 下,得12×(20+30)×3DD1=34×(202+302), 解得DD1=1333, 在直角梯形O1ODD1中, O1O =DD21-OD -O1D12=43,所以棱台的高为43cm.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高三数学高考模拟试题及答案.doc-人教版[原创]
![高三数学高考模拟试题及答案.doc-人教版[原创]](https://img.taocdn.com/s3/m/bd309e1f102de2bd960588fc.png)
高三数学高考模拟试题一、选择题(每小题5分;共60分)1.非空集合A 、B 满足≠⊂B A ;U 是全集;则下列式子;①B B A = ;②A B A = ;③(A U) B=U ;④(A U) (B U)=U 中成立的是( ).A .①;②B .③;④C .①;②;③D .①;②;③;④2.已知OM =(3;-2);ON =(-5;-1);则21MN 等于( ). A .(8;1) B .(-8;1) C .(-8;-1) D .4(-;21)3.函数)3(log 1sinl x y -=的定义域是( ).A .(2;3)B .[2;)3C .(2;]3D .(2;+∞) 4.如果数列}{n a 的前n 项和))(49(41*N ∈-=n S n nnn ;那么这个数列( ). A .是等差数列而不是等比数列 B .是等比数列而不是等差数列 C .既是等差数列又是等比数列 D .既不是等差数列又不是等比数列5.锐二面角βα--l 的棱l 上一点A ;射线α⊂AB ;且与棱成45°角;又AB 与β成30°角;则二面角βα--l 的大小是( ).A .30°B .45°C .60°D .90°6.有6个人分别来自3个不同的国家;每一个国家2人。
他们排成一行;要求同一国家的人不能相邻;那么他们不同的排法有( ).A .720B .432C .360D .2407.直线经过点A (2;1);B (1;2m )两点)(R ∈m ;那么直线l 的倾斜角取值范围是( ).A .[0;)πB .[0;2π(]4π;)π C .0[;]4π D .4π[;2π()2π ;)π 8.下列函数中同时具有性质;(1)最小正周期是π;(2)图象关于3π=x 对称;(3)在6π[-;]3π上是增函数的是( ). A .)6π2sin(+=x y B .)3π2cos(+=x y C .)6π2sin(-=x y D .)6π2cos(-=x y 9.设双曲线12222=-by a x 的右准线与两条渐近线交于A 、B 两点;右焦点为F ;且F A ⊥FB ;则双曲线的离心率为( ).A .2B .3C .2D .332 10.设下表是某班学生在一次数学考试中数学成绩的分布表那么分数在[100;110]中和分数不满110分的频率和累积频率分别是( ).A .0.18;0.47B .0.47;0.18C .0.18;1D .0.38;1 11.已知)3π2sin(3)(+=x x f ;则以下选项正确的是( ). A .f (3)>f (1)>f (2) B .f (3)>f (1)>f (2) C .f (3)>f (2)>f (1) D .f (1)>f (3)>f (2) 12.下列各组复合命题中;满足“p 或q ”为真;“p 且q ”为假;“非p ”为真的是( ). A .p ;0=∅;q ;0∅∈B .p ;过空间一点有且仅有一条直线与两异面直线a ;b 都相交;q ;在△ABC 中若B A 2cos 2cos =;则A =BC .p ;不等式x x >||的解集为(-∞;0);q ;y =x sin 在第一象限是增函数D .p ;01cos 1sin >-;q ;椭圆13422=+y x 的一条准线方程是x =4二、填空题(每小题4分;共16分) 13.已知一个球的半径为1;若使其表面积增加到原来的2倍;则表面积增加后球的体积是______________. 14.函数59323+--=x x x y 的单调递减区间是______________.15.已知α、β是实数;给出下列四个论断;(1)||||||βαβα+=+;(2)||||βαβα+≤-;(3)22||>α;22||>β;(4)5||>+βα.以其中的两个论断为条件;其余两个论断作为结论;写出你认为正确的一个命题;________.16.一天内的不同的时刻;经理把文件交由秘书打字。
2023年全国高考数学模拟试卷(附答案)

2023年全国高考数学模拟试卷一、单选题1.设全集U={1 2 3 4 5 6 7 8} 集合S={1 3 5} T={3 6} 则∁U (S∁T )等于( ) A .∁B .{2 4 7 8}C .{1 3 5 6}D .{2 4 6 8}2.在四边形ABCD 中= +则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形3.已知复数 z =(2+i)(a +2i 3) 在复平面对应的点在第四象限 则实数 a 的取值范围是( ) A .(−∞,−1)B .(4,+∞)C .(−1,4)D .[-1,4]4.在直三棱柱 ABC −A ′B ′C ′ 中 侧棱长为2 底面是边长为2的正三角形 则异面直线 AB ′ 与BC ′ 所成角的余弦值为( ) A .12B .√33C .14D .√555.一个袋子中有5个大小相同的球 其中有3个黑球与2个红球 如果从中任取两个球 则恰好取到两个同色球的概率是( ) A .15B .310C .25D .126.已知 f(x)=√3sin2020x +cos2020x 的最大值为A 若存在实数 x 1 x 2 使得对任意的实数x 总有 f(x 1)≤f(x)≤f(x 2) 成立 则 A|x 1−x 2| 的最小值为( )A .π2020B .π1010C .π505D .π40407.已知函数f(x)是定义在R 上的奇函数 其最小正周期为3 且x∁(-320)时 f(x)=log 2(-3x+1)则f(2011)=( ) A .4B .2C .-2D .log 278.已知函数f(x)={1−x ,0≤x ≤1lnx ,x >1 若f(a)=f(b) 且a ≠b 则bf(a)+af(b)的最大值为( ) A .0 B .(3−ln2)⋅ln2 C .1D .e二、多选题9.下列命题中正确的命题的是()A.已知随机变量服从二项分布B(n,p)若E(x)=30D(x)=20则p=23;B.将一组数据中的每个数据都加上同一个常数后方差恒不变;C.设随机变量ξ服从正态分布N(0,1)若P(ξ>1)=p则P(−1<ξ≤0)=12−P;D.某人在10次射击中击中目标的次数为X X~B(10,0.8)则当x=8时概率最大.10.已知抛物线C:x2=4y的焦点为F准线为l P是抛物线C上第一象限的点|PF|=5直线PF 与抛物线C的另一个交点为Q 则下列选项正确的是()A.点P的坐标为(4 4)B.|QF|=54C.S△OPQ=103D.过点M(x0,−1)作抛物线C的两条切线MA,MB其中A,B为切点则直线AB的方程为:x0x−2y+2=011.已知函数f(x)=e x g(x)=ln x2+12的图象与直线y=m分别交于A、B两点则()A.|AB|的最小值为2+ln2B.∃m使得曲线f(x)在A处的切线平行于曲线g(x)在B处的切线C.函数f(x)−g(x)+m至少存在一个零点D.∃m使得曲线f(x)在点A处的切线也是曲线g(x)的切线12.已知正n边形的边长为a 内切圆的半径为r 外接圆的半径为R 则()A.当n=4时R=√2a B.当n=6时r=√32aC.R=a2sinπ2n D.R+r=a2tanπ2n三、填空题13.某学校有教师300人男学生1500人女学生1200人现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查则应抽取的女学生人数为.14.在(2x2﹣√x)6的展开式中含x7的项的系数是.15.函数f(x)=|2x−1|−2lnx的最小值为.16.定义max{a,b}={a,a≥bb,a<b已知函数f(x)=max{(12)x,12x−34}则f(x)最小值为不等式f(x)<2的解集为.四、解答题17.记S n为数列{a n}的前n项和.已知a n>06S n=a n2+3a n−4.(1)求{a n}的通项公式;(2)设b n=a n2+a n+12a n a n+1求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n a1=2n(a n+1−2a n)=4a n−a n+1.(1)证明:{a nn+1}为等比数列;(2)求S n.19.记△ABC的内角A B C的对边分别为a b c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B求C;(2)证明:2a2=b2+c2.20.受突如其来的新冠疫情的影响全国各地学校都推迟2020年的春季开学某学校“停课不停学” 利用云课平台提供免费线上课程该学校为了解学生对线上课程的满意程度随机抽取了100名学生对该线上课程评分、其频率分布直方图如图.(1)求图中a的值;(2)求评分的中位数;(3)以频率当作概率若采用分层抽样的方法从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果再从中选取2人进行跟踪分析求这2人中至少一人评分在[60,70)内的概率.21.已知椭圆与双曲线x 22−y2=1有相同的焦点坐标且点(√3,12)在椭圆上.(1)求椭圆的标准方程;(2)设A、B分别是椭圆的左、右顶点动点M满足MB⊥AB垂足为B连接AM交椭圆于点P(异于A)则是否存在定点T使得以线段MP为直径的圆恒过直线BP与MT的交点Q若存在求出点T的坐标;若不存在请说明理由.22.已知函数f(x)=e x(x−2),g(x)=x−lnx.(1)求函数y=f(x)+g(x)的最小值;(2)设函数ℎ(x)=f(x)−ag(x)(a≠0)讨论函数ℎ(x)的零点个数.答案解析部分1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】B,C,D 10.【答案】A,B,D 11.【答案】A,B,D 12.【答案】B,D 13.【答案】60 14.【答案】240 15.【答案】116.【答案】14;(−1,112)17.【答案】(1)解:当 n =1 时 6S 1=a 12+3a 1−4 所以 a 1=4 或 −1 (不合 舍去). 因为 6S n =a n 2+3a n −4① 所以当 n ⩾2 时 6S n−1=a n−12+3a n−1−4② 由①-②得 6a n =a n 2+3a n −a n−12−3a n−1所以 (a n +a n−1)(a n −a n−1−3)=0 . 又 a n >0 所以 a n −a n−1=3 .因此 {a n } 是首项为4 公差为3的等差数列. 故 a n =4+3(n −1)=3n +1 .(2)解:由(1)得 b n =(3n+1)2+(3n+4)2(3n+1)(3n+4)=2+33n+1−33n+4所以 T n =2+34−37+2+37−310+⋯+2+33n+1−33n+4=2n +(34−37+37−310+⋯+33n +1−33n +4)=2n +9n4(3n +4)18.【答案】(1)证明:∵n(a n+1−2a n )=4a n −a n+1∴na n+1−2na n =4a n −a n+1 即(n +1)a n+1=2⋅a n (n +2)∴a n+1n+2=2⋅a nn+1 故{a nn+1}为等比数列. (2)解:由(1)知 a nn+1=1×2n−1⇒a n =(n +1)⋅2n−1 S n =2×20+3×2+4×22⋅⋅⋅+(n +1)⋅2n−1 2S n =2×21+3×22+4×23⋅⋅⋅+(n +1)⋅2n∴−S n =2+2+22+⋯+2n−1−(n +1)⋅2n=2+2−2n−1×21−2−(n +1)⋅2n=−n ⋅2n∴S n =n ⋅2n19.【答案】(1)解:∵sinCsin(A −B)=sinBsin(C −A)且 A =2B∴sinCsinB =sinBsin(C −A) ∵sinB >0∴sinC =sin(C −A)∴C=C-A (舍)或C+(C-A )=π 即:2C-A=π又∵A+B+C=π A=2B ∴C= 5π8(2)证明:由 sinCsin(A −B)=sinBsin(C −A) 可得sinC(sinAcosB −cosAsinB)=sinB(sinCcosA −cosCsinA) 再由正弦定理可得 accosB −bccosA =bccosA −abcosC 然后根据余弦定理可知12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2) 化简得: 2a 2=b 2+c 2 故原等式成立.20.【答案】(1)解:由题意 (0.005+0.010+0.030+a +0.015)×10=1所以 a =0.040 ;(2)解:由频率分布直方图可得评分的中位数在 [80,90) 内 设评分的中位数为x则 (0.005+0.010+0.030)×10+0.040×(x −80)=0.5 解得 x =81.25 所以评分的中位数为81.25;(3)解:由题知评分在 [60,70) 和 [90,100] 内的频率分别为0.1和0.15 则抽取的5人中 评分在 [60,70) 内的为2人 评分在 [90,100] 的有3人记评分在 [90,100] 内的3位学生为a b c 评分在 [60,70) 内的2位学生为D E 则从5人中任选2人的所有可能结果为:(a,b) (a,c) (a,D) (a,E) (b,c) (b,D) (b,E) (c,D) (c,E) (D,E) 共10种;其中 这2人中至少一人评分在 [60,70) 内可能结果为:(a,D) (a,E) (b,D) (b,E) (c,D) (c,E) (D,E) 共7种;所以这2人中至少一人评分在 [60,70) 的概率 P =710.21.【答案】(1)解:因为双曲线 x 22−y 2=1 的焦点坐标为 (±√3,0)所以设所求的椭圆的方程为 x 2a 2+y 2b2=1 ( a >b >0 )则 {a 2=b 2+33a 2+14b 2=1 解得 a 2=4,b 2=1 所以椭圆的标准方程是 x 24+y 2=1(2)解:设直线AP 的方程是 y =k(x +2) ( k ≠0 )将其与 x 24+y 2=1 联立 消去y 得 (4k 2+1)x 2+16k 2x +16k 2−4=0 设 P(x 1,y 1)则 −2⋅x 1=16k 2−44k 2+1所以 x 1=2−8k 24k 2+1,y 1=4k 4k 2+1 所以 P(2−8k 24k 2+1,4k4k 2+1) 易知 M(2,4k)设存在点 T(x 0,y 0) 使得以MP 为直径的圆恒过直线BP 、MT 的交点Q ⇔MT ⊥BP ⇔4k−y 02−x 0⋅4k−16k2=−1 对于任意 k ≠0 成立 即 4k(1−x 0)+y 0=0 对于任意 k ≠0 成立 x 0=1,y 0=0 所以存在 T(1,0) 符合题意.22.【答案】(1)解:令 φ(x)=f(x)+g(x)φ′(x)=e x(x−1)+(1−1x)=(x−1)(e x+1x)令φ′(x)=0,x=1φ′(x)>0,x>1,φ′(x)<0,0<x<1所以φ(x)的单调递增区间是(1,+∞)单调递减区间是(0,1)所以x=1时φ(x)取得极小值也是最小值所以φ(x)min=φ(1)=1−e(2)解:g′(x)=1−1x=x−1x令g′(x)=0,x=1g′(x)<0,0<x<1,g′(x)>0,x>1 g(x)的递减区间是(0,1)递增区间是(1,+∞)所以g(x)的极小值为g(1)也是最小值g(x)≥g(1)=1>0.所以ℎ(x)=0⇔a=e x(x−2)x−lnx=s(x)因为s′(x)=e x(x−1)(x−lnx−1+2x)(x−lnx)2令k(x)=x−lnx−1+2x⇒k′(x)=(x+1)(x−2)x2令k′(x)=0,x=2k′(x)<0,0<x<2,k′(x)>0,x>2k(x)的递减区间是(0,2)递增区间是(2,+∞)所以k(x)的极小值为k(2)也是最小值所以k(x)≥k(2)=2−ln2>0所以s(x)的递减区间是(0,1)递增区间是(1,+∞)又因为x→0+,s(x)→0,x→+∞,s(x)→+∞且s(1)=−e 所以当a<−e时ℎ(x)有0个零点;当a=−e或a>0时ℎ(x)有1个零点;当−e<a<0时ℎ(x)有2个零点.。
高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合}0|{}0)3)(2(|{>=≥--=x x T x x x S ,,则S ∩T =A. [2,3]B. ),3[]2,(+∞-∞C. ),3[+∞D. ),3[]2,0(+∞2. =-+=1i 4i 21z z z ,则若 A. 1 B. 1 C. i D. i3. 已知向量)21,23()23,21(==BC BA ,,则∠ABC = A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约15℃,B 点表示四月的平均最低气温约为5℃。
下面叙述不正确的是A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. =+=ααα2sin 2cos 43tan 2,则若 A. 2564 B. 2548 C. 1 D. 2516 6. 已知3152342542===c b a ,,,则A. b < a < cB. a < b < cC. b < c < aD. c < a < b7. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n =A. 3B. 4C. 5D. 68. 在△ABC 中,4π=B ,BC 边上的高等于31BC ,则sinA = A. 103B. 1010 C.55D. 10103 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 53618+B. 51854+C. 90D. 8110. 在封闭的直三棱柱ABCA1B1C1内有一个体积为V 的球,若AB ⊥BC ,AB = 6,BC = 8,AA1 = 3,则V 的最大值是A. π4B. 29π C. π6 D. 332π 11. 已知O 为坐标原点,F 是椭圆C :)1(12222>>=+b a by a x 的左焦点,A 、B 分别为C 的左、右顶点。
高考数学模拟试卷复习试题高三模拟卷理科数学2

高考数学模拟试卷复习试题高三模拟卷理科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。
1.已知集合A={(x,y)|x,y为实数,且x2+y2=4},集合B={(x,y)|x,y为实数,且y=x-2},则A∩B的元素个数为()A.0B.1C.2D.32.已知i是虚数单位,m和n都是实数,且有=1+ni,则复数m+ni的倒数是()A.+B.C.+D.3. 在空间中,下列命题正确的是 ( ).A.若两直线a,b与直线l所成的角相等,那么a∥bB.空间不同的三点A、B、C确定一个平面C.如果直线l//平面且l//平面,那么//D.若直线a与平面M没有公共点,则直线a//平面M4. 已知随机变量X服从正态分布N(1,σ2),若P(X≤2)=0.72,则P(X≤0)=()A. 0.22B. 0.28C. 0.36D. 0.645. (改编)秦九韶是我国南宋时期的数学家,普州(现安岳县)人,,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求多项式的一个实例.若输人n,x的值分别为4,2 ,则输出0的值为( )A.12B.13C.25D.516.已知实数x,y满足 ,则的最大值为()D.6A.5B. C.7.将多项式a6x6+a5x5+…+a1x+a0分解因式得(x﹣2)(x+2)5,则a5=()A.8B.10C.12D.18.曲线y=2xlnx在x=e处的切线与坐标轴围成的三角形的面积为()C.e2D.2e2A.B.9.某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是()A. 80+8B. 80+4C. 808D. 80410.四色猜想是世界三大数学猜想之一,1976年被美国数学家阿佩尔与哈肯证明,称为四色定理其内容是:“任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色”用数学语言表示为“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4四个数字之一标记,而不会使相邻的两个区域得到相同的数字”如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别标有数字1,2,3,4的四色地图符合四色定理,区域A和区域B标记的数字丢失若在该四色地图上随机取一点,则恰好取在标记为1的区域的概率所有可能值中,最大的是()A.B.C.D.11.设双曲线C:=l(a>0,b>0)的右焦点为F,O为坐标原点,若双曲线及其渐近线上各存在一点使得四边形OPFQ为矩形,则其离心率为()A.B.2C.D.12.已知M={α|f(α)=0},N={β|g(β)=0},若存在α∈M,β∈N,使得|α﹣β|<n,则称函数f(x)与g(x)互为“n度零点函数“,若f(x)=32﹣x﹣1与g(x)=x2﹣aex 互为“1度零点函数“,则实数a的取值范围为()A.(,]B.(,]C.[,)D.[,)二、填空题:本大题共4小题,每小题5分,共20分。
高考数学模拟复习试卷试题模拟卷12313

高考模拟复习试卷试题模拟卷【考情解读】1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义. 【重点知识梳理】 1.向量的有关概念名称 定义备注向量 既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量 长度为零的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a|平行向量 方向相同或相反的非零向量 0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量 长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定 义 法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律:a +b =b +a. (2)结合律: (a +b)+c =a +(b +c)减法 求a 与b 的相反向量 -b 的和的a -b =a +(-b)运算叫做a与b的差数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.【高频考点突破】考点一平面向量的有关概念【例1】给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB→=DC→是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③ B.②④ C.③④ D.②③④【答案】A【规律方法】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【变式探究】给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4【答案】C考点二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与B D 交于点O ,AB →+AD →=λAO →,则λ=________.【答案】(1)D(2)2规律方法 (1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【变式探究】 (1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0【答案】(1)D(2)A考点三 共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【规律方法】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【变式探究】 (1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.【答案】(1)C(2)3考点五 方程思想在平面向量的线性运算中的应用数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.【例4】如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b.试用a 和b 表示向量OM →.【真题感悟】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4( 。
全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d(n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为md 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d <0,则Sn 存在最大值;若a1<0,d >0,则Sn 存在最小值. 【高频考点突破】考点一 等差数列的性质及基本量的求解【例1】 (1)设Sn 为等差数列{an}的前n 项和,S8=4a3,a7=-2,则a9=() A .-6 B .-4 C .-2 D .2(2)(·浙江卷)已知等差数列{an}的公差d >0.设{an}的前n 项和为Sn ,a1=1,S2·S3=36. ①求d 及Sn ;②求m ,k(m ,k ∈N*)的值,使得am +am +1+am +2+…+am +k =65.规律方法 (1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】 (1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A .0B .37C .100D .-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________. 考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an -an -1=d(n≥2,d 为常数);二是等差中项法,证明2an +1=an +an +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n 项和为Sn ,且满足a3·a4=117,a2+a5=22. (1)求数列{an}的通项公式;(2)若数列{bn}满足bn =Snn +c ,是否存在非零实数c 使得{bn}为等差数列?若存在,求出c 的值;若不存在,请说明理由.考点三 等差数列前n 项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n 项和为Sn ,且S5=S12,则当n 为何值时,Sn 有最大值?规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和Sn =An2+Bn(A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】 (1)等差数列{an}的前n 项和为Sn ,已知a5+a7=4,a6+a8=-2,则当Sn 取最大值时,n 的值是()A .5B .6C .7D .8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________. 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .144.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>07.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.12.(·重庆卷)设a1=1,an+1=a2n-2an+2+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.615.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n 项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{an}前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d = ()A.12 B .2 C .3D .42.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=()A .2B .-2C.12D .-123.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .524.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .125.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或96.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.1167.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8B .Sn 的最小值是S8C .Sn 的最大值是S7D .Sn 的最小值是S78.在等差数列{an}中,a15=33,a25=66,则a35=________.9.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________. 10.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________. 11.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且S k =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。