2018年浙江省湖州市中考数学试题解析版
2018年浙江省湖州市中考数学试卷含答案

数学试卷第1页(共24页)数学试卷第2页(共24页)绝密★启用前浙江省湖州市2018年初中学业水平考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2018的相反数是( )A.2018B .2018-C .12018D .12018- 2.计算3(2)a b -g ,正确的结果是( )A .6ab -B .6abC .ab -D .ab 3.如图所示的几何体的左视图是( )ABCD4.某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:)A.5件B.11件C.12件D.15件5.如图,AD ,CE 分别是ABC △的中线和角平分线.若AB AC =,20CAD ∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒6.如图,已知直线11(0)y k x k =≠与反比例函数22(0)k y k x=≠的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( )A .(1,2)--B .(1,2)-C .(1,2)-D .(2,1)--7.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .19 B .16 C .13D.238.如图,已知在ABC △中,90BAC ∠︒>,点D 为BC 的中点,点E 在AC 上,将CDE △沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( ) A .AE EF =B .2AB DE =C .ADF △和ADE △的面积相等D .ADE △和FDE △的面积相等毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共24页)数学试卷第4页(共24页)9.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点;②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点;③连结OG .问:OG 的长是多少? 大臣给出的正确答案应是( )AB.(1r +C.(1r +D10.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(1,2)-,(2,1),若抛物线22(0)y ax x a =-+≠与线段MN 有两个不同的交点,则a 的取值范围是( )A .1a -≤或1143a ≤<B .1143a ≤<C .14a ≤或13a >D .1a -≤或14a ≥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.中字母x 的取值范围是 .12.当1x =时,分式2xx +的值是 .13.如图,已知菱形ABCD ,对角线AC ,BD 相交于点O .若1tan 3BAC ∠=,6AC =,则BD 的长是 .14.如图,已知ABC △的内切圆O e 与BC 边相切于点D ,连结OB ,OD .若40ABC ∠=︒,则BOD ∠的度数是 .15.如图,在平面直角坐标系xOy 中,已知抛物线2(0)y ax bx a =+>的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线2(0)y ax a =>交于点B .若四边形ABOC 是正方形,则b 的值是 .16.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD时,正方形EFGH 的面积的所有可能值是 (不包括5).数学试卷第5页(共24页)数学试卷第6页(共24页)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分) 计算:211(6)()23-⨯-.18.(本小题满分6分) 解不等式3222x -…,并把它的解表示在数轴上.19.(本小题满分6分)已知抛物线23(0)y ax bx a =+-≠经过点(1,0)-,(3,0),求a ,b 的值.20.(本小题满分8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数; (2)求D 班选择环境保护的学生人数,并补全折线统计图; (3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.21.(本小题满分8分) 如图,已知AB 是O 的直径,C ,D 是O e 上的点,OC BD ∥,交AD 于点E ,连结BC .(1)求证:AE ED =;(2)若10AB =,36CBD ∠=︒,求AC 的长.22.(本小题满分10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需用110吨和70吨有机化肥.两个仓库到A ,B 两个果园的路程如表所示:设甲仓库运往, (1)根据题意,填写下表.机化肥时,总运费最省?最省的总运费是多少元?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________ 考生号________________ ________________ _____________数学试卷第7页(共24页)数学试卷第8页(共24页)23.(本小题满分10分)已知在Rt ABC △中,90BAC ∠=︒,AB AC ≥,D ,E 分别为AC ,BC 边上的点(不包括端点),且DC ACm BE BC==,连结AE ,过点D 作DM AE ⊥,垂足为点M ,延长DM 交AB 于点F .(1)如图1,过点E 作EH AB ⊥于点H ,连结DH . ①求证:四边形DHEC 是平行四边形;②若m =,求证:AE DF =; (2)如图2,若35m =,求DFAE的值.24.(本小题满分12分)如图1,在平面直角坐标系xOy 中,已知ABC △,90ABC ∠=︒,顶点A 在第一象限,B ,C 在x 轴的正半轴上(C 在B 的右侧),2BC =,AB =,ADC △与ABC △关于AC 所在的直线对称.(1)当2OB =时,求点D 的坐标;(2)若点A 和点D 在同一个反比例函数的图象上,求OB 的长;(3)如图2,将(2)中的四边形ABCD 向右平移,记平移后的四边形为1111A B C D ,过点1D 的反比例函数(0)ky k x=≠的图象与BA 的延长线交于点P .问:在平移过程中,是否存在这样的k ,使得以点P ,1A ,D 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k 的值;若不存在,请说明理由.浙江省湖州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】2018的相反数是2018-,故选:B . 【考点】相反数 2.【答案】A【解析】3(2)6a b ab -=-g ,故选:A.数学试卷第9页(共24页)数学试卷第10页(共24页)【考点】单项式乘单项式 3.【答案】D【解析】从左边看是一个圆环,故选:D . 【考点】简单组合体的三视图 4.【答案】B【解析】由表可知,11件的次数最多,所以众数为11件,故选:B . 【考点】众数 5.【答案】B【解析】AD Q 是ABC △的中线,AB AC =,20CAD ∠=︒,240CAB CAD ∴∠=∠=︒,1(180)702B ACB CAB ∠=∠=︒-∠=︒.CE Q 是ABC ∆的角平分线,1352ACE ACB ∴∠=∠=︒.故选:B .【考点】等腰三角形的性质 6.【答案】A【解析】Q 直线11(0)y k x k =≠与反比例函数22(0)ky k x=≠的图象交于M ,N 两点,M ∴,N 两点关于原点对称,Q 点M 的坐标是(1,2),∴点N 的坐标是(1,2)--.故选:A .【考点】反比例函数与一次函数的交点问题 7.【答案】C【解析】将三个小区分别记为A 、B 、C , 列表如下:3种, 所以两个组恰好抽到同一个小区的概率为3193=, 故选:C .【考点】列表法与树状图法 8.【答案】C【解析】如图,连接CF ,Q 点D 是BC 中点,BD CD ∴=,由折叠知,ACB DFE ∠=∠,CD DF =,BD CD DF ∴==,BFC ∴△是直角三角形,90BFC ∴∠=︒, BD DF =Q ,B BFD ∴∠=∠,EAF B ACB BFD DFE AFE ∴∠=∠+∠=∠+∠=∠,AE EF ∴=,故A 正确,由折叠知,EF CE =,AE CE ∴=, BD CD =Q ,DE ∴是ABC △的中位线, 2AB DE ∴=,故B 正确,AE CE =Q ,ADE CDE S S ∴=△△,由折叠知,CDE FDE △≌△,CDE FDE S S ∴=△△,ADE FDE S S ∴=△△,故D 正确,数学试卷第11页(共24页)数学试卷第12页(共24页)当12AD AC =时,ADF △和ADE △的面积相等∴C 选项不一定正确,故选:C .【考点】翻折变换(折叠问题) 9.【答案】D【解析】如图连接CD ,AC ,DG ,AG .AD Q 是O e 直径, 90ACD ∴∠=︒,在Rt ACD △中,2AD r =,30DAC ∠=︒,AC ∴,DG AG CA ==Q ,OD OA =, OG AD ∴⊥, 90GOA ∴∠=︒,OG ∴==,故选:D .【考点】正多边形和圆;作图——复杂作图 10.【答案】A【解析】Q 抛物线的解析式为22y ax x =-+.观察图象可知当0a <时,1x =-时,2y …时,且112a---≥,满足条件,可得1a -≤; 当0a >时,2x =时,1y ≥,且抛物线与直线MN 有交点,且122a--≤满足条件, 14a ∴≥,Q 直线MN 的解析式为1533y x =-+,由215332y x y ax x ⎧=-+⎪⎨⎪=-+⎩,消去y 得到,23210ax x -+=,Q 0∆>,13a ∴<,∴1143a ≤<满足条件,综上所述,满足条件的a 的值为1a -≤或1143a ≤<,故选:A .【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征第Ⅱ卷二、填空题 11.【答案】3x …【解析】当30x -…时,有意义,数学试卷第13页(共24页)数学试卷第14页(共24页)则3x …; 故答案为:3x …. 【考点】二次根式有意义的条件12.【答案】13【解析】当1x =时,原式11123==+,故答案为:13.【考点】分式的值 13.【答案】2【解析】解:Q 四边形ABCD 是菱形,6AC =,AC BD ∴⊥,132OA AC ==,2BD OB =.在Rt OAB △中,90AOD ∠=︒Q ,1tan 3OB BAC OA ∴∠==, 1OB ∴=,2BD ∴=.故答案为2.【考点】菱形的性质,解直角三角形 14.【答案】70︒【解析】解:ABC Q △的内切圆O e 与BC 边相切于点D ,OB ∴平分ABC ∠,OD BC ⊥,11402022OBD ABC ∴∠=∠=⨯︒=︒,9070BOD OBD ∴∠=︒-∠=︒.故答案为70︒.【考点】圆周角定理,三角形的内切圆与内心 15.【答案】2-【解析】Q 四边形ABOC 是正方形,∴点B 的坐标为(2b a -,)2ba-. Q 抛物线2y ax =过点B ,2()22b ba a a∴-=-, 解得:10b =(舍去),22b =-. 故答案为:2-.【考点】二次函数的性质,二次函数图象上点的坐标特征,抛物线与x 轴的交点,正方形的性质16.【答案】13或49或9【解析】解:当DG =CG =,满足222DG CG CD +=,此时HG =可得正方形EFGH 的面积为13. 当8DG =,1CG =时,满足222DG CG CD +=, 此时7HG =,可得正方形EFGH 的面积为49当7DG =,4CG =时,此时3HG =,四边形EFGH 的面积为9.故答案为13或49或9.【考点】全等三角形的判定,勾股定理,作图——应用与设计作图 三、解答题 17.【答案】6【解析】原式1136()1812623=⨯-=-=.【考点】有理数的混合运算 18.【答案】2x …数学试卷第15页(共24页)数学试卷第16页(共24页)【解析】去分母,得:324x -…, 移项,得:342x +…, 合并同类项,得:36x …, 系数化为1,得:2x …,将不等式的解集表示在数轴上如下:【考点】在数轴上表示不等式的解集;解一元一次不等式 19.【答案】12a b =⎧⎨=-⎩【解析】Q 抛物线23(0)y ax bx a =+-≠经过点(1,0)-,(3,0),∴309330a b a b --=⎧⎨+-=⎩, 解得,12a b =⎧⎨=-⎩, 即a 的值是1,b 的值是2-.【考点】二次函数图象上点的坐标特征 20.【答案】(1)54 27% 97.2° (2)15 (3)950【解析】(1)选择交通监督的人数是:1215131454+++=(人), 选择交通监督的百分比是:54100%27%200⨯=, 扇形统计图中交通监督所在扇形的圆心角度数是:36027%97.2︒⨯=︒; (2)D 班选择环境保护的学生人数是:20030%15141615⨯---=(人). 补全折线统计图如图所示;(3)2500(130%27%5%)950⨯---=(人), 即估计该校选择文明宣传的学生人数是950人. 【考点】用样本估计总体;扇形统计图;折线统计图21.【答案】(1)证明:AB Q 是O e 的直径,90ADB ∴∠=︒, OC BD Q ∥,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,AE ED ∴=;(2)2π【解析】(1)证明:AB Q 是O e 的直径,90ADB ∴∠=︒, OC BD Q ∥,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,AE ED ∴=;(2)OC AD ⊥Q ,∴»»AC CD=, 36ABC CBD ∴∠=∠=︒,223672AOC ABC ∴∠=∠=⨯︒=︒,∴»7252180AC ππ⨯==.数学试卷第17页(共24页)数学试卷第18页(共24页)【考点】勾股定理,垂径定理,圆周角定理,弧长的计算 22.【答案】(1)80x -10x -220(80)x ⨯⨯-220(10)x ⨯⨯-(2)6700【解析】(1)填表如下:(2)215225(110)220(80)220(10)y x x x x =⨯+⨯⨯-+⨯⨯-+⨯⨯-, 即y 关于x 的函数表达式为208300y x =-+,200-Q <,且1080x ≤≤,∴当80x =时,总运费y 最省,此时208083006700y =-⨯+=最小.故当甲仓库运往A 果园80吨有机化肥时,总运费最省,最省的总运费是6700元. 【考点】一次函数的应用23.【答案】(1)①证明:EHAB ⊥Q ,90BAC ∠=︒,//EH CA ∴,BHE BAC ∴△∽△,∴BE HEBC AC =, QDC ACBE BC=, ∴BE DCBC AC=, ∴HE DCAC AC=, HE DC ∴=,EH DC Q ∥,∴四边形DHEC 是平行四边形;②QAC BC ,90BAC ∠=︒, AC AB ∴=, QDC BE =,HE DC =, HE DC ∴=,∴2HE BE =, 90BHE ∠=︒Q ,sin 2HE B BE ∴==, 45B ∴∠=︒,45BEH B ∴∠=∠=︒BH H E ∴=,HE DC =Q , BH CD ∴=,AH AD ∴=,DM AE ⊥Q ,EH AB ⊥, 90EHA AMF ∴∠=∠=︒,90HAE HEA HAE AFM ∴∠+∠=∠+∠=︒,H EA AFD ∴∠=∠,数学试卷第19页(共24页)数学试卷第20页(共24页)90EHA FAD ∠=∠=︒Q ,HEA AFD ∴△≌△,AE DF ∴=;(2)34【解析】(1)①证明:EH AB ⊥Q ,90BAC ∠=︒,EH CA ∴∥,BHE BAC ∴△∽△,∴BE HEBC AC=, Q DC ACBE BC=, ∴BE DCBC AC =, ∴HE DCAC AC=, HE DC ∴=, EH DC Q ∥,∴四边形DHEC 是平行四边形;②QAC BC =,90BAC ∠=︒, AC AB ∴=,Q 2DC BE =,HE DC =, HE DC ∴=,∴2HE BE =, 90BHE ∠=︒Q,sin 2HE B BE ∴==, 45B ∴∠=︒,45BEH B ∴∠=∠=︒BH H E ∴=,HE DC =Q ,BH CD ∴=,AH AD ∴=,DM AE ⊥Q ,EH AB ⊥, 90EHA AMF ∴∠=∠=︒,90HAE HEA HAE AFM ∴∠+∠=∠+∠=︒,H EA AFD ∴∠=∠,90EHA FAD ∠=∠=︒Q , HEA AFD ∴△≌△,AE DF ∴=;(2)如图2,过点E 作EG AB ⊥于G ,CA AB ⊥Q , EG CA ∴∥,EGB CAB ∴△∽△,∴EG BECA BC =, ∴35EG CA BE BC ==, Q35CD BE =, EG CD ∴=,设3EG CD x ==,3AC y =,5BE x ∴=,5BC y =,数学试卷第21页(共24页)数学试卷第22页(共24页)4BG x ∴=,4AB y =,90EGA AMF ∠=∠=︒Q ,GEA EAG EAG AFM ∴∠+∠=∠+∠, AFM AEG ∴∠=∠, 90FAD EGA ∠=∠=︒Q ,FAD EGA ∴△∽△,∴333444DF AD y x AE AG y x -===-【考点】相似形综合题 24.【答案】(1) (2)3 (3)【解析】(1)如图1中,作DE x ⊥轴于E .90ABC ∠=︒Q,tan ABACB BC∴∠==, 60ACB ∴∠=︒,根据对称性可知:2DC BC ==,60ACD ACB ∠=∠=︒,60DCE ∴∠=︒,906030CDE ∴∠=︒-︒=︒, 1CE ∴=,DE =5OE OB BC CE ∴=++=,∴点D坐标为.(2)设OB a =,则点A 的坐标(a,, 由题意1CE =.DE =可得(3D a +,Q 点A 、D 在同一反比例函数图象上,)a ∴+, 3a ∴=,3OB ∴=.(3)存在.理由如下:①如图2中,当点1A 在线段CD 的延长线上,且1PA AD ∥时,190PA D ∠=︒.在1Rt ADA △中,130DAA ∠=︒Q,AD =14cos30ADAA ∴==︒,在1Rt APA △中,160APA ∠=︒Q,PA ∴=数学试卷第23页(共24页)数学试卷第24页(共24页)PB ∴=由(2)可知P, k ∴=②如图3中,当190PDA ∠=︒时.作DM AB ⊥于M ,1A N MD ⊥交MD 的延长线于N .190PAK KDA ∠=∠=︒Q ,1AKP DKA ∠=∠,1AKP DKA ∴△∽△,∴1AK PKKD KA =. ∴1KA PK AK DK=,1AKD PKA ∠=∠Q , 1KAD KPA ∴△∽△, 130KPA KAD ∴∠=∠=︒1PD D ∴=, Q 四边形1AMNA 是矩形,1AN AM ∴==, PDM ∆Q ∽△1DA N,PM ∴=,设DN m =,则PM =,)P ∴,1(9D m +,P Q ,1D 在同一反比例函数图象上,))m ∴=+,解得3m =,(3P ∴k ∴=【考点】反比例函数综合题。
浙江省湖州市中考数学试题含答案解析

、选择题(本题共10小题,每小题3分,共30分)1.2018的相反数是()【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 详解:因为二■㈡与只有符号不同,k頂皐的相反数是逼故选B.点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键•2•计算-3a? (2b),正确的结果是()A. - 6abB. 6abC. - abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可.详解:-3a? (2b) =-6ab,故选: A.点睛:此题考查单项式的除法,关键是根据法则计算.3.如图所示的几何体的左视图是()【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形, 故选C.A. 2018B. - 2018 1 n r iC. D.201820184.某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数•获得数据如下表:则这一天16名工人生产件数的众数是()A. 5 件B. 11 件C. 12 件D. 15 件【答案】B【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.详解:由表可知,11件的次数最多,所以众数为11件,故选:B •点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5.如图,AD , CE分别是A ABC的中线和角平分线.若AB=AC , / CAD=20°,则/ ACE的度数是()A. 20°B. 35°C. 40°D. 70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出/ CAB=2 / CAD=40,/ B= / ACB= :(180°-/ CAB ) =70°.再利用角平分线定义即可得出1/ ACE=- / ACB=35 .详解:••• AD 是A ABC 的中线,AB=AC , / CAD=20 ,/./ CAB=2 / CAD=40 , / B= / ACB^j (180°-/CAB ) =70°.••• CE是A ABC的角平分线,1•••/ ACE= / ACB=35 .□故选:B •点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上 的高相互重合的性质,三角形内角和定理以及角平分线定义,求出/ ACB=70是解题的关键.【答案】A【解析】分析:直接利用正比例函数的性质得出M , N 两点关于原点对称,进而得出答案.详解:T 直线 y=k i x (k i M0与反比例函数 y= (k 2^0的图象交于 M , N 两点,x••• M , N 两点关于原点对称, •••点M 的坐标是(1, 2),•••点N 的坐标是(-1 , -2) 故选:A .点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出 M , N 两点位置关系是解题关键.7.某居委会组织两个检查组,分别对垃圾分类”和 违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()1 1 12 A.B.C. D.632【答案】C【解析】分析:将三个小区分别记为 A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为 A 、B 、C , 列表如下:AB C A(A , A )(B , A )(C , A )6.如图,已知直线y=k i x (k i M0)与反比例函数(k 2M0的图象交于 M , N 两点.若点M 的坐标是(1, 2),(1,— 2) D. (- 2,— 1)C.B (A , B )(B , B ) (C , B ) C(A , C )(B , C )(C , C )由表可知,共有 9种等可能结果,其中两个组恰好抽到同一个小区的结果有 3种,所以两个组恰好抽到同一个小区的概率为 ---. 9 3|故选:C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成 的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验•用到 的知识点为:概率=所求情况数与总情况数之比.D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得C. A ADF 和A ADE 的面积相等D.△ADE 【答案】C再利用三角形的外角判断出 A 正确,进而判断出 AE=CE ,得出CE 是△ABC 的中位线判断出 B 正确,利用等式的性质判断出 D 正确.由折叠知,/ ACB= / DFE , CD=DF ,和A FDE 的面积相等【解析】分析:先判断出 ABFC 是直角三角形,8.如图,已知在 △ABC 中,/ BAC >90°点AD ,则下列结论不一定正确的是( A. AE=EF B. AB=2DE详解:如图,连接 CF ,•••BD=CD ,••• BD=CD=DF ,•••△ BFC是直角三角形,•••/ BFC=90 ,•/ BD=DF ,•••/ B= / BFD ,•••/ EAF= / B+ / ACB= / BFD+ / DFE= / AFE ,•AE=EF ,故 A 正确,由折叠知,EF=CE ,•AE=CE ,•/ BD=CD ,••• DE是△ABC的中位线,•AB=2DE ,故 B 正确,•/ AE=CE ,•- S A ADE=S ZCDE ,由折叠知,△CDE◎△△ FDE ,•- S^CDE=S^FDE,• S^ADE=S ZFDE,故D 正确,• C 选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9. 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的O O六等分,依次得到 A , B, C, D, E, F六个分点;②分别以点A, D 为圆心,AC 长为半径画弧,G 是两弧的一个交点;③连结OG.问:OG 的长是多少?大臣给出的正确答案应是(AC , DG , AG •在直角三角形即可解决问题;在 Rt △ACD 中,AD=2r , / DAC=30 ,•/ DG=AG=CA , OD=OA , • OG 丄 AD , •••/ GOA=90 , ••• OG= r ,故选:D •点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识, 辅助线,构造直角三角形解决问题.10. 在平面直角坐标系 xOy 中,已知点 M , N 的坐标分别为(-1, 2)y=ax 2-x+2 (a ^0与线段MN 有两个不同的交点,贝Ua 的取值范围是(GB. (1 + ')r C.(1 +r D.【答案】 •••/ ACD=90 ,DG ,AG .【解析】分析:如图连接 CD , 解题的关键是学会添加常用(2, 1),若抛物线1A. aw— 1 或B.4 3【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可;详解:•••抛物线的解析式为y=ax2_x+2 .1十3观察图象可知当a v0时,x=-1时,yW2时,满足条件,即a+3W2,即a w l ;当a> 0时,x=2时,y >1且抛物线与直线MN有交点,满足条件,a> ,4•••直线MN的解析式为y=」x+?,3 3_ 1 5由.< 3 ,消去y得到,3ax2-2x+1=0 ,1a v ,5••• 'wa '满足条件,42I I 严综上所述,满足条件的a的值为a w i或wa ,4 3故选:A.点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11. ____________________________________ 二次根式箱门中字母x的取值范围是.【答案】x>3C. aD. a w—1 或a【解析】分析:由二次根式有意义的条件得出不等式,解不等式即可. 详解:当x-3>0时,二次根式 •有意义,则 x >3; 故答案为:x >3.点睛:本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.【答案】【解析】由题意得:{皐;:常,解得:x=2.故答案为:2 13. 如图,已知菱形 ABCD ,对角线AC , BD 相交于点0•若【答案】2【解析】分析:根据菱形的对角线互相垂直平分可得 OB j| 据 tan / BAC=,求出 0B=1,那么 BD=2 •OA 3详解:•••四边形 ABCD 是菱形,AC=6 , ••• AC 丄 BD , OA= AC=3 , BD=2OB • 在 Rt △OAB 中,•••/ AOD=90 , OB 1• tan / BAC= --- ------QA 3 • OB=1 , ••• BD=2 . 故答案为2.点睛:本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是 解题的关键.14. 如图,已知 A ABC 的内切圆O O 与BC 边相切于点 D ,连结OB , OD .若/ ABC=40°,则/ BOD 的度数AC 丄 BD , OA= AC=3 , BD=2OB .再解 Rt ^OAB ,根12.当x=1时,分式的值是tan / BAC= ,AC=6,贝U BD 的长是1是_____ •【答案】70°【解析】分析:先根据三角形内心的性质和切线的性质得到0B平分/ ABC, OD丄BC,贝U/ OBD= l Z ABC=20,然后利用互余计算/ BOD的度数.详解:•••△ ABC的内切圆O O与BC边相切于点D,••• OB 平分/ ABC , OD 丄BC ,•••/ OBD= [/ ABC=丿X40°=20°,•••/ BOD=90 - / OBD=70 .故答案为70°点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx (a>0)的顶点为C,与x轴的正半轴交于点A, 它的对称轴与抛物线y=ax2(a> 0)交于点B .若四边形ABOC是正方形,则b的值是 ______________ .【答案】-2 b Ibl【解析】分析:根据正方形的性质结合题意,可得出点B的坐标为(-,-),再利用二次函数图象上点2a |2a|的坐标特征即可得出关于b的方程,解之即可得出结论.详解:•••四边形ABOC是正方形,b b•••点B的坐标为(-,-).2a 2a•••抛物线y=ax2过点B,解得:b i=0 (舍去),b2=-2.故答案为:-2.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,禾U用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E, F, G, H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图. 例如,在如图1所示的格点弦图中,正方形ABCD的边长为蒙j, 此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为|:J时时,正方形EFGH的面积的所有可能值是(不包括5).【答案】9或13或49.【解析】分析:共有三种情况:①当DG=:J.H CG=2』训时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13;②当DG=8 , CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7 , CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG= . CG=2』诃时,满足DG2+CG2=CD2,此时HG=j「』,可得正方形EFGH的面积为13.②当DG=8 , CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7 CG=4时,满足DG+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为:9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66 分)【答案】6【解析】分析:原式先计算乘方运算,再利用乘法分配律计算即可求出值. 详解:原式=36X ( - ) =18-12=6.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. -218•解不等式 ——<2并把它的解表示在数轴上.£【答案】x <2将不等式的解集表示在数轴上见解析•【解析】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上. 详解:去分母,得:3x-2<4, 移项,得:3x < 4+2合并同类项,得:3x <6 系数化为1,得:x <2 将不等式的解集表示在数轴上如下:L L-、-i123点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解 集.19.已知抛物线y=ax 2+bx - 3 (a 工)经过点(-1,0),( 3,0),求a ,b 的值. 【答案】a 的值是1,b 的值是-2.【解析】分析:根据抛物线 y=ax 2+bx-3 (a 工0经过点(-1,0),( 3,0),可以求得a 、b 的值,本题得以 解决.详解:•••抛物线 y=ax 2+bx-3 (a ^0 经过点(-1,0),即a 的值是1,b 的值是-2.点睛:本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答. 20.某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学 生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查.将(3,0), i a b-3=019a + 3b 3=0 ,解得, (a=l lb=-2 ,17•计算:即估计该校选择文明宣传的学生人数是 950人.调查得到的数据进行整理,绘制成如下统计图(不完整)各班鍛选择交直监習和环墳保护丢 曙臥伍的学主人数的折壤统计(1 )求扇形统计图中交通监督所在扇形的圆心角度数; (2 )求D 班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生 2500人,试估计该校选择文明宣传的学生人数. 【答案】(1) ° ( 2) D 班选择环境保护的学生人数是 15人;补全折线统计图见解析;(3)估计该校选择文明宣传的学生人数是 950人.【解析】分析:(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以 360。
2018年浙江省湖州市中考数学试题及参考答案案

浙江省2018年初中学业水平考试(湖州市)数学试题卷卷Ⅰ一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中最符合题意的选项,并在答案卷上将相应题次中对应字母的方框涂黑,不选、多项、错选均不给分.1.(2018浙江湖州中考,1,3分,★☆☆)2018的相反数是()A.2018B.-2018C.12018D.-120182.(2018浙江湖州中考,2,3分,★☆☆)计算-3a•(2b),正确的结果是() A.-6ab B.6ab C.-ab D.ab3.(2018浙江湖州中考,3,3分,★☆☆)如图所示的几何体的左视图是()A.B.C.D.4.(2018浙江湖州中考,4,3分,★☆☆)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件) 101112131415人数(人) 154321则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件5.(2018浙江湖州中考,5,3分,★★☆)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°6.(2018浙江湖州中考,6,3分,★★☆)如图,已知直线y=1k x (1k ≠0)与反比例函数y=2k x(2k ≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(-2,-1)7.(2018浙江湖州中考,7,3分,★★☆)某居委会组织两个检查组,分别对“垃圾分类” 和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查, 则两个组恰好抽到同一个小区的概率是( )A .19 B .16 C .13 D .238.(2018浙江湖州中考,8,3分,★★☆)如图,已知在△ABC 中,∠BAC >90°,点D 为 BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上 的点F 处.连结AD ,则下列结论不一定正确的是( )A .AE =EFB .AB =2DEC .△ADF 和△ADE 的面积相等D .△ADE 和△FDE 的面积相等9.(2018浙江湖州中考,9,3分,★★★)尺规作图特有的魅力曾使无数人沉湎其中.传说 拿破仑通过下列尺规作图考他的大臣:① 将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ② 分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③ 连结OG . 问:OG 的长是多少? 大臣给出的正确答案应是( )A .3rB .2(1)2r +C .3(1)2r + D .2r10.(2018浙江湖州中考,10,3分,★★★)在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(-1,2),(2,1),若抛物线y=a 2x -x +2(a≠0)与线段MN 有两个不同的交点,则a 的取值范围是( )A .a ≤-1或14≤a <13 B .14≤a <13 C .a ≤14或a >13 D .a ≤-1或a ≥14卷 Ⅱ二、填空题(本题有6小题,每小题4分,共24分) 11.(2018浙江湖州中考,11,4分,★☆☆)二次根式3x -中字母x 的取值范围是_________.12.(2018浙江湖州中考,12,4分,★☆☆)当x=1时,分式2xx +的值是_________. 13.(2018浙江湖州中考,13,4分,★☆☆)如图,已知菱形ABCD ,对角线AC ,BD 相交于点O .若tan ∠BAC=13,AC=6,则BD 的长是_________.14.(2018浙江湖州中考,14,3分,★★☆)如图,已知△ABC 的内切圆⊙O 与BC 边相切于点D ,连结OB ,OD .若∠ABC=40°,则∠BOD 的度数是_________.15.(2018浙江湖州中考,15,3分,★★☆)如图,在平面直角坐标系xOy 中,已知抛物线y=a 2ax bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y=2ax (a >0)交于点B .若四边形ABOC 是正方形,则b 的值是_________ .16.(2018浙江湖州中考,16,3分,★★★)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在图1所示的格点弦图中,正方形ABCD 的边长为65,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD 的边长为65时,正方形EFGH 的面积的所有可能值是_________(不包括5).三、解答题(本题有8小题,共66分)17.(2018浙江湖州中考,17,6分,★☆☆)计算:211(6)()23-⨯-.18.(2018浙江湖州中考,18,6分,★☆☆)解不等式3222x-≤,并把它的解表示在数轴上.19.(2018浙江湖州中考,19,6分,★☆☆)已知抛物线y=a2x+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值.20.(2018浙江湖州中考,20,8分,★☆☆)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答案卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.21.(2018浙江湖州中考,21,8分,★☆☆)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.22.(2018浙江湖州中考,22,10分,★★☆)“绿水青山就是金山银山”.为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如下表所示:设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?23.(2018浙江湖州中考,23,10分,★★☆)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且DC ACBE BC=m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.(1)如图1,过点E 作EH ⊥AB 于点H ,连结DH . ①求证:四边形DHEC 是平行四边形; ②若m=22,求证:AE=DF ; (2)如图2,若m=35,求DF AE的值.24.(2018浙江湖州中考,24,12分,★★★)如图1,在平面直角坐标系xOy 中,已知△ABC ,∠ABC=90°,顶点A 在第一象限,B ,C 在x 轴的正半轴上(C 在B 的右侧),BC=2,3,△ADC 与△ABC 关于AC 所在的直线对称. (1)当OB=2时,求点D 的坐标;(2)若点A 和点D 在同一个反比例函数的图象上,求OB 的长;(3)如图2,将第(2)题中的四边形ABCD 向右平移,记平移后的四边形为1A 1B 1C 1D ,过点1D 的反比例函数y=kx(k≠0)的图象与BA 的延长线交于点P .问:在平移过程中,是否存在这样的k ,使得以点P ,1A ,D 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k 的值;若不存在,请说明理由.浙江省2018年初中学业水平考试(湖州市)数学试题答案全解全析1.答案:B解析:只有符合不同的两个互为相反数,即2018与-2018只是符合不同.故选B.考查内容:相反数.命题意图:本题主要考查学生对相反数概念的理解,难度较小.2.答案:A解析:-3a•(2b)=-6ab.故选A.考查内容:单项式的乘法.命题意图:本题主要考查学生对单项式乘法法则的掌握情况,难度较小.3.答案:D解析:根据几何体的放置,从左边看到的是一个圆环.故选D.考查内容:几何体—三视图.命题意图:本题主要考查学生对简单几何体的三视图的掌握情况,难度较小.方法归纳:几何体的三视图分别是主视图、左视图、俯视图.主视图是从几何体正面看得到的平面图形,左视图是从几何体左侧看得到的平面图形,俯视图是从几何体上方看得到的平面图形.三视图观察的重点是观察列数,和对应每列正方体的层数,三个图形放在一起时,主视图、俯视图“长对正”;主视图、左视图“高平齐”;左视图、俯视图“宽相等”.4.答案:B解析:从表格中可以提出,数据11件的次数最多,所以众数为11件.故选B . 考查内容:众数.命题意图:本题主要考查学生对众数概念的理解,难度较小. 5.答案:B解析:∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,由三线合一及等边对等角可得,∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°.故选B .考查内容:角平分线的性质;等腰三角形的性质.命题意图:本题主要考查学生对等腰三角形的三线合一及等边对等角的掌握情况,难度较小. 6.答案:A解析:因为直线y=1k x(1k ≠0)与反比例函数y=2k x(2k ≠0)的图象交于M ,N 两点,由对称性可知M ,N 两点关于原点对称,因为点M 的坐标是(1,2),即点N 的坐标是(-1,-2).故选A .考查内容:正比例函数与反比例的关系;关于原点对称点的坐标.命题意图:本题主要考查学生对正比例函数与反比例函数的对称性的掌握情况,难度较小. 一题多解:把M (1,2)分别代入直线y=1k x(1k ≠0)与反比例函数y=2k x (2k ≠0)得y=2x ,和y=2x,联立得方程组为22y xy x =⎧⎪⎨=⎪⎩,解得x=1或-1,分别代入y=2x ,得,y=2或-2,又为点M 的坐标是(1,2),所以N(-1,-2).故选A . 7.答案:C解析:将三个小区分别记为A 、B 、C , 列表如下:C (A ,C ) (B ,C ) (C ,C )由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以P(两个组恰好抽到同一个小区的概率)=3193=.故选C . 考查内容:概率的计算.命题意图:本题主要考查学生对列表法求事件概率的掌握情况,难度适中. 8.答案:C解析:如图,连结CF ,由点D 是BC 中点,知BD=CD .由折叠知,∠ACB=∠DFE ,CD=DF ,即BD=CD=DF ,所以△BFC 是直角三角形,所以∠BFC=90°,由BD=DF ,所以∠B=∠BFD ,所以∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE ,所以AE=EF ,故A 正确;由折叠知,EF=CE ,所以AE=CE ,由BD=CD ,所以DE 是△ABC 的中位线,所以AB=2DE ,故B 正确;因为AE=CE ,所以ADESCDES,由折叠知,△CDE ≌△△FDE ,所以CDES=FDES,所以ADES=FDES,故D 正确;当AD=12AC 时,△ADF 和△ADE 的面积相等,即C 选项不一定正确.故选C .考查内容:直角三角形的性质;等腰三角形的性质;全等三角形的性质与判定;轴对称的性质.命题意图:本题主要考查学生对翻折变换的掌握情况,难度适中. 9.答案:D解析:如图,连结CD ,AC ,DG ,AG .由题意得AD 是⊙O 直径,即∠ACD=90°,在Rt △ACD 中,AD=2r ,∠DAC=30°,由勾股定理得3r ,因为DG=AG=CA ,OD=OA ,所以OG ⊥AD ,即∠GOA=90°,由勾股定理得22AC OA -22(3)r r -2r .故选D .考查内容:圆周角定理;正多边形与圆;勾股定理.命题意图:本题主要考查学生对圆周角定理与勾股定理的掌握情况,难度适中. 10.答案:A解析:抛物线的解析式为y=ax 2-x+2.观察图象可知当a <0时,x=-1时,y ≤2时,且-12a-≥-1,满足条件,可得a ≤-1;当a >0时,x=2时,y ≥1,且抛物线与直线MN 有交点,且-12a -≤2满足条件,所以a ≥14,把M ,N 的坐标分别为(-1,2),(2,1)代入y=kx+b得直线MN 的解析式为y=-13x+53,由215,332,y x y ax x ⎧=-+⎪⎨⎪=-+⎩消去y 得到,3ax 2-2x+1=0,由题意知△=412a ->0,解之得a <13,所以14≤a <13满足条件,综上所述,满足条件的a 的值为a ≤-1或14≤a <13.故选A . 考查内容:二次函数的图象与性质;一次函数与二次函数的交点.命题意图:本题主要考查学生对二次函数图象与性质及与一次函数交点的掌握情况,难度较高.11.答案:x ≥3解析:由题意得,x -3≥0,则x ≥3.考查内容:二次根式有意义的条件;一元一次不等式.命题意图:本题主要考查学生对二次根式有意义的条件的掌握情况,难度较小. 12.答案:13解析:当x=1时,原式=112+=13. 考查内容:分式的求值.命题意图:本题主要考查学生对分式求值的掌握,难度较小.13.答案:2解析:因为菱形的对角线互相垂直平分,所以OA =1632⨯=,在Rt △AOB 中,∵∠AOD=90°,∴tan ∠BAC=13OB OA =,所以OB=1,即BD=2. 考查内容:菱形的性质;锐角三角函数.命题意图:本题主要考查学生对菱形性质的掌握情况,;难度适中. 14.答案:70°解析:因为△ABC 是⊙O 的内切圆,由内心的性质可知OB 平分∠ABC ,OD ⊥BC ,∠OBD=12∠ABC=12×40°=20°,即∠BOD=90°-∠OBD=70°. 考查内容:三角形的内切圆;直角三角形的性质.命题意图:本题主要考查学生对三角形内切圆的掌握情况,难度适中. 15.答案:-2解析:四边形ABOC 是正方形,又因为B 在二次函数的对称轴上,所以点B 的坐标为(-2ba,-2b a ).由抛物线y=ax 2过点B ,把B 点坐标代入得-2b a =a(-2b a)2,解得:b 1=0(舍去),b 2=-2.故答案为﹣2.考查内容:二次函数的性质;正方形的性质.命题意图:本题主要考查学生对二次函数的性质与正方形的性质的掌握情况,难度适中. 16.答案:9,13和49解析:根据CD 分为三种情况讨论:①当满足DG 2+CG 2=CD 2,此时可得正方形EFGH 的面积为13;②当DG=8,CG=1时,满足DG 2+CG 2=CD 2,此时HG=7,可得正方形EFGH 的面积为49;③当DG=7,CG=4时,满足DG 2+CG 2=CD 2,此时HG=3,可得正方形EFGH 的面积为9. 考查内容:勾股定理.命题意图:本题主要考查学生对网格中的勾股定理的掌握情况,考查分类讨论思想,难度较高.17.解析:原式=36⨯(1123-)..................2分=11363623⨯-⨯..................2分 =18-12=6..................2分 考查内容:乘法分配律的应用.命题意图:本题主要考查学生对有理数的运算的掌握情况,难度较小.18解析:不等式的两边都乘以2,得3x -2≤4...............2分 移项合并同类项,得3x ≤6,解得:x ≤2 ..................2分 将不等式的解集表示在数轴上如下:.............2分考查内容:一元一次不等式的解法.命题意图:本题主要考查学生对一元一次不等式的解法掌握情况,难度较小.方法归纳:解一元一次不等式与解一元一次方程的思想和方法差不多,只是最后系数化为1的时候不等式两边同时乘或除以正负数涉及到不等号是否改变的问题;对于在数轴在表示不等式的解集,有固定的要求,即“不含等号的不等式用空心,含等号的不等式用实心”,“不等号的尖端指向哪一边则其解集指向这一边”.19.解析:把(-1,0),(3,0)的坐标分别代入23y ax bx =+-,得030933a b a b =--⎧⎨=+-⎩,..................2分解得12a b =⎧⎨=-⎩,...................4分即a 的值为1,b 的值为-2.考查内容:待定系数法求二次函数的解析式;解二元一次方程组.命题意图:本题主要考查学生对待定系数法求二次函数的解析式掌握情况,考查运算能力,难度较小.20.解析:(1)选择交通监督的人数是12+15+13+14=54(人);..........1分 选择交通监督的百分比是54100%27%200⨯=;............1分扇形统计图中交通监督所在扇形的圆心角度数是36027%97.2︒⨯=︒................1分(2)D班选择环境保护的学生人数是200×30%-15-14-16=15(人)....1分补全的折线统计图如图所示..............2分(3)2500×(1-30%-27%-5%)=950(人)..................2分所以估计该选择文明宣传的学生人数950人.考查内容:折线统计图;扇形统计图;用样本估计总体.命题意图:本题主要考查学生对条形统计图、扇形统计图的掌握情况.考查运算能力、推理能力、数据分析观念、应用意识、统计与概率思想,难度适中.21.解析:(1)∵AB是⊙O的直径,∴∠ADB=90°,...........2分∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,..........1分∴AE=ED...................1分(2)由(1)得OC⊥AD,∴AC CD=,∴∠ABC=∠CBD=36°,..................1分∴∠AOC=2∠ABC=2×36°=72°,..................1分∴7252180ACππ⨯==...................2分考查内容:垂径定理;圆周角定理;弧长公式.命题意图:本题主要考查学生对垂径定理及弧长公式的掌握情况.考查运算能力、推理能力、空间观察与几何观察,难度适中.22.解析:(1)填表如下:...................................6分 (2)y=2×15x+2×25×(110-x)+2×20×(80-x)+2×20(x -10),即y 关于x 的函数表达式为y=-20x+8300,..............2分 ∵-20<0,且10≤x≤80,∴当x=80时,总运费y 最省,此时y 最小=-20×80+8300=6700.........2分 即当甲仓库运往A 果园80吨有机化肥时,总运费最省,最省的总运费是6700元. 考查内容:一次函数的应用.命题意图:本题主要考查学生对一次函数应用的掌握情况.考查运算能力、推理能力、建立函数模型是解决问题的关键,难度适中. 23.解析:(1)①证明:∵EH ⊥AB ,∠BAC=90°, ∴EH ∥CA , ∴△BHE ∽△BAC ,∴BE HEBC AC =, .................1分 ∵DC AC BE BC =, ∴BE DC BC AC =, ∴HE DC AC AC=, ................1分 ∴HE=DC ,∴四边形DHEC 是平行四边形; .................1分②∵2AC BC =,∠BAC=90°,∴AC=AB ,∵DC BE =HE=DC ,∴HE BE =又∠BHE=90°,∴BH=HE.................1分∵HE=DC,∴BH=CD,∴AH=AD.................1分∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°,∴∠HEA=∠AFD,∵∠EHA=∠FAD=90°,∴△HEA≌△AFD,∴AE=DF.................1分(2)如图,过点E作EG⊥AB于G.∵CA⊥AB,∴EG∥CA,∴△EGB∽△CAB,∴EG BE CA BC=,∴35 EG CABE BC==,∵35 CDBE=,∴EG=CD,.................2分设EG=CD=3x,AC=3y,由题意得BE=5x,BC=5y.∴BG=4x,AB=4y,∵∠EGA=∠AMF=90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG,∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,.................1分∴333444DF AD y xAE AG y x-===-..................1分考查内容:平行四边形的判定;勾股定理;相似三角形的性质与判定.命题意图:本题主要考查学生对平行四边形的判定、相似的性质与判定的掌握情况,考查运算能力、推理能力、应用意识、空间观念与几何观察,难度较高. 24.解析:(1)如图1中,过点D 作DE ⊥x 轴于点E . ∵∠ABC=90°,∴tan ∠ACB=3ABBC, ∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°, ∴∠DCE=60°,∴∠CDE=90°-60°=30°,.................2分 ∴CE=1,DE=3, ∴OE=OB+BC+CE=5,∴点D 坐标为(5,3). .................2分(2)设OB=a ,则点A 的坐标(a ,3),由题意CE=1.3,可得D(3+a 3,................2分 ∵点A 、D 在同一反比例函数图象上, ∴33,∴a=3,即OB 的长为3. .................2分(3)存在.K的值为103或123,............4分(每写出一个给2分) 理由如下:如图2中,当∠PA1D=90°时.∵AD∥PA1,AD⊥CD,∴C、D、A1共线,∴∠ADA1=180°-∠PA1D=90°.在Rt△ADA1中,∵∠DAA1=30°,3,∴AA1=cos30AD=4,在Rt△APA1中,∵∠APA1=60°,∴PA=433,∴PB=1033,设P(m 103),则D1(m+73),∵P、A1在同一反比例函数图象上,1033(m+7),解得m=3,∴P(3,1033), ∴k=103.②如图3中,当∠PDA 1=90°时.∵∠PAK=∠KDA 1=90°,∠AKP=∠DKA 1, ∴△AKP ∽△DKA 1, ∴1AK PKKD KA . ∴PK AK =1KA DK, ∵∠AKD=∠PKA 1, ∴△KAD ∽△KPA 1,∴∠KPA 1=∠KAD=30°,∠ADK=∠KA 1P=30°, ∴∠APD=∠ADP=30°, ∴3AA 1=6,设P(m ,3),则D 1 (m+93), ∵P 、A 1在同一反比例函数图象上, ∴33(m+9), 解得m=3,∴P(3,,∴k=12.考查内容:反比例函数的图象与性质;相似三角形的判定与性质;一元二次方程的解法;锐角三角函数;轴对称的性质.命题意图:本题主要考查学生对反比例函数的综合应用及函数与图形的关系的掌握情况,考查运算能力、推理能力、空间观念与几何观察能力、分类讨论思想、化归与转化思想,难度较高.- 21 -。
2018年浙江省湖州市中考数学试题(解析版)

浙江省湖州市2018年中考数学一、选择题(本题共10小题,每小题3分,共30分)1. 2018的相反数是()A. 2018B. ﹣2018C.D.【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:因为与只有符号不同,的相反数是故选B.点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键.2. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可.详解:-3a•(2b)=-6ab,故选:A.点睛:此题考查单项式的除法,关键是根据法则计算.3. 如图所示的几何体的左视图是()A. B. C. D.【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.4. 某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)10 11 12 13 14 15人数(人) 1 5 4 3 2 1则这一天16名工人生产件数的众数是()A. 5件B. 11件C. 12件D. 15件【答案】B【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.详解:由表可知,11件的次数最多,所以众数为11件,故选:B.点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5. 如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.详解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6. 如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8. 如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9. 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. rB. (1+)rC. (1+)rD. r【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG=r,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A. a≤﹣1或≤a<B. ≤a<C. a≤或a>D. a≤﹣1或a≥【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可;详解:∵抛物线的解析式为y=ax2-x+2.观察图象可知当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax2-2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选:A.点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11. 二次根式中字母x的取值范围是_____.【答案】x≥3【解析】分析:由二次根式有意义的条件得出不等式,解不等式即可.详解:当x-3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.点睛:本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12. 当x=1时,分式的值是_____.【答案】【解析】由题意得:,解得:x=2. 故答案为:213. 如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是_____.【答案】2【解析】分析:根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根据tan∠BAC=,求出OB=1,那么BD=2.详解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC=,∴OB=1,∴BD=2.故答案为2.点睛:本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.14. 如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.【答案】70°【解析】分析:先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.详解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°-∠OBD=70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是_____.【答案】﹣2【解析】分析:根据正方形的性质结合题意,可得出点B的坐标为(-,-),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.详解:∵四边形ABOC是正方形,∴点B的坐标为(-,-).∵抛物线y=ax2过点B,∴-=a(-)2,解得:b1=0(舍去),b2=-2.故答案为:-2.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为:9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66分)17. 计算:(﹣6)2×(﹣).【答案】6【解析】分析:原式先计算乘方运算,再利用乘法分配律计算即可求出值.详解:原式=36×(-)=18-12=6.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18. 解不等式≤2,并把它的解表示在数轴上.【答案】x≤2,将不等式的解集表示在数轴上见解析.【解析】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.详解:去分母,得:3x-2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【答案】a的值是1,b的值是﹣2.【解析】分析:根据抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),可以求得a、b的值,本题得以解决.详解:∵抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),∴,解得,,即a的值是1,b的值是-2.点睛:本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【答案】(1)97.2°;(2)D班选择环境保护的学生人数是15人;补全折线统计图见解析;(3)估计该校选择文明宣传的学生人数是950人.【解析】分析:(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.详解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.点睛:本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【答案】(1)证明见解析;(2)【解析】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径直定理即可证明。
2018年浙江省湖州市中考数学试卷有答案

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前浙江省湖州市2018年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2 018的相反数是( )A.2 018B .2018-C .12018D .12018- 2.计算3(2)a b -g ,正确的结果是( )A .6ab -B .6abC .ab -D .ab 3.如图所示的几何体的左视图是( )ABCD4.某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:)A.5件B.11件C.12件D.15件5.如图,AD ,CE 分别是ABC △的中线和角平分线.若AB AC =,20CAD ∠=︒,则ACE ∠的度数是 ( )A .20︒B .35︒C .40︒D .70︒6.如图,已知直线11(0)y k x k =≠与反比例函数22(0)k y k x=≠的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( )A .(1,2)--B .(1,2)-C .(1,2)-D .(2,1)--7.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .19 B .16 C .13D.238.如图,已知在ABC △中,90BAC ∠︒>,点D 为BC 的中点,点E 在AC 上,将CDE △沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( ) A .AE EF =B .2AB DE =C .ADF △和ADE △的面积相等D .ADE △和FDE △的面积相等毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)9.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点;②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点;③连结OG .问:OG 的长是多少? 大臣给出的正确答案应是( )AB .(1)2r +C .(1)2r +D10.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(1,2)-,(2,1),若抛物线22(0)y ax x a =-+≠与线段MN 有两个不同的交点,则a 的取值范围是( )A .1a -≤或1143a ≤<B .1143a ≤<C .14a ≤或13a >D .1a -≤或14a ≥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.中字母x 的取值范围是 .12.当1x =时,分式2xx +的值是 .13.如图,已知菱形ABCD ,对角线AC ,BD 相交于点O .若1tan 3BAC ∠=,6AC =,则BD 的长是 .14.如图,已知ABC △的内切圆O e 与BC 边相切于点D ,连结OB ,OD .若40ABC ∠=︒,则BOD ∠的度数是 .15.如图,在平面直角坐标系xOy 中,已知抛物线2(0)y ax bx a =+>的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线2(0)y ax a =>交于点B .若四边形ABOC 是正方形,则b 的值是 .16.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD时,正方形EFGH 的面积的所有可能值是 (不包括5).数学试卷 第5页(共26页) 数学试卷 第6页(共26页)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分) 计算:211(6)()23-⨯-.18.(本小题满分6分) 解不等式3222x -…,并把它的解表示在数轴上.19.(本小题满分6分)已知抛物线23(0)y ax bx a =+-≠经过点(1,0)-,(3,0),求a ,b 的值.20.(本小题满分8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数; (2)求D 班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生2 500人,试估计该校选择文明宣传的学生人数.21.(本小题满分8分) 如图,已知AB 是O 的直径,C ,D 是O e 上的点,OC BD ∥,交AD 于点E ,连结BC .(1)求证:AE ED =;(2)若10AB =,36CBD ∠=︒,求AC 的长.22.(本小题满分10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需用110吨和70吨有机化肥.两个仓库到A ,B 两个果园的路程如表所示:设甲仓库运往, (1)根据题意,填写下表.机化肥时,总运费最省?最省的总运费是多少元?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共26页) 数学试卷 第8页(共26页)23.(本小题满分10分)已知在Rt ABC △中,90BAC ∠=︒,AB AC ≥,D ,E 分别为AC ,BC 边上的点(不包括端点),且DC ACm BE BC==,连结AE ,过点D 作DM AE ⊥,垂足为点M ,延长DM 交AB 于点F .(1)如图1,过点E 作EH AB ⊥于点H ,连结DH . ①求证:四边形DHEC 是平行四边形;②若m =求证:AE DF =; (2)如图2,若35m =,求DF AE的值.24.(本小题满分12分)如图1,在平面直角坐标系xOy 中,已知ABC △,90ABC ∠=︒,顶点A 在第一象限,B ,C 在x 轴的正半轴上(C 在B 的右侧),2BC =,AB =,ADC △与ABC △关于AC 所在的直线对称.(1)当2OB =时,求点D 的坐标;(2)若点A 和点D 在同一个反比例函数的图象上,求OB 的长;(3)如图2,将(2)中的四边形ABCD 向右平移,记平移后的四边形为1111A B C D ,过点1D 的反比例函数(0)ky k x=≠的图象与BA 的延长线交于点P .问:在平移过程中,是否存在这样的k ,使得以点P ,1A ,D 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k 的值;若不存在,请说明理由.数学试卷 第9页(共26页) 数学试卷 第10页(共26页)浙江省湖州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】2018的相反数是2018-,故选:B . 【考点】相反数 2.【答案】A【解析】3(2)6a b ab -=-g ,故选:A . 【考点】单项式乘单项式 3.【答案】D【解析】从左边看是一个圆环,故选:D . 【考点】简单组合体的三视图 4.【答案】B【解析】由表可知,11件的次数最多,所以众数为11件,故选:B . 【考点】众数 5.【答案】B【解析】AD Q 是ABC △的中线,AB AC =,20CAD ∠=︒,240CAB CAD ∴∠=∠=︒,1(180)702B ACB CAB ∠=∠=︒-∠=︒.CE Q 是ABC ∆的角平分线,1352ACE ACB ∴∠=∠=︒.故选:B .【考点】等腰三角形的性质 6.【答案】A【解析】Q 直线11(0)y k x k =≠与反比例函数22(0)ky k x=≠的图象交于M ,N 两点,M ∴,N 两点关于原点对称,Q 点M 的坐标是(1,2),∴点N 的坐标是(1,2)--.故选:A .【考点】反比例函数与一次函数的交点问题 7.【答案】C【解析】将三个小区分别记为A 、B 、C , 列表如下:3种, 所以两个组恰好抽到同一个小区的概率为3193=, 故选:C .【考点】列表法与树状图法 8.【答案】C【解析】如图,连接CF , Q 点D 是BC 中点,BD CD ∴=,由折叠知,ACB DFE ∠=∠,CD DF =,BD CD DF ∴==,BFC ∴△是直角三角形,90BFC ∴∠=︒, BD DF =Q , B BFD ∴∠=∠,EAF B ACB BFD DFE AFE ∴∠=∠+∠=∠+∠=∠, AE EF ∴=,故A 正确,由折叠知,EF CE =,数学试卷 第11页(共26页) 数学试卷 第12页(共26页)AE CE ∴=, BD CD =Q ,DE ∴是ABC △的中位线, 2AB DE ∴=,故B 正确,AE CE =Q ,ADE CDE S S ∴=△△,由折叠知,CDE FDE △≌△,CDE FDE S S ∴=△△,ADE FDE S S ∴=△△,故D 正确,当12AD AC =时,ADF △和ADE △的面积相等 ∴C 选项不一定正确,故选:C .【考点】翻折变换(折叠问题) 9.【答案】D【解析】如图连接CD ,AC ,DG ,AG .AD Q 是O e 直径, 90ACD ∴∠=︒,在Rt ACD △中,2AD r =,30DAC ∠=︒,AC ∴=,DG AG CA ==Q ,OD OA =, OG AD ∴⊥, 90GOA ∴∠=︒,OG ∴==,故选:D .【考点】正多边形和圆;作图——复杂作图 10.【答案】A【解析】Q 抛物线的解析式为22y ax x =-+.观察图象可知当0a <时,1x =-时,2y …时,且112a---≥,满足条件,可得1a -≤; 当0a >时,2x =时,1y ≥,且抛物线与直线MN 有交点,且122a--≤满足条件, 14a ∴≥,Q 直线MN 的解析式为1533y x =-+, 由215332y x y ax x ⎧=-+⎪⎨⎪=-+⎩,消去y 得到,23210ax x -+=,Q 0∆>,13a ∴<,数学试卷 第13页(共26页) 数学试卷 第14页(共26页)∴1143a ≤<满足条件, 综上所述,满足条件的a 的值为1a -≤或1143a ≤<,故选:A .【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征第Ⅱ卷二、填空题 11.【答案】3x …【解析】当30x -…时,有意义, 则3x …; 故答案为:3x ….【考点】二次根式有意义的条件12.【答案】13【解析】当1x =时,原式11123==+, 故答案为:13.【考点】分式的值 13.【答案】2【解析】解:Q 四边形ABCD 是菱形,6AC =,AC BD ∴⊥,132OA AC ==,2BD OB =. 在Rt OAB △中,90AOD ∠=︒Q ,1tan 3OB BAC OA ∴∠==,1OB ∴=, 2BD ∴=.故答案为2.【考点】菱形的性质,解直角三角形14.【答案】70︒【解析】解:ABC Q △的内切圆O e 与BC 边相切于点D ,OB ∴平分ABC ∠,OD BC ⊥,11402022OBD ABC ∴∠=∠=⨯︒=︒,9070BOD OBD ∴∠=︒-∠=︒.故答案为70︒.【考点】圆周角定理,三角形的内切圆与内心 15.【答案】2-【解析】Q 四边形ABOC 是正方形,∴点B 的坐标为(2b a -,)2ba-. Q 抛物线2y ax =过点B ,2()22b ba a a∴-=-, 解得:10b =(舍去),22b =-. 故答案为:2-.【考点】二次函数的性质,二次函数图象上点的坐标特征,抛物线与x 轴的交点,正方形的性质16.【答案】13或49或9【解析】解:当DGCG =时,满足222DG CG CD +=,此时HG 可得正方形EFGH 的面积为13. 当8DG =,1CG =时,满足222DG CG CD +=, 此时7HG =,可得正方形EFGH 的面积为49当7DG =,4CG =时,此时3HG =,四边形EFGH 的面积为9.数学试卷 第15页(共26页) 数学试卷 第16页(共26页)故答案为13或49或9.【考点】全等三角形的判定,勾股定理,作图——应用与设计作图 三、解答题 17.【答案】6【解析】原式1136()1812623=⨯-=-=.【考点】有理数的混合运算 18.【答案】2x …【解析】去分母,得:324x -…, 移项,得:342x +…, 合并同类项,得:36x …, 系数化为1,得:2x …,将不等式的解集表示在数轴上如下:【考点】在数轴上表示不等式的解集;解一元一次不等式19.【答案】12a b =⎧⎨=-⎩【解析】Q 抛物线23(0)y ax bx a =+-≠经过点(1,0)-,(3,0),∴309330a b a b --=⎧⎨+-=⎩,解得,12a b =⎧⎨=-⎩, 即a 的值是1,b 的值是2-.【考点】二次函数图象上点的坐标特征 20.【答案】(1)54 27%97.2° (2)15 (3)950【解析】(1)选择交通监督的人数是:1215131454+++=(人), 选择交通监督的百分比是:54100%27%200⨯=, 扇形统计图中交通监督所在扇形的圆心角度数是:36027%97.2︒⨯=︒; (2)D 班选择环境保护的学生人数是:20030%15141615⨯---=(人). 补全折线统计图如图所示;(3)2500(130%27%5%)950⨯---=(人), 即估计该校选择文明宣传的学生人数是950人. 【考点】用样本估计总体;扇形统计图;折线统计图 21.【答案】(1)证明:AB Q 是O e 的直径,90ADB ∴∠=︒, OC BD Q ∥,90AEO ADB ∴∠=∠=︒,数学试卷 第17页(共26页) 数学试卷 第18页(共26页)即OC AD ⊥,AE ED ∴=;(2)2π【解析】(1)证明:AB Q 是O e 的直径,90ADB ∴∠=︒, OC BD Q ∥,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,AE ED ∴=;(2)OC AD ⊥Q ,∴»»AC CD =, 36ABC CBD ∴∠=∠=︒,223672AOC ABC ∴∠=∠=⨯︒=︒,∴»7252180AC ππ⨯==. 【考点】勾股定理,垂径定理,圆周角定理,弧长的计算 22.【答案】(1)80x -10x -220(80)x ⨯⨯-220(10)x ⨯⨯-(2)6 700【解析】(1)填表如下:(2)215225(110)220(80)220(10)y x x x x =⨯+⨯⨯-+⨯⨯-+⨯⨯-,即y 关于x 的函数表达式为208300y x =-+,200-Q <,且1080x ≤≤,∴当80x =时,总运费y 最省,此时208083006700y =-⨯+=最小.故当甲仓库运往A 果园80吨有机化肥时,总运费最省,最省的总运费是6 700元. 【考点】一次函数的应用23.【答案】(1)①证明:EH AB⊥Q ,90BAC ∠=︒,//EH CA ∴,BHE BAC ∴△∽△, ∴BE HEBC AC =, QDC ACBE BC =, ∴BE DCBC AC =, ∴HE DCAC AC=, HE DC ∴=, EH DC Q ∥,∴四边形DHEC 是平行四边形;②QAC BC =,90BAC ∠=︒, AC AB ∴=,QDC BE =,HE DC =, HE DC ∴=,∴2HE BE =, 90BHE ∠=︒Q ,sin HE B BE ∴==, 45B ∴∠=︒,数学试卷 第19页(共26页) 数学试卷 第20页(共26页)45BEH B ∴∠=∠=︒ BH HE ∴=,HE DC =Q , BH CD ∴=, AH AD ∴=,DM AE ⊥Q ,EH AB ⊥, 90EHA AMF ∴∠=∠=︒,90HAE HEA HAE AFM ∴∠+∠=∠+∠=︒, HEA AFD ∴∠=∠,90EHA FAD ∠=∠=︒Q , HEA AFD ∴△≌△, AE DF ∴=;(2)34【解析】(1)①证明:EH AB ⊥Q ,90BAC ∠=︒,EH CA ∴∥,BHE BAC ∴△∽△,∴BE HE BC AC=, QDC ACBE BC =, ∴BE DCBC AC =, ∴HE DCAC AC=, HE DC ∴=, EH DC Q ∥,∴四边形DHEC 是平行四边形;②QAC BC =,90BAC ∠=︒, AC AB ∴=,QDC BE =,HE DC =, HE DC ∴=,∴2HE BE =, 90BHE ∠=︒Q,sin HE B BE ∴==, 45B ∴∠=︒, 45BEH B ∴∠=∠=︒ BH HE ∴=,HE DC =Q , BH CD ∴=, AH AD ∴=,DM AE ⊥Q ,EH AB ⊥, 90EHA AMF ∴∠=∠=︒,90HAE HEA HAE AFM ∴∠+∠=∠+∠=︒, HEA AFD ∴∠=∠,数学试卷 第21页(共26页) 数学试卷 第22页(共26页)90EHA FAD ∠=∠=︒Q , HEA AFD ∴△≌△, AE DF ∴=;(2)如图2,过点E 作EG AB ⊥于G ,CA AB ⊥Q , EG CA ∴∥,EGB CAB ∴△∽△, ∴EG BECA BC =, ∴35EG CA BE BC ==, Q35CD BE =, EG CD ∴=,设3EG CD x ==,3AC y =,5BE x ∴=,5BC y =, 4BG x ∴=,4AB y =, 90EGA AMF ∠=∠=︒Q ,GEA EAG EAG AFM ∴∠+∠=∠+∠, AFM AEG ∴∠=∠, 90FAD EGA ∠=∠=︒Q ,FAD EGA ∴△∽△, ∴333444DF AD y x AE AG y x -===-【考点】相似形综合题24.【答案】(1) (2)3 (3)【解析】(1)如图1中,作DE x ⊥轴于E .90ABC ∠=︒Q,tan ABACB BC∴∠==, 60ACB ∴∠=︒,根据对称性可知:2DC BC ==,60ACD ACB ∠=∠=︒,60DCE ∴∠=︒,906030CDE ∴∠=︒-︒=︒, 1CE ∴=,DE 5OE OB BC CE ∴=++=,∴点D坐标为.(2)设OB a =,则点A 的坐标(a,, 由题意1CE =.DE =可得(3D a +, Q 点A 、D 在同一反比例函数图象上,)a ∴=+,3a ∴=,3OB ∴=.(3)存在.理由如下:数学试卷 第23页(共26页) 数学试卷 第24页(共26页)①如图2中,当点1A 在线段CD 的延长线上,且1PA AD ∥时,190PA D ∠=︒.在1Rt ADA △中,130DAA ∠=︒Q,AD =14cos30ADAA ∴==︒,在1Rt APA △中,160APA ∠=︒Q,3PA ∴=, 3PB ∴=, 由(2)可知(3,3P, k ∴=②如图3中,当190PDA ∠=︒时.作DM AB ⊥于M ,1A N MD ⊥交MD 的延长线于N .190PAK KDA ∠=∠=︒Q ,1AKP DKA ∠=∠, 1AKP DKA ∴△∽△, ∴1AK PKKD KA =. ∴1KA PK AK DK=,1AKD PKA ∠=∠Q , 1KAD KPA ∴△∽△, 130KPA KAD ∴∠=∠=︒1PD D ∴=,Q 四边形1AMNA 是矩形,1AN AM ∴==PDM ∆Q ∽△1DA N,PM ∴=,设DN m =,则PM =,)P ∴,1(9D m +,P Q ,1D 在同一反比例函数图象上,))m ∴=+,解得3m =,(3P ∴k ∴=【考点】反比例函数综合题数学试卷第25页(共26页)数学试卷第26页(共26页)。
(真题)2018年湖州市中考数学试题(有答案)

浙江省湖州市2018年中考数学试题一、选择题(本题共10小题,每小题3分,共30分)1. 2018的相反数是()A. 2018B. ﹣2018C.D.【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:因为与只有符号不同,的相反数是故选B.点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键.2. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可.详解:-3a•(2b)=-6ab,故选:A.点睛:此题考查单项式的除法,关键是根据法则计算.3. 如图所示的几何体的左视图是()A. B. C. D.【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.4. 某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)10 11 12 13 14 15人数(人) 1 5 4 3 2 1A. 5件B. 11件C. 12件D. 15件【答案】B【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.详解:由表可知,11件的次数最多,所以众数为11件,故选:B.点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5. 如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.详解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6. 如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8. 如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9. 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. rB. (1+)rC. (1+)rD. r【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG=r,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A. a≤﹣1或≤a<B. ≤a<C. a≤或a>D. a≤﹣1或a≥【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可;详解:∵抛物线的解析式为y=ax2-x+2.观察图象可知当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax2-2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选:A.点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11. 二次根式中字母x的取值范围是_____.【答案】x≥3【解析】分析:由二次根式有意义的条件得出不等式,解不等式即可.详解:当x-3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.点睛:本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12. 当x=1时,分式的值是_____.【答案】【解析】由题意得:,解得:x=2. 故答案为:213. 如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是_____.【答案】2【解析】分析:根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根据tan∠BAC=,求出OB=1,那么BD=2.详解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC=,∴OB=1,∴BD=2.故答案为2.点睛:本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.14. 如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.【答案】70°【解析】分析:先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.详解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°-∠OBD=70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是_____.【答案】﹣2【解析】分析:根据正方形的性质结合题意,可得出点B的坐标为(-,-),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.详解:∵四边形ABOC是正方形,∴点B的坐标为(-,-).∵抛物线y=ax2过点B,∴-=a(-)2,解得:b1=0(舍去),b2=-2.故答案为:-2.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为:9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66分)17. 计算:(﹣6)2×(﹣).【答案】6【解析】分析:原式先计算乘方运算,再利用乘法分配律计算即可求出值.详解:原式=36×(-)=18-12=6.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18. 解不等式≤2,并把它的解表示在数轴上.【答案】x≤2,将不等式的解集表示在数轴上见解析.【解析】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.详解:去分母,得:3x-2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【答案】a的值是1,b的值是﹣2.【解析】分析:根据抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),可以求得a、b的值,本题得以解决.详解:∵抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),∴,解得,,即a的值是1,b的值是-2.点睛:本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【答案】(1)97.2°;(2)D班选择环境保护的学生人数是15人;补全折线统计图见解析;(3)估计该校选择文明宣传的学生人数是950人.【解析】分析:(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.详解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.点睛:本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【答案】(1)证明见解析;(2)【解析】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径直定理即可证明。
2018年浙江省湖州市中考数学试卷含答案
y ax2 x 2(a 0) 与线段 MN 有两个不同的交点,则 a 的取值范围是 ( )
A. a≤1 或 1≤a<1 43
C. a≤1 或 a>1
4
3
B. 1≤a<1 43
D. a≤1 或 a≥1 4
第Ⅱ卷(非选择题 共 90 分)
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分.把答案填写在题中的横线上)
93 故选:C. 【考点】列表法与树状图法
8.【答案】C
【解析】如图,连接 CF , Q 点 D 是 BC 中点, BD CD , 由折叠知, ACB DFE , CD DF , BD CD DF ,
△BFC 是直角三角形,
BFC 90 , Q BD DF , B BFD , EAF B ACB BFD DFE AFE , AE EF ,故 A 正确, 由折叠知, EF CE , AE CE , Q BD CD , DE 是 △ABC 的中位线, AB 2DE ,故 B 正确, Q AE CE , S△ADE S△CDE ,
点, OC∥BD ,交 AD 于点 E ,连结 BC . (1)求证: AE ED ; (2)若 AB 10 , CBD 36 ,求 AC 的长.
22.(本小题满分 10 分) “绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两 个仓库用汽车向 A , B 两个果园运送有机化肥,甲、乙两个仓库分别可运出 80 吨和 100 吨有机化肥;A , B 两个果园分别需用 110 吨和 70 吨有机化肥.两个仓库到 A , B 两个果园的路程如表所示:
24.(本小题满分 12 分) 如 图 1,在 平 面 直 角 坐 标 系 xOy 中, 已 知 △ABC , ABC 90 ,顶 点 A 在 第 一 象
浙江省湖州市中考数学试题含答案解析(Word版).doc
浙江省湖州市2018年中考数学试题一、选择题(本题共10小题,每小题3分,共30分)1. 2018的相反数是()A. 2018B. ﹣2018C.D.【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:因为与只有符号不同,的相反数是故选B.点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键.2. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可.详解:-3a•(2b)=-6ab,故选:A.点睛:此题考查单项式的除法,关键是根据法则计算.3. 如图所示的几何体的左视图是()A. B. C. D.【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.4. 某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)10 11 12 13 14 15人数(人) 1 5 4 3 2 1则这一天16名工人生产件数的众数是()A. 5件B. 11件C. 12件D. 15件【答案】B【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.详解:由表可知,11件的次数最多,所以众数为11件,故选:B.点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5. 如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.详解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6. 如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8. 如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9. 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. rB. (1+)rC. (1+)rD. r【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG=r,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A. a≤﹣1或≤a<B. ≤a<C. a≤或a>D. a≤﹣1或a≥【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可;详解:∵抛物线的解析式为y=ax2-x+2.观察图象可知当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax2-2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选:A.点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11. 二次根式中字母x的取值范围是_____.【答案】x≥3【解析】分析:由二次根式有意义的条件得出不等式,解不等式即可.详解:当x-3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.点睛:本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12. 当x=1时,分式的值是_____.【答案】【解析】由题意得:,解得:x=2. 故答案为:213. 如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是_____.【答案】2【解析】分析:根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根据tan∠BAC=,求出OB=1,那么BD=2.详解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC=,∴OB=1,∴BD=2.故答案为2.点睛:本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.14. 如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.【答案】70°【解析】分析:先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.详解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°-∠OBD=70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是_____.【答案】﹣2【解析】分析:根据正方形的性质结合题意,可得出点B的坐标为(-,-),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.详解:∵四边形ABOC是正方形,∴点B的坐标为(-,-).∵抛物线y=ax2过点B,∴-=a(-)2,解得:b1=0(舍去),b2=-2.故答案为:-2.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为:9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66分)17. 计算:(﹣6)2×(﹣).【答案】6【解析】分析:原式先计算乘方运算,再利用乘法分配律计算即可求出值.详解:原式=36×(-)=18-12=6.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18. 解不等式≤2,并把它的解表示在数轴上.【答案】x≤2,将不等式的解集表示在数轴上见解析.【解析】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.详解:去分母,得:3x-2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【答案】a的值是1,b的值是﹣2.【解析】分析:根据抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),可以求得a、b的值,本题得以解决.详解:∵抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),∴,解得,,即a的值是1,b的值是-2.点睛:本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【答案】(1)97.2°;(2)D班选择环境保护的学生人数是15人;补全折线统计图见解析;(3)估计该校选择文明宣传的学生人数是950人.【解析】分析:(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.详解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.点睛:本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【答案】(1)证明见解析;(2)【解析】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径直定理即可证明。
2018年全国中考数学真题浙江湖州中考数学(解析版-精品文档)
2018年浙江省湖州市初中毕业、升学考试数 学(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1. (2018浙江湖州,1,3)2018的相反数是( ) A .2018 B .-2018 C .20181 D .20181【答案】B【解析】一个数的相反数就是和原数只有符号不同的数.故选B. 【知识点】相反数2. (2018浙江湖州,2,3)计算-3a ·(2b ),正确的结果是( ) A .-6ab B .6ab C .-ab D .ab 【答案】A【解析】两个单项式相乘,数字和数字相乘,字母和字母相乘,如果结果有负号,负号要写在最前面.故选A.【知识点】整式的乘法3. (2018浙江湖州,3,3)如图所示的几何体的左视图是( )【答案】D【解析】左视图就是从几何体的左侧看过去的图形.本题空心圆柱左侧看过去的图形是两个同心圆.故选D. 【知识点】三视图4. (2018浙江湖州,4,3) 某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生主视方向AB ACD产能力,随机调查了某一天每个工人的生产件数,获得数据如下表:则这一天16 A .5件 B .11件 C .12件 D .15件 【答案】B【解析】一组数据的众数就是这组数据中出现次数最多的数.本题的生产件数这一组数据中出现次数最多的数是11,共出现了5次.故选B. 【知识点】众数5. (2018浙江湖州,5,3)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD=20°,则 ∠ACE 的度数是( )A .20°B .35°C .40°D .70°【答案】B【解析】∵AB =AC ,AD 是△ABC 的中线,∴AD ⊥BC .∵∠CAD =20°,∴∠ACD =70°.∵CE 是∠ABC 的平分线,∴∠ACE =35°.故选B. 【知识点】等腰三角形,角平分线,中线6. (2018浙江湖州,6,3)如图,已知直线y =k 1x (k 1≠0)与反比例函数y =xk 2(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(-2,-1)第5题图ABCED【答案】A【解析】∵点M ,N 都在反比例函数的图象上,且两点的连线经过原点,∴M ,N 关于原点对称.∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故选A. 【知识点】反比例函数,一次函数7. (2018浙江湖州,7,3) 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组合恰好抽到同一个小区的概率是( )A .91B .61C .31D .32【答案】C【解析】设两个小组分别为甲和乙,三个小区分别为1,2,3.所有可能的抽查情况列表如下:3种,所以恰好抽到同一个小区的概率为31.故选C.【知识点】概率8.(2018浙江湖州,8,3)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等 D.△ADE和△FDE的面积相等FAEB C【答案】C【解析】选项A,∵D为BC的中点,∴所以BD=CD.∵FD=CD,∴FD=BD.∴∠B=∠BFD.∵∠C =∠DFE,∴∠B+∠C=∠BFD+∠DFE.∴∠FAE=∠AFE.∴AE=FE.选项A正确.选项B,∵E为AC的中点,D为BC的中点,∴DE为△ABC的中位线.∴AB=2DE.选项B正确.选项C,∵BF∥DE,∴△ADF和△ADE的高相等.但不能证明AF=DE,∴△ADF和△ADE的面积不一定相等.选项C错误.选项D,△ADE和△FDE同底等高,面积相等,选项D正确.故选C.【知识点】等腰三角形,折叠,中位线,三角形的外角9.(2018浙江湖州,9,3)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A .3rB .(1+22)r C .(1+23)r D .2r【答案】D【解析】连接AD ,AG ,则AD 经过点O .∵六个点等分圆,∴可求得AC =3r .∵△AOG 是直角三角形,∴由勾股定理可知OG 的长为错误!未找到引用源。
2018浙江湖州中考数学解析
2018年浙江省湖州市初中毕业、升学考试数 学(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1. (2018浙江湖州,1,3)2018的相反数是( ) A .2018 B .-2018 C .20181 D .20181【答案】B【解析】一个数的相反数就是和原数只有符号不同的数.故选B. 【知识点】相反数2. (2018浙江湖州,2,3)计算-3a ·(2b ),正确的结果是( )A .-6abB .6abC .-abD .ab 【答案】A【解析】两个单项式相乘,数字和数字相乘,字母和字母相乘,如果结果有负号,负号要写在最前面.故选A. 【知识点】整式的乘法3. (2018浙江湖州,3,3)如图所示的几何体的左视图是( )【答案】D【解析】左视图就是从几何体的左侧看过去的图形.本题空心圆柱左侧看过去的图形是两个同心圆.故选D. 【知识点】三视图4. (2018浙江湖州,4,3) 某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数,获得数据如下表:生产件数(件) 10 11 12 13 14 15 人数(人)154321则这一天16 A .5件 B .11件 C .12件 D .15件 【答案】B 【解析】一组数据的众数就是这组数据中出现次数最多的数.本题的生产件数这一组数据中出现次数最多的数是11,共出现了5次.故选B. 【知识点】众数5. (2018浙江湖州,5,3)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°主视方向 A B A C D【答案】B【解析】∵AB =AC ,AD 是△ABC 的中线,∴AD ⊥BC .∵∠CAD =20°,∴∠ACD =70°.∵CE 是∠ABC 的平分线,∴∠ACE =35°.故选B. 【知识点】等腰三角形,角平分线,中线6. (2018浙江湖州,6,3)如图,已知直线y =k 1x (k 1≠0)与反比例函数y =xk 2(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( ) A .(-1,-2) B .(-1,2) C .(1,-2) D .(-2,-1)【答案】A【解析】∵点M ,N 都在反比例函数的图象上,且两点的连线经过原点,∴M ,N 关于原点对称.∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故选A. 【知识点】反比例函数,一次函数7. (2018浙江湖州,7,3) 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组合恰好抽到同一个小区的概率是( ) A .91 B .61 C .31 D .32 【答案】C【解析】设两个小组分别为甲和乙,三个小区分别为1,2,3.所有可能的抽查情况列表如下:3种,所以恰好抽到同一个小区的概率为31.故选C. 【知识点】概率第5题图 ABCE8. (2018浙江湖州,8,3)如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A .AE =EFB .AB =2DEC .△ADF 和△ADE 的面积相等D .△ADE 和△FDE 的面积相等【答案】C【解析】选项A ,∵D 为BC 的中点,∴所以BD =CD .∵FD =CD ,∴FD =BD .∴∠B =∠BFD .∵∠C =∠DFE ,∴ ∠B +∠C =∠BFD +∠DFE .∴∠F AE =∠AFE .∴AE =FE .选项A 正确.选项B ,∵E 为AC 的中点,D 为BC 的中点,∴DE 为△ABC 的中位线.∴AB =2DE .选项B 正确. 选项C ,∵BF ∥DE ,∴△ADF 和△ADE 的高相等.但不能证明AF =DE ,∴△ADF 和△ADE 的面积不一定相等.选项C 错误.选项D ,△ADE 和△FDE 同底等高,面积相等,选项D 正确.故选C. 【知识点】等腰三角形,折叠,中位线,三角形的外角9. (2018浙江湖州,9,3)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连结OG .问:OG 的长是多少?大臣给出的正确答案应是( )A .3rB .(1+22)r C .(1+23)r D .2r【答案】D【解析】连接AD ,AG ,则AD 经过点O .∵六个点等分圆,∴可求得AC =3r .∵△AOG 是直角三角形,∴由勾股定理可知OG 的长为错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由表可知,共有 9 种等可能结果,其中两个组恰好抽到同一个小区的结果有 3 种, 所以两个组恰好抽到同一个小区的概率为 故选:C. 点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成 的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到 的知识点为:概率=所求情况数与总情况数之比. 8. 如图,已知在△ABC 中,∠BAC>90°,点 D 为 BC 的中点,点 E 在 AC 上,将△CDE 沿 DE 折叠,使 得点 C 恰好落在 BA 的延长线上的点 F 处,连结 AD,则下列结论不一定正确的是( ) .
6. 如图,已知直线 y=k1x(k1≠0)与反比例函数 y= (k2≠0)的图象交于 M,N 两点.若点 M 的坐标是
(1,2) ,则点 N 的坐标是( )
A. (﹣1,﹣2) 【答案】A
B. (﹣1,2)
C. (1,﹣2)
D. (﹣2,﹣1)
【解析】分析:直接利用正比例函数的性质得出 M,N 两点关于原点对称,进而得出答案.
A.
B.
C.
D.
【答案】C 【解析】分析:将三个小区分别记为 A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即 可. 详解:将三个小区分别记为 A、B、C, 列表如下: A A B C (A,A) (A,B) (A,C) B (B,A) (B,B) (B,C) C (C,A) (C,B) (C,C)
则这一天 16 名工人生产件数的众数是( ) A. 5 件 【答案】B 【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解. 详解:由表可知,11 件的次数最多,所以众数为 11 件, 故选:B. 点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据. 5. 如图,AD,CE 分别是△ABC 的中线和角平分线.若 AB=AC,∠CAD=20°,则∠ACE 的度数是( ) B. 11 件 C. y=k1x(k1≠0)与反比例函数 y= (k2≠0)的图象交于 M,N 两点, ∴M,N 两点关于原点对称, ∵点 M 的坐标是(1,2), ∴点 N 的坐标是(-1,-2). 故选:A. 点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出 M,N 两点位置关系是解题关键. 7. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三 个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. 【答案】D
B.
C.
D.
【解析】从左边看是一个正方形,正方形的左上角是一个小正方形, 故选 C. 4. 某工艺品厂草编车间共有 16 名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人
的生产件数.获得数据如下表: 生产件数(件) 人数(人) 10 1 11 5 12 4 13 3 14 2 15 1
浙江省湖州市 2018 年中考数学试题
一、选择题(本题共 10 小题,每小题 3 分,共 30 分)
1. 2018 的相反数是( )
A. 2018 【答案】B
B. ﹣2018
C.
D.
【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 详解:因为 与 只有符号不同,
的相反数是 故选 B. 点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键. 2. 计算﹣3a•(2b) ,正确的结果是( ) A. ﹣6ab 【答案】A 【解析】分析:根据单项式的乘法解答即可. 详解:-3a•(2b)=-6ab, 故选:A. 点睛:此题考查单项式的除法,关键是根据法则计算. 3. 如图所示的几何体的左视图是( ) B. 6ab C. ﹣ab D. ab
∵点 D 是 BC 中点, ∴BD=CD, 由折叠知,∠ACB=∠DFE,CD=DF, ∴BD=CD=DF, ∴△BFC 是直角三角形, ∴∠BFC=90°, ∵BD=DF, ∴∠B=∠BFD, ∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,
∴AE=EF,故 A 正确, 由折叠知,EF=CE, ∴AE=CE, ∵BD=CD, ∴DE 是△ABC 的中位线, ∴AB=2DE,故 B 正确, ∵AE=CE, ∴S△ADE=S△CDE, 由折叠知,△CDE≌△△FDE, ∴S△CDE=S△FDE, ∴S△ADE=S△FDE,故 D 正确, ∴C 选项不正确, 故选:C. 点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本 题的关键. 9. 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为 r 的⊙O 六等分,依次得到 A,B,C,D,E,F 六个分点; ②分别以点 A,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连结 OG. 问:OG 的长是多少? 大臣给出的正确答案应是( )
A. AE=EF
B. AB=2DE D. △ADE 和△FDE 的面积相等
C. △ADF 和△ADE 的面积相等 【答案】C
【解析】分析:先判断出△BFC 是直角三角形,再利用三角形的外角判断出 A 正确,进而判断出 AE=CE,得出 CE 是△ABC 的中位线判断出 B 正确,利用等式的性质判断出 D 正确. 详解:如图,连接 CF,
A. 20° 【答案】B
B. 35°
C. 40°
D. 70°
【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°, ∠B=∠ACB= (180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE= ∠ACB=35°. 详解:∵AD 是△ABC 的中线,AB=AC,∠CAD=20°, ∴∠CAB=2∠CAD=40°,∠B=∠ACB= (180°-∠CAB)=70°. ∵CE 是△ABC 的角平分线, ∴∠ACE= ∠ACB=35°. 故选:B. 点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上 的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.