电力电子技术__第五章.pptx

合集下载

电力电子技术第五章直流-直流变流电路PPT课件

电力电子技术第五章直流-直流变流电路PPT课件

(5-37) O
i
t
o
当tx<t0ff时,电路为电流断续工作状态, tx<t0ff是电流断续的条件,即
m
1 e 1 e
(5-38)
i
i
1
2
I
20
O
t
tt
t
t
on
1
x
2
t
off
T
c)
图5-3 用于直流电动机回馈能 量的升压斩波电路及其波形
c)电流断续时
16/44
5.1.3 升降压斩波电路和Cuk斩波电路
◆斩波电路有三种控制方式
☞脉冲宽度调制(PWM):T不变,改变ton。 ☞频率调制:ton不变,改变T。 ☞混合型:ton和T都可调,改变占空比
5/44
5.1.1 降压斩波电路
■对降压斩波电路进行解析
◆基于分时段线性电路这一思想,按V处于通态和处于断态两个过程 来分析,初始条件分电流连续和断续。
◆电流连续时得出
3/44
5.1.1 降压斩波电路
■降压斩波电路(Buck Chopper)
◆电路分析
☞使用一个全控型器件V,若采用晶闸
管,需设置使晶闸管关断的辅助电路。
☞设置了续流二极管VD,在V关断时
给负载中电感电流提供通道。
☞主要用于电子电路的供电电源,也
可拖动直流电动机或带蓄电池负载等。
◆工作原理
☞ t=0时刻驱动V导通,电源E向负载
☞输出电流的平均值Io为
EI1 U o I o
Io
Uo R
1
E R
(5-24) (5-25)
☞电源电流I1为
I1
Uo E
Io

电力电子技术(完整幻灯片PPT

电力电子技术(完整幻灯片PPT
1-3
2.1.1 电力电子器件的概念和特征
电力电子器件的损耗 通态损耗
主要损耗 断态损耗 开关损耗
开通损耗 关断损耗
通态损耗是器件功率损耗的主要成因。
器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
1-4
2.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路
恢复特性的软度:下降时间与
延复迟系时数间,用的S比r表值示tf。/td,或称恢uFFra bibliotek2V0
b) tfr
t
图2-6 电力二极管的动态过程波形
a) 正向偏置转换为反向偏置
b) 零偏置转换为正向偏置
1-17
2.2.2 电力二极管的基本特性
关断过程
IF
diF
dt
trr
须经过一段短暂的时间才能重新获 UF
td
A
G
KK
A A
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
图2-7 晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
外形有螺栓型和平板型两种封装。
四层三结三极。
螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便。
平板型晶闸管可由两个散热器将其夹在中间。
电力电子技术(完整幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!

(2024年)电力电子技术完整版全套PPT电子课件

(2024年)电力电子技术完整版全套PPT电子课件

实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26

电力电子技术第五章

电力电子技术第五章

率,从而同时实现变压和变频。
PPT文档演模板
电力电子技术第五章
•5.1 概述
• 冲量(面积)等效原理
– 大小、波形不相同的窄脉冲变量作用于惯性系 统时,只要它们的冲量即变量对时间的积分相 等,其作用效果基本相同。
– 可推广到阻感电路中。
PPT文档演模板
电力电子技术第五章
•5.1 概述
•形状不同而冲量相同的各种窄脉冲
•0.4
•0.2
•k •1
• n=1,3,5,…时,
•n •0
• k=3(2m-1)±1 ,m=1,2,…;
•a•=•1.0 •a•=•0.8 •a•=•0.5 •a•=•0
•0 ••+-•2••+-•4 •0 ••+-•1••+-•3••+-•5 •0 ••+-•2••+-•4
•1
•2
•3
•角频率
• 死区时间会给输出的PWM波带来影响,使其稍稍 偏离正弦波。
PPT文档演模板
电力电子技术第五章
•5.2.2 SPWM的基波电压
• SPWM脉冲电压:脉冲宽度按照正弦规律变化的 脉冲电压序列。
• 其基波电压幅值与各段脉宽有着直接关系,改变 各个脉冲的宽度,就可以平滑地调节逆变器输出 电压基波幅值。
PPT文档演模板
电力电子技术第五章
•5.2.4 异步调制和同步调制
• 异步调制 – 载波信号和调制信号不同步的调制方式,通常保持fc固定不变, 当fr变化时,载波比N是变化的 – 缺点: • 在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定, 正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称。 • 当信号频率增高时,N减小,一周期内的脉冲数减少,使得输出 PWM波和正弦波差异变大。

电力电子技术第5章dPPT课件

电力电子技术第5章dPPT课件
❖ 但是,SPWM的载波频率也不易过高,除了受功率器件 的允许开关频率制约外,还要考虑开关损耗和换流损耗 会随开关频率的提高而增加。另外,开关瞬间电压或电 流的急剧变化形成很大的du/dt或di/dt,会产生强的电磁干 扰,还会在线路和器件的分布电容和电感上引起冲击电 流和尖峰电压。
5.5.2 异步调制与同步调制
不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的 脉冲也不对称。 ❖ 当fr较低时,N较大,一周期内脉冲数较多,脉冲不对称产生 的不利影响都较小。 ❖ 当fr增高时,N减小,一周期内的脉冲数减少,脉冲不对称的 影响就变大。
2. 同步调制 ——载波比N等于常数,并在变频时使载波和 参考信号保持同步的调制方式。
压SPWM波由±2Ud/3、±Ud/3和0五种电平组成。
VD1
VD3
VD5
➢ 也可用等效电路法直接得到线电压
VT1
VT3
VT5
u
ZL
uuv和相电压uuN的波形。
Ud
iu v iv w
VT4
VT6
VT2
iw
ZL ZL
N
VD4
VD6
VD2
u
uru
uc
urv
urw
O
t
uuv
Ud
O
uuN
2U d 3
O
Ud
(3)输出频率和电压都在逆变器内控制和调节,其响应的速 度取决于控制回路,而与直流回路的滤波参数无关,所 以调节速度快,并且可使调节过程中频率和电压的配合 同步,以获得好的动态性能。
(4) 输出电压或电流波形接近正弦,从而减少谐波分量。
4. 关于SPWM的开关频率
❖ SPWM调制后的信号中除了含有参考信号和频率很高的载 波频率及载波倍频附近的频率分量之外,几乎不含其它 谐波,特别是接近基波的低次谐波。因此,SPWM的开关 频率越高,谐波含量越少,即载波频率越高,SPWM波越 接近正弦波。

最新文档-电力电子技术第5章-PPT精品文档

最新文档-电力电子技术第5章-PPT精品文档

VD 3 V5
VD 5
N'
B
N
Ud 2
+ V4 C
VD4 V6
VD 6
V
C
2
VD 2

依次相差120°。 当urA>uc时,V4关断,V1或
uuuurrrUVWc
VD1导通,则uAN’=Ud/2
调制 电路
三相桥逆变电路
– 当urA<uc时, V1关断,V4 或VD4导通,则uUN’=-Ud/2
要它们的冲量即变量对时间
f (t)
f (t)
的积分相等,其作用效果基
d (t)
本相同。
– 图a-d四种激励分别加在具 有惯性的阻感负载时,其输 出响应基本相同。
O
t
O
t
c)
d)
图a、b、c、d分别为方波、三角波、正 弦半波窄脉冲、单位冲击函数δ(t) , 面积都等于1。
-4-
电力工程系
5.1 概述
单相桥逆变桥阻感负载
V2保持导通,V1断开,
V3和V4交替通断;
uo可得-Ud和0两种电平
-13-
电力工程系
5.2.1 计算法和调制法
• 双极性PWM控制方式
u
ur uc
– 在ur的一个周期内,输出
的PWM波只有±Ud两种
O
t
电平
– ur正负半周,对各开关器
uo Ud
件的控制规律相同
uof uo
第5章 PWM控制技术
• PWM(Pulse Width Modulation)控制
– 对脉冲的宽度进行调制的技术,通过对一系列脉冲的宽度 进行调制,来等效地获得所需要的波形(含形状和幅值)。

《电力电子技术》电子课件(高职高专第5版) 5.3 交流电力电子开关

《电力电子技术》电子课件(高职高专第5版)  5.3 交流电力电子开关
图5.3.2 TSC理想投切时刻原理说明
5.3 交流电力电子开关
2、晶闸管投切时间的选择
3)电路特点:
◆由于二极管的作用,在电路不导通时uC总会维持在电源
电压峰值; ◆二极管不可控,响应速度要慢一些,投切电容器的最大
时间滞后为一个周波。
图5.3.3 晶闸管和二极管反并联方改善用电质量
◆是一种很好的无功补偿方式
图5.3.1 TSC基本原理图
5.3 交流电力电子开关
1、电路结构和工作原理(晶闸管反并联)
1)实际常用三相TSC,可三角形联 结,也可星形联结。
2)反并联的晶闸管控制C并入电网 或从电网断开,如图5.3.1(a)。
3)串联电感很小,用来抑制电容 器投入电网时的冲击电流。
4)为避免电容器组投切造成较大 电流冲击,一般把电容器分成几组,如 图5.3.1(b)所示,可根据电网对无功的 需求而改变投入电容器的容量。
图5.3.1 TSC基本原理图
5.3 交流电力电子开关
2、晶闸管投切时间的选择
1)选择原则:投入时刻交流电源电压和电容器预充电 电压相等,防止冲击电流。
2)理想选择:理想情况下,希望电容器预充电电压为 电源电压峰值,这时电源电压的变化率为零,电容投入过 程不但没有冲击电流,电流也没有阶跃变化。
电力电子技术(第5版) 第5章 交流变换电路
5.3 交流电力电子开关
作用
5.3 交流电力电子开关
将晶闸管反并联后串入交流电路代替机械开关, 起接通和断开电路的作用;
优点
◆响应速度快、无触点寿命长、可频繁控制通断;
◆控制晶闸管总是在电流过零时关断,在关断时不会 因负载或线路电感存储能量而造成过电压和电磁干扰;
特点(与交流调功电路的区别)

《电力电子技术》电子课件(高职高专第5版) 5.4 交-交变频电路

《电力电子技术》电子课件(高职高专第5版)  5.4 交-交变频电路
图5.4.3交-交变频电路的波形图(a变化)
5.4.1 单相输出交-交变频电路
2、变频电路的工作过程(电感性负载)
图5.4.4 交-交变频电路电感性负载时的输出电压和电流波形
对于电感性负载,输出电压超前电流。一个周期可以分为六个阶段 第一阶段:输出电压过零, u0为正,i0<0,反组整流器工作在有源 逆变状态,正组整流器被封锁;
5.4.1 单相输出交-交变频电路
2、变频电路的工作过程(电感性负载)
图5.4.4 交-交变频电路电感性负载时的输出电压和电流波形
第二阶段:电流过零。为无环流死区;
第三阶段:i0>0,u0>0。正组整流器工作在整流状态,反组整流器
被封锁。
5.4.1 单相输出交-交变频电路
2、变频电路的工作过程(电感性负载)
◆以低于电源的频率切换正反组整流器 的工作状态,在负载端就可获得交变的输出 电压;(如图5.4.2 )
◆晶闸管的开通与关断必须采用无环流 控制方式,防止两组晶闸管桥同时导通;
图5.4.2 单相交流输入时交- 交变频电路的波形图
5.4.1 单相输出交-交变频电路
电路控制特点:
(1)一个周期内控制角a固定不变时,输出电压为含有大量的谐波矩
电源进线通过进线电抗器 接在公共的交流母线上。
电源进线端公用,故三相单 相变频电路的输出端必须隔离, 为此,交流电动机的三个绕组 必须拆开,同时引出六根线。
主要用于中等容量的交流 调速系统。
图5.4.7公共交流母线进线方式的
三相交-交变频电路原理图
5.4.2 三相输出交-交变频电路
2、输出星形联结方式
5.4.2 三相输出交-交变频电路
交-交变频器主要用于交流调速系统中, 实 际使用的主要是三相交-交变频器。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 分别加在具有惯性的 同一环节上时,其输 出响应基本相同。
Od)
u a)
O u
b) O
5.1 概述
• 将正弦波分成N个彼
此相连的脉冲序列所
组成的波形,用相同
t
数量的等幅不等宽的
矩形脉冲代替,使矩
形脉冲和相应的正弦
波部分面积相等,可
得脉冲序列,即
t
SPWM波形。
5.2.1 计算法和调制法
UR
滤波
UI
M
• 1964年德国人A.Schonung和H.stemmler首先提出把 这项通讯技术应用到交流传动中,从此为交流传动的 推广应用开辟了新的局面。
• 通过改变脉冲的不同宽度可以控制逆变器输出交流基 波电压的幅值,通过改变调制周期可以控制其输出频 率,从而同时实现变压和变频。
5.1 概述
u
ur
– 调制信号ur为正弦
uc

O
t
– 载波uc为三角波
uo uo
– 在ur和uc的交点时
Ud
刻控制IGBT的通断
O
t
-Ud
5.2.1 计算法和调制法
u
uc ur
O
uo uo
Ud
uof
O
-Ud 图6-5
• Ur正半周
– 当ur>uc时,uo=Ud
t
– 当 ur<uc时,uo=0
• Ur负半周
– 当ur>uc时,uo=0
t
– 当 ur<uc时,uo= -Ud
• 单极性PWM控制方式特点
– 输出电压三个电平1、0、-1
– 需要两个三角载波
5.2.1 计算法和调制法
• 单极性PWM控制方式
– V1和V2通断互补,V3和V4通
V1
VD1
V3
VD3
断也互补,纵向换流
Ud +
RL
V2
uo
V4
– uo正半周时,V1导通,V2关
• 计算法
– 根据正弦波频率、幅值和半周期脉冲数,准确计算 PWM波各脉冲宽度和间隔,据此控制逆变电路开关器 件的通断,就可得到所需PWM波形。
• 调制法 – 把希望输出的波形(正弦波)按比例缩小作为调制信 号,把接受调制的信号作为载波,通过载波的调制得 到所期望的PWM波形。
5.2.1 计算法和调制法
• 调制波 – 把希望输出的波形作为调制信号,在SPWM中采用 正弦波作为调制波。
• 载波 – 把接受调制的信号作为载波,通过对载波的调制得 到所期望的PWM波形 – 载波:三角波或锯齿波 – 原因:等腰三角波上任一点的水平宽度和高度成线
性关系,且左右对称。
5.2.1 计算法和调制法
• 单极性PWM控制方式
VD2
VD4
断,V3和V4交替通断uo可得
信号波 载波
ur uc
调制 电路
到Ud和零两种电平
– uo负半周,让V2保持导通, V1保持断开,V3和V4交替
单相桥逆变桥阻感负载
通断,uo可得-Ud和零两种 电平
• 单极性PWM控制方式
u
uc ur
– V1和V2通断互补,V3和V4通
断也互补,纵向换流
第5章 PWM控制技术
• PWM(Pulse Width Modulation)控制
– 对脉冲的宽度进行调制的技术,通过对一系列脉冲的 宽度进行调制,来等效地获得所需要的波形(含形状 和幅值)。
– 优点:功率因数高、有效地进行谐波抑制、动态响应 快。
– 缺点:高次谐波、du/dt、电磁干扰
5.1 概述
• 死区时间的长短主要由功率开关器件的关断时间 决定。
• 死区时间会给输出的PWM波带来影响,使其稍稍 偏离正弦波。
5.2.2 SPWM的基波电压
• SPWM脉冲电压:脉冲宽度按照正弦规律变化的 脉冲电压序列。
O
出的PWM波只有±Ud两
t
种电平 uo Ud
– ur正负半周,对各开关
uof uo
器件的控制规律相同
O
t
-Ud
5.2.1 计算法和调制法
• 双极性PWM控制方式
• 当ur >uc时,驱动V1、V4 – 如io>0,则V1和V4通 – 如io<0,VD1和VD4通
V1
Ud + V2
VD1
V3
RL
uo
O
t
– uo正半周时,V1导通,V2关
断,V3和V4交替通断uo可得
uo Ud
到Ud和零两种电平
uo uof
– uo负半周,让V2保持导通,
O
t
V1保持断开,V3和V4交替
-Ud
通断,uo可得-Ud和零两种
图6-5
电平
5.2.1 计算法和调制法
• 双极性PWM控制方式
u
ur uc
– 在ur的一个周期内,输
O
电平构成
u rA
u rB
uc
ur C
t
t
t
t
图6-8
t
2Ud
Ud
3
3
t
5.2.1 计算法和调制法
• 负载相电压uAN可由下式求得
u AN
u AN '
-
u AN
'
uBN ' 3
u CN
'
• 负载相电压PWM波由(±2/3)Ud、(±1/3)Ud和0共 5种电平组成
5.2.1 计算法和调制法
• 同一相上下两臂的驱动信号互补,为防止上下臂 直通而造成短路,在上下两臂切换时留一小段上 下臂都施加关断信号的死区时间。
• 冲量(面积)等效原理
– 大小、波形不相同的窄脉冲变量作用于惯性系 统时,只要它们的冲量即变量对时间的积分相 等,其作用效果基本相同。
– 可推广到阻感电路中。
5.1 概述
形状不同而冲量相同的各种窄脉冲
f (t)
f (t)
O
tO
t
a)
b)
f (t)
f (t)
d (t)
• 图a、b、c分别为方波、 三角波、正弦半波窄 脉冲,图d单位冲击函 数δ(t) ,面积都等 于1。
5.2.1 计算法和调制法
• 双极性PWM控制方式
u
O
– uAN’、uBN’和uCN’的
uA N'
Ud
2
PWM波形只有±Ud/2
O
-
Ud 2
uBN '
两种电平
Ud 2
O
-
Ud 2
– 线电压波形uAB的波形
uCN'
Ud 2
O
可由uAN’-uBN’得出
u AB
Ud
– 逆变器输出线电压
O
- Ud
PWM波由±Ud和0三种 uAN
Ud 2
+ V1 C A
VD 1 V3
VD 3 V5
VD 5
载波uc,三相的调制信号依次
N'
B
N
Ud 2
+ V4 C
VD4 V6
VD 6
V
C
2
VD 2
相差120°。
– 当urA>uc时,V4关断,V1或
uuuurrrUVWc
VD1导通,则uAN’=Ud/2
调制 电路
三相桥逆变电路
– 当urA<uc时, V1关断,V4或 VD4导通,则uUN’=-Ud/2
V4
VD2
VD3 VD4
– 不管哪种情况uo=Ud • 当ur<uc时,驱动V2、V3
信号波 ur 载波 uc
调制 电路
– 如io<0,V2和V3通
单相桥逆变电路
– 如io>0,VD2和VD3通
– 不管哪种情况uo=-Ud
5.2.1 计算法和调制法
• 双极性PWM控制方式
– 三相的PWM控制公用三角波
相关文档
最新文档