总体 个体 样本 样本容量的概念

合集下载

生物统计—名词解释

生物统计—名词解释

生物统计—名词解释1.总体:根据研究目的确定的研究对象的全体称为总体2.个体:总体中的一个研究单位称为个体3.样本:总体的一部分称为样本4.样本含量:样本中所包含的个体数目叫样本容量或大小5.随机样本:总体中随机抽取的个体所构成的样本6.参数:由总体计算的特征数叫参数u…总体平均数7.统计量:由样本计算的特征数叫统计量S…样本标准差8.准确性:在调查或试验中其中一试验指标或性状的观测值与其真值接近的程度9.精确性:指调查或试验中同一试验指标或性状的重复观测值彼此接近的程度10.系统误差:由于许多无法控制的内在或外在的偶然因素,如试验动物的初始条件、饲养条件、管理措施等尽管在试验中力求一致,但不可能绝对一致所造成11.偶然误差:由于试验动物的初始条件相差较大,实验条件、实验仪器以及实验记录等引起的误差12.连续性变异资料:各个观测值之间的变异是连续性的资料13.离散(不连续)型资料:各个观测值只能以整数表示,它们之间是不连续的资料14.算术平均数:资料中各观测值的总和除以观测值个数所得的商,简称平均数15.标准差:标准差指统计上用于衡量一组数值中其中一数值与其平均值差异程度的指标。

标准差被用来评估价格可能的变化或波动程度。

16.方差:方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。

17.离均差平方和:就是一个数列中的每个数和平均值的差的平方的和18.变异系数:标准差与平均数的比较可以消除单位和平均数不同对两个或多个资料变异程度比较的影响c.v19.试验:根据其中一研究目的,在一定条件下对自然现象所进行的观察或试验20.随机事件:随机试验的每一种可能结果,在一定条件下可能发生,也可能不发生称为随机事件21.概率:在相同条件下进行n次重复试验,当试验重复数n逐渐增大时,随机事件发生的次数与n之比越来越稳定地接近的其中一数值22.小概率原理:在统计学上,把小概率事件在一次试验中看成是实际不可能发生的事情23.正态分布:连续性随机变量x的概率分布密度函数为…….的分布24.标准正态分布:N~(0,1)的正态分布,即概率密度分布函数……的连续型随机变量x的分布25.双侧(两尾)概率:随机变量x落在平均数u加减不同倍数标准差?区间之外的概率26.单侧(一尾)概率:随机变量x落在小于u-k?或大于u+k?的概率27.二项分布:设随机变量x所有可能取的值为零和正整数:0,1,2n且有Pn(k)=Cnkpkqn-k k=0,1..n则称随机变量x服从参数为n和p的二项分布 28. 标准误:即样本均数的标准差,是描述均数抽样分布地离散程度及衡量均数抽样误差大小的尺度。

7 参数估计

7  参数估计

3个抽样实验结果图示
均数
均数
5. 15 5. 36 5. 57 5. 77 5. 98 6. 19
频数 100 150 200 250 300 350 400 450 50 0
n = 30; SX = 0.0920
均数
3. 71 3. 92 4. 12 4. 33 4. 54 4. 74 4. 95 5. 15 5. 36 5. 57 5. 77 5. 98 6. 19
t= X −µ X −µ = SX S/ n t变 换
σX
N(0,1) 0 t(ν) (
X
0
t 分布与正态分布的比较
t 分布:形状与 分布:形状与N(0,1)相似, 相似, 相似 分布中间较小, 但t分布中间较小,两侧较大。 分布中间较小 两侧较大。
随着v增大, 分布逼近 随着 增大,t分布逼近 增大 分布逼近N(0,1); ; v ∞时,t分布演变成 时 分布演变成 分布演变成N(0,1)。 。
参数估计
parameter estimation
统计学
统计描述
统计推断
参数估计
假设检验
总体、 总体、个体和样本
总体(population):调查研究的事物或现象的全体 个体(item unit):组成总体的每个元素 样本(sample):从总体中所抽取的部分个体 样本容量(sample size):样本中所含个体的数量
总体参数
µ、σ、π
可信区间(confidence interval, CI) 可信区间
可信区间
均 数

方差
σ2 未知
σ2 已知
总体均数的估计
点估计: 点估计:point estimation 区间估计: 区间估计:interval estimation 样本统计量 点估计) (点估计)

统计学的几个概念

统计学的几个概念

一 统计学的几个概念 1、总体和个体:在统计学中,研究对象的全体称为总体;组成总体的每个单位,即每个研究对象称为个体;总体中所包含的个体的数量------总体容量;容量有限-----有限总体; 容量无限-------无限总体 2、样本:从总体中抽出的部分个体组成的集合称为称为来自总体的样本。

通常样本是相互独立且与总体同分布;样本中所含个体的数量称为样本容量。

一般地:设X 是一个随机变量,n X X X ,,,21 是一组相互独立且与X 同分布的随机变量,则称X 是总体,n X X X ,,,21 为来自总体X 的简单随机样本,简称:样本,n 为样本容量。

3、统计量定义:设n X X X ,,,21 为来自总体X 的简单随机样本,),,,(21n X X X g 是一个关于n X X X ,,,21 的连续函数,若g 中不含 任何未知参数,则称),,,(21n X X X g 是一统计量. 常见的统计量有:①样本平均值: X = ∑=ni i X n 11②样本方差:212)(11∑=--=ni i X X n S 备注: 212)(1∑=-=ni i X X n S 叫做未修正的样本方差;2S 称为修正的样本方差,平时若未特别标明,样本方差均指修正的2S2S 有较简单的计算公式: )(111222∑=--=n i i X n X n S证明:③样本标准差:21)(11∑=--=ni i X X n S ④样本k 阶原点矩:∑==n i ki k X n A 11 ,2,1=k⑤样本k 阶中心矩:∑=-=n i ki k X X n A 1)(1 ,2,1=k二、抽样分布统计量的分布叫做抽样分布. 1.样本均值的分布:由中心极限定理可知: 只要n X X X ,,,21 是相互独立且同分布的(设i i DX EX ,μ==2σ),则 当n 充分大时,X 就可近似的服从正态分布.即X ~ ),(2nN σμ应用举例:设X ~],[b a U ,5021,,,X X X 是来自X 的一个样本, X 是样本均值,求)(X E 和)(X D解: 因为X ~],[b a U ,所以2ba EX +=, 12)(2ab DX -=故)(X E =2ba EX +=,)(X D =600)(12ab DX n -=设总体X ~),(2σμN ,n X X X ,,,21 是一个样本, X 是样本均值,,求①设25=n ,求}2.02.0{σμσμ+<<-X P②要使05.0}1.0{≤>-σμX P ,n 至少应等于多少? 解:设X 与Y 相互独立,而且都服从)9,30(N ,2021,,,X X X 和2521,,,Y Y Y 是分别来自X 与Y 的样本,求4.0>-Y X 的概率?解:结论:若(n X X X ,,,21 )是来自总体2~(,)X N μσ的一个样本,X 为样本均值,则①~X ),(2nN σμ②X 与2S 相互独立。

样本,样本容量,总体,个体的概念

样本,样本容量,总体,个体的概念

样本,样本容量,总体,个体的概念
总体:总体(population)是包含所研究的全部个体(数据)的集合。

个体:通常是数字的名称,或者是某个物体的计量单位。

样本:样本(specimen)是观测或调查的一部分个体,总体是研究对象的全部。

样本容量:样本容量是指一个样本中所包含的单位数。

总体:总体(population)是包含所研究的全部个体(数据)的集合,它通常由所研究的一些个体组成,如由多个企业构成的集合,多个居民户构成的集合,多个人构成的集合,等等。

个体:通常就是数字的名称,或者就是某个物体的计量单位。

通常指一个生物个体或是一个群体中的特定主体。

样本:样本(specimen)是观测或调查的一部分个体,总体是研究对象的全部。

样本容量:样本容量就是指一个样本中所涵盖的单位数,通常用n 则表示,它就是样本推测中非常关键的概念。

样本容量的大小与推断估计的准确性有着直接的联系,即在总体既定的情况下,样本容量越大其统计估计量的代表性误差就越小,反之,样本容量越小其估计误差也就越大。

通常的,样本的内容就是带着单位的,比如:调查某中学名中学生的视力情况中,样本就是名中学生的视力情况,而样本容量则为。

样本容量的大小涉及到调研中所要包括的单元数。

样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。

比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。

某一个样本中的个体的数量就是样本容量。

注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。

样本容量不需要带单位。

概率与统计

概率与统计
<1>众数:一组数据中出现次数最多的数。 <2>中位数:将数据从小到大排列,最中间的数是中位数。 <3>平均数:反映一组数据平均水平。 <4>标准差:反映一组数据离散程度。 <5>方差:标准差的平方。 <6>极差:一组数据中最大值和最小值的差。
平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角 度和适用的范围又不尽相同。
三.变量间的相关关系及回归分析
1.相关关系:
当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的 关系叫做相关关系。与函数关系不同,相关关系是一种不确定关系。
2.散点图
3.回归分析:
对具有相关关系的两个变量进行统计分析的方法叫做回归分析。
ˆx a <1>回归直线方程: y ˆ b
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为 样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这 种抽样方法叫做简单随机抽样。(抽签法,随机数表法)
3.系统抽样
当总体中的个体比较多时,首先把总体分成均衡的若干部分,然后按照 事先确定的规则,从每一部分中抽取一个个体,得到所需要的样本,这种抽 样方法叫做系统抽样。
(2)特点:
①无限性:试验中所有可能出现的结果(基本事件)有无限多个; ②等可能性:试验结果在每一个区域内均匀分布。
构成事件A的区域长度(面积或体 积) (3)计算公式: P( A) 试验的全部结果所构成 的区域长度(面积或体 积)
7.条件概率 (1)定义:
对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率 叫做条件概率,用符号P(B|A)来表示。

大学试验统计复习题

大学试验统计复习题

第一章复习1.解释以下概念:总体、个体、样本、样本容量、变量、参数?1.总体是具有相同性质的个体所组成的集合,是指研究对象的全体。

2.个体是组成总体的根本单元。

3.样本是从总体中抽出的假设干个个体所构成的集合。

4.样本容量是指样本个体的数目。

5.变量是相同性质的事物间表现差异性的某种特征。

6.参数是描述总体特征的数量。

7.统计数是描述样本特征的数量。

8.因素是指试验中所研究的影响试验指标的原因或原因组合。

2.统计数、因素、水平、处理、重复、效应、互作、试验误差?1.水平是指每个试验因素的不同状态(处理的某种特定状态或数量上的差异)。

2.处理是指对受试对象给予的某种外部干预(或措施)。

3.重复是指在试验中,将一个处理实施在两个或两个以上的试验单位上。

4.效应是由处理因素作用于受试对象而引起试验差异的作用。

5.互作是指两个或两个以上处理因素间的相互作用产生的效应。

6.试验误差是指试验中不可控因素所引起的观测值偏离真值的差异,可以分为随机误差和系统误差。

3.随机误差与系统误差有何区别?随机误差也称为抽样误差或偶然误差,它是由于试验中许多无法控制的偶然因素所造成的试验结果与真实结果之间的差异,是不可防止的。

随机误差可以通过试验设计和精心管理设法减小,但不能完全消除。

系统误差也称为片面误差,是由于试验处理以外的其他条件明显不一致所产生的带有倾向性的或定向性的偏差。

系统误差主要由一些相对固定的因素引起,在某种程度上是可控制的,在试验过程中是可以防止的。

4.准确性与精确性有何区别?准确性也称为准确度,是指在调查或试验中某一试验指标或性状的观测值与真值接近的程度。

精确性也称为精确度,是指调查或试验中同一试验指标或性状的重复观测值彼此的接近程度的大小。

准确性是说明测定值对真值符合程度的大小,用统计数接近参数真值的程度来衡量。

精确性是反映屡次测定值的变异程度,用样本中的各个变量问的变异程度的大小来衡量。

填空1.变量按其性质可以分为〔连续〕变量和〔非连续(离散型)〕变量。

总体,样本,个体,样本容量的概念

总体,样本,个体,样本容量的概念

总体,样本,个体,样本容量的概念
随着数据分析越来越受到重视,我们经常会听到一些统计学术语,其中包括总体、样本、个体和样本容量等概念。

掌握这些概念对于正确理解数据分析结果至关重要。

本文将为您逐步解释这些概念。

1. 总体
总体是指我们要研究的全部对象或事物的集合。

举个例子,如果你要研究整个中国学生的消费习惯,那么中国所有学生构成你研究的总体。

2. 个体
个体则是总体中的某个对象或事物。

在上面的例子中,单个学生就可以看作是总体中的一个个体。

3. 样本
样本是从总体中抽取的子集。

使用样本来进行研究可以让我们更加高效地了解总体的情况。

当样本能够充分代表总体时,我们可以通过分析样本数据来推断总体的信息。

4. 样本容量
样本容量是指选择的样本的大小或人数。

这是一个非常重要的概念,因为样本容量的大小将会对研究结论的可靠性产生很大影响。

比如说,如果你要研究全中国学生的消费习惯,但只问50个学生,那么你的研究结果可能并不能充分代表总体。

因此,为了让研究结果更有说服力,我们需要选择更加充分的样本容量。

总之,以上四个概念是数据分析的基础,掌握好这些概念对于数据分析及研究至关重要。

希望本文能够帮助你更好地理解这些概念,为你的研究工作带来更好的效果。

资料:统计调查 知识讲解

资料:统计调查 知识讲解

统计调查知识讲解【学习目标】1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.了解总体、样本、样本容量等相关概念;3. 会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息. 【要点梳理】要点一、统计调查1.统计相关概念总体:调查时,调查对象的全体叫做总体.个体:组成总体的每一个调查对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:样本中个体的数量叫做样本容量(不带单位).要点诠释:(1)“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.(2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.(3) 样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.2. 调查的方法:全面调查和抽样调查(1)全面调查:考察全体对象的调查叫做全面调查.要点诠释:(1)全面调查又叫“普查”,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据.(2)一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.要点诠释:(1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.(2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如“全面调查”得到的结果准确.(3)调查方法的选择:①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.要点二、数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、统计学及其相关概念1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( ).A.0种 B.1种 C.2种 D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【答案】C.【解析】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.【总结升华】总体、样本的考察对象是相同的,所不同的是范围的大小,在本题中,总体、样本都是指考生的成绩,而不是考生.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了600名考生的成绩进行分析,这个问题中().A.2万考生是总体;B.每名考生是个体;C.个体是每名考生的成绩;D.600名考生是总体的一个样本.【答案】C.类型二、普查和抽样调查2. (2015•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况【思路点拨】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【答案】B.【解析】解:A、调查一批电视机的使用寿命情况,调查具有破坏性,适合抽样调查,故A不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意;故选:B.【总结升华】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列调查适合作抽样调查的是( ).A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查【思路点拨】抽样调查不可能进行全面调查的现象.【答案】A.【解析】解:要了解义乌电视台“同年哥讲新闻”栏目的收视率,显然应采用抽样调查的方式.而对于B、D选项,因为漏掉每一个个体携带H1N1病毒者或者“神七”载人飞船有一个小零件不合格,都会出现意想不到的后果,因此需要采用全面调查的方式.了解某班每个学生家庭电脑的数量,范围小,工作量小,一般也采用全面调查的方式.故选A.【总结升华】①在具体的问题情境中,要根据需要选择用全面调查还是抽样调查的方式进行调查;抽样调查得到的信息的准确度受调查对象(即样本)的数量和特点影响,故抽样时必须注意调查对象是否具有代表性和广泛性.举一反三:【变式】下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.【答案】(1)采用的是全面调查方式收集数据的;(2)、(3)是采用抽样调查方式收集数据的.类型三、数据的描述4. (珠海)2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图(如图所示),请你根据这两位同学提供的信息,解答下面的问题:(1)将统计图补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.【思路点拨】依据条形图反映出来的数量作答.【答案与解析】解:(1)因为喜欢排球的12人占抽样总人数的6%,故抽样人数为:122006%=(人),故喜欢乒乓球的人数为:200-12-38-80-20=50(人).(2)喜欢收看羽毛球人数为:201800180200⨯=(人).【总结升华】把小长方形对应的纵轴数相加即得到抽取的调查报告数,这也是样本数;每组所占样本的百分比乘总数即这组调查报告约有的份数.5. 南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图(如图所示):每亩生产成本每亩产量油菜籽市场价格种植面积110元130千克3元/千克500000亩请根据以上信息解答下列问题(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)【思路点拨】由扇形统计图反映出来的信息知:种子占生产成本的10%,根据这一点不难解答本题.【答案与解析】解:(1)种子占成本的百分数为 1-10%-35%-45%=10%,故种植油菜每亩的种子成本为:110×10%=11(元).(2)由统计表知,每亩油菜销售总价为:130×3=390(元),故农民冬种油菜每亩获利390-110=280(元).(3)因为农民种植油菜.每亩获利280元,则500000亩油菜共获利:280×500000=140000000=1.4×108(元).【总结升华】在扇形统计图中,各部分所占的百分比之和=1,扇形对应圆心角度数=该扇形所占百分比×360°.6. 某住宅小区六月份的1至6日每天的用水量变化情况如图所示,那么这6天的平均用水量是A.30吨 B.31吨 C.32吨 D.33吨【答案】C.【解析】解:从折线统计图,可知1日的用水量为30吨,2日的用水量为34吨,3日的用水量为32吨,4日的用水量为37吨,5日的用水量为28吨,6日的用水量为31吨,由此可计算出这6天的平均用水量为(30+34+32+37+28+31)÷6=32(吨).【总结升华】折线图的特点:易于显示数据的变化趋势.举一反三:【变式】近年来国内生产总值增长率变化情况如图, 从图上看下列结论不正确的是( ). A.1995~1999年国内生产总值增长率逐年减少B.2000年国内生产总值的年增长率开始回升C.这7年中, 每年的国内生产总值不断增长D.这7年中, 每年的国内生产总值有增有减【答案】D类型四、综合应用7. 玉树地震后,全国人民慷慨解囊,积极支援玉树人民的抗震救灾,他们有的直接捐款,有的捐物,国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(如图①所示),其中,中华慈善总会和中国红十字会共接收捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是________;(2)全国接收直接捐款数和捐赠物折款数共计约________亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【思路点拨】本题是一道与扇形统计图和条形统计图的综合题.从扇形统计图中,可以获取各部门获得捐赠的百分数.从条形统计图中可以获取其他基金会获得的捐赠为2亿元根据这两点,问题便迎刃而解.【答案与解析】解:(1)1-33%-33%-13%-17%=4%;(2)15.65213%17%=+(亿元);(3)因为中华慈善总会接收捐赠占所有捐赠的13%,故中华慈善总会接收捐赠共计:52×13%=6.76(亿元);(4)设捐赠物折款数为x亿元,依题意有6x+3+x=52,解方程得x=7.故直接捐款数和捐赠物折款数分别是45亿元和7亿元.【总结升华】将条形图和扇形图获得的信息进行整合,充分挖掘两图表中隐含的信息.举一反三:【变式1】如果想表示我国从2000-2010年间国民生产总值的变化情况, 最合适的是采用( ).A. 条形统计图B. 扇形统计图 C.折线统计图 D.以上都很合适【答案】C.【变式2】(2015•恩施州)某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.40 【答案】D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总体、个体、样本和样本容量是统计学中重要的概念,它们在统计分
析和推论中起着至关重要的作用。

在进行统计研究和分析时,研究对
象可以分为总体和个体,而样本则是从总体中选取的一部分个体,样
本容量则是指样本中包含的个体数量。

下面将对这几个概念进行详细
介绍。

一、总体
总体是指研究者所感兴趣的所有个体的集合,它通常包括所有可能的
观察对象。

总体可以是有限的,也可以是无限的。

在实际研究中,如
果研究对象数量较少,那么可以直接对总体进行研究;但如果总体数
量较大或是无限的,采用对总体进行全面调查是费时费力的,因此需
要采用样本的方式进行研究。

总体是统计推断的基础,通过对总体的
研究可以了解整体情况,而且也可以在一定程度上影响样本的选择和
研究方法。

二、个体
个体是指总体中的每一个成员,它可以是人、物、事物等具体的对象。

在统计研究中,个体是研究和观察的具体对象,研究者的观察和测量
对象就是个体。

个体的特征和性质构成了总体的特征和性质,而样本
则是总体的一个子集,通过对样本的研究可以对总体进行推断和分析。

三、样本
样本是从总体中选取的一部分个体,它是对总体的一种代表性抽样。

在实际调查和研究中,往往很难对总体进行全面调查,因此需要从总体中抽取部分个体进行观察和研究。

通过对样本的研究分析,可以推断出总体的性质和特征,从而得出对总体的结论。

样本的选择需要具有一定的代表性,不能存在抽样偏差,否则对总体的推断就会产生较大的误差。

四、样本容量
样本容量是指样本中包含的个体数量,它是样本的大小。

样本容量的大小直接影响着对总体的推断结果,样本容量过小则可能导致推断结果不准确,样本容量过大则可能会造成资源浪费。

在实际研究和调查中,需要根据研究目的、总体规模和资源条件等因素来确定样本容量的大小。

一般来说,样本容量越大,则对总体的推断越准确。

总体、个体、样本和样本容量是统计学中非常重要的概念,它们是统计研究和分析的基础。

在进行统计研究和分析时,需要对这几个概念有清晰的认识,并合理运用于实际研究中,才能得出准确、可靠的结论。

总体、个体、样本和样本容量是统计学中的重要概念,对于统计研究和分析起着至关重要的作用。

在实际调查和研究中,研究者往往需要对总体进行研究和分析,但由于总体的数量较大或是无限的,因
此很难对总体进行全面调查。

这时,就需要采用样本的方式进行研究,通过对样本的研究分析来推断总体的特征和性质,从而得出对总体的
结论。

下面将对总体、个体、样本和样本容量进行更详细的介绍,以
及它们在统计研究和分析中的作用。

一、总体
总体是指研究者所感兴趣的所有个体的集合,它包括了所有可能的观
察对象。

总体可以是有限的,也可以是无限的。

在实际研究中,对于
数量较少的总体,可以直接进行全面调查和研究;但对于数量较大或
是无限的总体,采用全面调查是费时费力的,因此需要采用样本的方
式进行研究。

总体是统计推断的基础,通过对总体的研究可以了解整
体情况,而且也可以在一定程度上影响样本的选择和研究方法。

二、个体
个体是指总体中的每一个成员,它可以是人、物、事物等具体的对象。

在统计研究中,个体是研究和观察的具体对象,研究者的观察和测量
对象就是个体。

个体的特征和性质构成了总体的特征和性质,而样本
则是总体的一个子集,通过对样本的研究可以对总体进行推断和分析。

三、样本
样本是从总体中选取的一部分个体,它是对总体的一种代表性抽样。

在实际调查和研究中,往往很难对总体进行全面调查,因此需要从总体中抽取部分个体进行观察和研究。

通过对样本的研究分析,可以推断出总体的性质和特征,从而得出对总体的结论。

样本的选择需要具有一定的代表性,不能存在抽样偏差,否则对总体的推断就会产生较大的误差。

四、样本容量
样本容量是指样本中包含的个体数量,它是样本的大小。

样本容量的大小直接影响着对总体的推断结果,样本容量过小则可能导致推断结果不准确,样本容量过大则可能会造成资源浪费。

在实际研究和调查中,需要根据研究目的、总体规模和资源条件等因素来确定样本容量的大小。

一般来说,样本容量越大,则对总体的推断越准确。

总体、个体、样本和样本容量是统计学中非常重要的概念,它们是统计研究和分析的基础。

在进行统计研究和分析时,需要对这几个概念有清晰的认识,并合理运用于实际研究中,才能得出准确、可靠的结论。

总体、个体、样本和样本容量在实际调查和研究中的应用十分广泛。

在社会学、心理学、经济学等领域,研究者往往需要对总体进行研究和分析,但由于总体规模庞大,采用样本的方式进行研究是更为合适
和有效的。

通过科学的抽样方法,研究者可以从总体中抽取具有代表
性的样本进行研究和分析,从而推断出总体的特征和性质。

样本在统
计研究中扮演着重要的角色,它直接影响着对总体的推断结果,因此
样本的选择和样本容量的确定需要引起研究者的高度重视。

在实际调查中,样本的选择需要具有一定的代表性,不能存在抽样偏差,否则就会影响到对总体的推断结果。

为了避免样本偏差,研究者
需要根据总体的特点和研究目的,选择合适的抽样方法和样本容量,
确保样本的代表性和准确性。

另外,样本容量的大小也需要根据研究
的具体情况来确定,过小的样本容量可能无法反映总体的特征和性质,而过大的样本容量则可能会造成资源浪费,因此需要在实际研究中认
真考虑样本容量的确定。

总体、个体、样本和样本容量是统计学中的基本概念,它们在统计研
究和分析中起着至关重要的作用。

只有充分理解和合理运用这些概念,才能够进行准确、可靠的统计分析和推断,为实际问题的解决提供科
学的依据。

在进行统计研究和分析时,研究者需要对这些概念有清晰
的认识,并在实际研究中加以运用,从而得出科学、准确的结论。

相关文档
最新文档