烯烃不对称氢化
不对称双羟基化反应

催化导论——不对称双羟基化反应学号:10110310班级:1011031姓名:戴明明摘要不对称双羟基化反应又名为夏普莱斯不对称双羟基化反应,是巴里·夏普莱斯在Upjohn双羟基化反应的基础上,于 1987 年发现的以金鸡纳碱衍生物催化的烯烃不对称双羟基化反应。
与sharpiess环氧化反应一样,该反应也是现代有机合成中最重要的反应之一。
原理不对称二羟基化反应(asymmetric dihydroxylation,AD)是一类重要的催化不对称反应[1],它不仅是许多手性药物,如紫杉醇C13侧链、美托洛尔、普萘洛尔、氨苄青霉素、昆虫激素和维生素D活性代谢物合成中的关键步骤[2],而且还为不对称催化反应中新型配体的合成提供了必需的手性砌块[3].研究该反应的核心问题之一是手性配体的设计与合成.迄今为止,文献已经报道了许多行之有效的配体,但是有些配体制备复杂、分离难度大、价格昂贵,因此设计合成简单,价廉和高效的手性配体仍然是目前的研究重点[4].本研究以天然金鸡纳生物碱奎宁和辛可宁为原料,将其结构中的活性基团羟基转换为碱性更强的氨基,与对氯苯甲酰氯反应得到新的手性配体1和2,考察这两种配体在AD反应中的催化活性及不对称诱导作用.典型的反应条件是四氧化锇(OsO4)和二氢奎宁(DHQ)或二氢奎尼丁(DHQD)的手性配体衍生物作为催化剂,以计量的铁氰化钾、N-甲基吗啉N-氧化物(NMO)或叔丁基过氧化氢作为再氧化剂,并加入其他添加剂如碳酸钾和甲磺酰胺等。
现实条件中常用非挥发性的锇酸盐K2OsO2(OH)4 代替OsO4。
[8][9] 市售的二羟化混合物试剂称为AD-mix,有 AD-mix α(含(DHQ)2-PHAL)和AD-mix β(含 (DHQD)2-PHAL)两种。
大多数烯烃在上述条件下,能都以高产率、高ee值生成光学活性的邻二醇,而且反应条件温和,无需低温、无水、无氧等条件。
DHQ 和DHQD 衍生物可分别用于一对对映异构邻二醇的合成,反应产物的立体构型可根据烯烃的结构,利用下图来进行预测。
有机化学课件 第三章 烯烃3

应经历溴 离子、反式加成。 • 反应经历溴鎓离子、反式加成。
Br H C C CH3 H H3C H C Br
+
H3C C C
H
H C
Br2
CH3
H Br
-
CH3 H CH3 C
Br
CH3
Br C H CH3
CH3 Br H (R) H Br (R) CH3 dl-
CH3 H Br (S) Br H (S) CH3
CH3 CH3 C CH=CH2 CH3 CH3 CH3 C CH CH3 + CH3 H3C Cl CH3 C CH CH3 Cl CH3 83%
HCl
17%
反应经历碳正离子中间体。 反应经历碳正离子中间体。 1,2-甲基迁移、1,2-负氢迁移。重排为更稳定的碳正离子。 1,2-甲基迁移、1,2-负氢迁移。重排为更稳定的碳正离子。
试比较下列分子或离子的超共轭效应大小。 [讨论] (1) 试比较下列分子或离子的超共轭效应大小。 讨论]
1) CH3CH=CH2 CH3CH2CH=CH2 (CH3)2CHCH=CH2 A B C 2) (CH3)3C (CH3)2CH CH3CH2 CH3 A B C D
+ + + +
(2) 试静态分析烯烃双键碳原子上电子云密度的大小。 试静态分析烯烃双键碳原子上电子云密度的大小。
碳正离子稳定性次序: 碳正离子稳定性次序: 3o C+ > 2o C+ > 1oC+ >CH3+
G
C
+
G
C
+
给电子基,使正电荷分散,碳正离子稳定: 给电子基,使正电荷分散,碳正离子稳定: 吸电子基,使正电荷更集中 碳正离子不稳定 碳正离子不稳定; 吸电子基,使正电荷更集中,碳正离子不稳定;
烯烃的不对称双羟基化

烯烃的不对称双羟基化烯烃的不对称双羟基化是有机化学中的一种常见反应,其特点是在不对称的位置上引入两个羟基官能团。
这种反应在制药、化妆品、涂料等领域都有广泛应用。
下面将对这种反应进行深入探讨。
一、反应机制烯烃的不对称双羟基化反应是通过活性氧化剂和还原剂协同作用下实现的。
反应机制主要分为三步:1. 活性氧化剂的加成:例如过氧化氢、过氧酸等,将烯烃中的双键加成成环氧化合物,形成一个不稳定的介质。
2. 还原剂的作用:还原剂将环氧化合物开裂,同时加入羟基官能团,形成不对称的双羟基化物质。
3. 中和反应:反应产生的酸类会与还原剂发生酸碱中和反应,水分子则作为副产物放出。
二、实验条件实现烯烃的不对称双羟基化反应需要一定的实验条件,包括温度、压力、催化剂等。
以下是几个常用的条件:1. 温度:反应通常在室温下进行,但有些烯烃需要在高温下反应。
2. 压力:一般情况下不需要高压,但仍有些烯烃需要在高压下反应。
3. 催化剂:反应需要催化剂的参与,催化剂种类较多,常用的有钌催化剂、磷钼酸盐等。
三、应用领域烯烃的不对称双羟基化反应在化妆品、制药、涂料、农药等领域有着广泛的应用。
以下列举几个应用案例:1. 化妆品:佳丽宝公司通过烯烃的不对称双羟基化反应,成功合成了一种添加到护肤品中的成分,可以改善肌肤干燥,提高肌肤保湿能力。
2. 制药:利用烯烃的不对称双羟基化反应可以合成具有药物活性的化合物,例如抗肿瘤药物。
3. 涂料:烯烃的不对称双羟基化反应可以产生具有特殊性能的化学物质,例如防腐涂料、自清洁涂料等。
总之,烯烃的不对称双羟基化反应具有广泛的应用前景,不仅能够为化妆品、制药、涂料等领域提供重要的功能性化合物,也可以带来巨大的经济效益。
1,5-环辛二烯氯化铑 标准

一、概述5-环辛二烯氯化铑是一种重要的有机合成催化剂,它在有机合成领域有着广泛的应用。
本文将对5-环辛二烯氯化铑的性质、合成方法和应用进行详细介绍。
二、5-环辛二烯氯化铑的性质1. 分子结构:5-环辛二烯氯化铑的分子式为C8H12ClRh,其结构中包含一个铑原子和一个5-环辛二烯配体,铑原子与配体之间形成了配位键。
2. 物理性质:5-环辛二烯氯化铑为橙黄色固体,在常温常压下稳定。
3. 化学性质:5-环辛二烯氯化铑能够催化烯烃的氢化反应,具有较高的催化活性和选择性。
三、5-环辛二烯氯化铑的合成方法1. 五环辛二烯氯化铑的合成一般采用氯化铑和五环辛二烯在氯化钠存在下反应得到2. 五环辛二烯氯化铑可以与其它含有多重键的化合物反应,生成氯代铑的砷配合物3. 五环辛二烯氯化铑可以与多种配体发生配位反应四、5-环辛二烯氯化铑的应用1. 有机合成:5-环辛二烯氯化铑常用于烯烃的氢化反应,具有高效、高选择性的特点,可用于合成高附加值的化合物。
2. 医药领域:5-环辛二烯氯化铑在医药领域也有一定的应用,可以作为药物分子的合成催化剂。
3. 材料科学:5-环辛二烯氯化铑可以用于聚合物材料的合成,提高材料的附加值和性能。
结语5-环辛二烯氯化铑是一种重要的有机合成催化剂,具有广泛的应用前景。
通过对其性质、合成方法和应用的介绍,希望能够加深对这一化合物的理解,并促进其在相关领域的进一步研究和开发。
5-环辛二烯氯化铑在有机合成领域有着广泛的应用,其独特的催化特性使其成为许多重要有机化学反应的关键催化剂。
下面将进一步探讨5-环辛二烯氯化铑在不同有机合成反应中的应用以及其在医药领域和材料科学中的潜在应用。
五、5-环辛二烯氯化铑在不同有机合成反应中的应用1. 烯烃的氢化反应:5-环辛二烯氯化铑催化剂在烯烃的氢化反应中表现出较高的催化活性和选择性,可以将烯烃高效地转化为烷烃。
这一反应在有机合成中具有广泛的应用,常用于合成医药、农药、香料等化合物的中间体。
不对称催化氢化反应

该部分化合物包括:α,β-不饱和羧酸、 α,β- 不饱和酯、 α,β- 不饱和酰胺的不对称 氢化反应,较引人注目的是α-芳基丙烯酸 的不对称氢化反应。
具有光学活性的α-芳基丙烯酸是一类 有效的消炎镇痛药物,例如:奈普生 (naproxen)和异丁基布洛芬 (ibuprofen)。
铑-手性二膦催化剂同样也适用于 α,β-不饱和羧酸及其衍生物的不对称氢 化反应。
本部分内容提要:
一、 C=C双键的不对称氢化反应 ; 二、 C=O双键的不对称氢化反应 ; 三、 亚胺的不对称氢化反应。
一、 C=C双键的不对称氢化反应:
1、 α-乙酰胺基丙烯酸及其衍生物的不对 称氢化反应; 2、 α,β-不饱和羧酸及其衍生物的不对称 氢化反应。
在C=C双键不对称氢化反应的研究中人 们发现,当C=C双键上带有极性基团时, 往往可以得到较高的光学产率。
这是因为:这些极性基团可以和催化剂 的金属配位,增强了催化剂-反应物所形成 的配合物的刚性,从而提高了反应的对映 选择性。
极性官能团可以是氨基、酰胺基、羧 基、酯基、羰基、羟基等。 近年来,简单烯烃的不对称氢化反应 的研究也取得了进展,在金属铱、钛等 催化剂的作用下,也获得了很好的对映 选择性。
在铑-手性二膦催化剂的作用下,烯胺 (enamide)也可以发生不对称氢化反应。
烯胺的不对称氢化反应是制备手性酰胺 (或手性胺)的有效方法之一。 催化反手性膦配体的手性中心位于磷原子上。 当烷基为叔丁基时,与[Rh(NBD)2]+BF4-生 成的催化剂在α-乙酰胺基肉桂酸甲酯的不 对称氢化反应中获得了99.9% e.e.的对映选 择性。
③Z-构型比E-构型选择性高。
rh催化的不对称氢酰化全合成

rh催化的不对称氢酰化全合成全文共四篇示例,供您参考第一篇示例:随着有机合成化学领域的不断发展,催化剂的设计和应用在现代有机合成中起着至关重要的作用。
铑(rhodium)催化的不对称氢酰化反应作为一种重要的手性合成方法,广泛应用于天然产物全合成和医药化学领域。
本文将介绍rh催化的不对称氢酰化全合成的原理、反应条件、机理以及一些代表性实例。
1. 催化原理不对称氢酰化是一种通过使用手性催化剂在不对称碳-碳双键处催化加成的反应,实现对手性酮或羧酸的构造。
在这一反应中,铑催化剂能够催化烯烃与甲酰氯在氢气的存在下发生对映选择性的氢化反应,生成手性醇或羧酸衍生物。
铑催化的不对称氢酰化反应不仅选择性高,而且反应底物范围广,可广泛应用于天然产物的全合成。
2. 反应条件(1)催化剂:铑(Rh)催化剂通常采用手性的膦配体配合物,如TPPTS、Josiphos等,以提高对映选择性。
(2)底物:反应底物通常是不对称的烯烃或烷酮,通过选择合适的配体和反应条件,可以获得高对映选择性的产物。
(3)氢源:气相氢气或溶解的氢气是不对称氢酰化反应的氢源,通过调节氢气的压力和反应温度,可以有效地控制反应的进行。
3. 反应机理铑催化的不对称氢酰化反应机理复杂,通常包括氢气的活化、氢化加成和脱氢等多个步骤。
在手性膦配体的配合下,铑催化剂可与底物形成配合物,然后活化氢气,催化底物与甲酰氯的反应进行,最终得到手性醇或羧酸产物。
4. 代表性实例铑催化的不对称氢酰化反应在有机合成领域得到了广泛的应用,例如在对马来酸八肽的全合成中,通过铑催化的不对称氢酰化反应成功合成了手性醇中间体,从而实现了对马来酸八肽的高效合成;在重要的抗癌药物诺维拉宁的全合成过程中,也采用了铑催化的不对称氢酰化反应,有效地实现了手性酮中间体的合成。
铑催化的不对称氢酰化全合成是一种重要的手性合成方法,具有高对映选择性、底物范围广、产物结构多样等优点,对于天然产物的合成以及医药化学领域具有重要的应用前景。
芳香杂环化合物不对称催化氢化反应的研究进展

2005年第25卷有机化学V ol. 25, 2005第6期, 634~640 Chinese Journal of Organic Chemistry No. 6, 634~640ygzhou@*E-mail:Received August 2, 2004; revised October 25, 2004; accepted November 23, 2004.No. 6卢胜梅等:芳香杂环化合物不对称催化氢化反应的研究进展635坏稠环的芳香性比完全破坏单环的芳香性所需能量低. 另外, 芳香杂环化合物的氢化比非芳香杂环化合物容易, 这一方面因为杂原子对所在的环有活化作用; 另一方面, 杂原子上的孤对电子可参与和催化剂的金属原子配位, 使催化活性中心靠近底物从而发生氢化反应. 所以在芳香稠杂环化合物氢化时, 一般都是含杂原子的环被氢化[5].在均相催化体系中, 第一例报道的芳香杂环化合物的氢化是在1987年, Murata 等[8]使用原位产生的(+)-(DIOP)RhH 作催化剂, 乙醇作溶剂, 室温下对2-位取代的喹喔啉1进行不对称氢化(Eq. 1), 反应需36~72 h, 产物2-甲基-1,2,3,4-四氢喹喔啉只有3%的对映选择性(Table 1, Entry 1). 虽然ee 值很低, 但毕竟实现了对芳香杂环化合物均相不对称氢化, 为后来致力于研究芳香杂环化合物不对称氢化的工作者开辟了道路.1998年, Bianchini 研究小组[9]利用邻位金属化铱的二氢复合物fac -exo -(R )-[IrH 2{C 6H 4C*H(Me)N(CH 2CH 2- PPh 2)2}] (L1) 作催化剂, 实现了对2-甲基喹喔啉(1)的高对映选择性氢化, 取得了高达90%的ee 值(Table 1, Entry 2), 但转化率只有54%, 当转化率为97%时, ee 值为73% (Table 1, Entry 3), 反应要在100 ℃进行, 甲醇和异丙醇是最好的溶剂选择. 这是目前对2-甲基喹喔啉氢化取得的最好结果. 同一研究组在2001年又报道了用[(R ,R )-BDPBzPIr(COD)]OTf 和[(R ,R )-BDPBzPRh(NBD)]- OTf 作催化剂, 对2-甲基喹喔啉(1)进行氢化[10], 但ee 值不理想, 分别为23%和11% (Table 1, Entries 4 and 5). 在反应中, 他们发现铑的活性比铱的高, 但对映选择性低.2003年, Henschke 和Casy 等使用Noyori 的RuCl 2-氢化为模型反应, 50 ℃, 3.0 MPa 的氢气压力下, 对一系列的手性双磷配体和手性二氨的组合进行了筛选,结果发现(S )-xyl-hexaPHEMP (L3)和(S ,S )-DACH 的组合取得了较好的结果(73% ee ) (Table 1, Entry 6), 所有反应20 h 内转化率都在94%以上, 且S /C 为1000/1[11]. 该催化体系的活性很好, 但对映选择性只是中等.表1 2-甲基喹喔啉的不对称氢化Table 1 Asymmetric hydrogenation of 2-methylquinoxaline Entry Catalyst Yield/%ee /%1 (+)-(DIOP)RhH 72.0 32 L1 53.7 90a 3L196.5 73b4 [L2Ir(COD)]OTf 40.7 23a5 [L2Rh(NBD)]OTf 93.2 11a6 RuCl 2/L3/(S ,S )-DACH 99.0 73caCH 3OH 作溶剂; b i -PrOH 作溶剂; c t -BuOH 作溶剂.2000年, Ito 等[12]首次报道了对N -Ac 和Boc 保护的2-位取代吲哚进行不对称催化氢化(Eq. 2), 反应在60 ℃下完成, 取得了最高为95%的ee 值. 他们使用的是一个反式鳌合配位的二茂铁双磷配体L4, 金属前体是[Rh(NBD)2]SbF 6. 这一催化体系对2-位取代的N -Ac 保护的吲哚, 无论是收率或对映选择性都取得了令人满意的结果, 碱碳酸铯的加入是取得高对映选择性所必须的. 对N -Boc 保护的吲哚氢化对映选择性不如N -Ac. 但对于3-位取代的N -Ac 保护的吲哚2在上面标准条件下, 反应不能转化完全, 除了所要的氢化产物3外, 还得到了N 上Ac 被脱除的产物4 (Eq. 3).636有 机 化 学 V ol. 25, 2005为了提高3-位取代吲哚类化合物氢化的选择性, 同一研究组又用同一催化体系对3-位取代吲哚的氢化进行了深入研究, 他们考察了用N -Boc, N -Ts, N -Ms, N -Tf 代替N -Ac 对反应的转化率和对映选择性的影响, 结果发现N -Ts 保护的3-位取代吲哚5给出最好的结果(Eq. 4), 其转化率能达到100%, 并且最高能获得98%的ee 值[13].在2003年, 周永贵等[14]首次实现了对2-位取代喹啉的对映选择性氢化(Eq. 5), 他们使用的是[Ir(COD)Cl]2/ L5/I 2/Toluene 的催化体系, 在室温下即可以进行反应, 并取得了最高为96%的ee 值. 这一催化体系对羟基和酯基等官能团无影响, 对3-位或4-位取代的喹啉的氢化活性低, 且产物基本是消旋的. 碘的存在是取得高活性和高对映选择性所必须的, 如果没有碘, 反应不能进行. 利用这一催化氢化的方法学, 可以方便地合成一系列2-位取代的1,2,3,4-四氢喹啉类的天然产物6, 7 [15]和一些药物8的关键中间体.对于稠环其它类型的芳香杂环化合物如异喹啉、苯并呋喃、苯并噻吩等均相的不对称氢化还未见报道. 1.2 芳香单杂环化合物的不对称催化氢化氢化芳香单杂环化合物比氢化稠环的要困难, 因为完全破坏一个单环的芳香性比部分破坏一个稠环的芳香性所需能量更多, 因此, 对单环杂环芳香化合物的不对称氢化更具有挑战性. 文献报道均相体系中氢化芳香单杂环化合物第一例是1997年, Fuchs [16]利用[Rh(NBD)- Cl]2/L*/MeOH 的催化体系对2-位取代的吡嗪羧酸衍生物进行了氢化(Eq. 6), 使用的手性配体是二茂铁衍生的双磷化合物L6, 对N -叔丁基吡嗪酰胺(9a )最高取得了78%的ee 值, 对于简单的2-吡嗪羧酸甲酯(9b )的氢化, 只获得3.6%的ee 值.2000年, Studer [17]尝试对单取代的吡啶17 (Eq. 7)和呋喃18 (Eq. 8)进行不对称氢化.经过一系列的条件优化, 他们发现Rh(NBD)2BF 4为最佳的金属前体, 催化剂用量为5%, 反应在10.0 MPa, 60 ℃下进行, 当用DIOP 作配体时, 2-吡啶甲酸乙酯取得了最高为27%的ee 值(Table 2, Entry 1), 但转化率只有41%; 当BINAP 作配体时, 转化率为100%, 但ee 值只有25% (Table 2, Entry 2). 对3-位取代吡啶的氢化显得更加困难, 收率低, 对映选择性也低. 如3-吡啶甲酸乙酯, 除了所要的完全氢化产物外, 还有较多的部分氢化的产物, ee 值最高仅为17% (Table 2, Entry 6). 对2-呋喃甲醇的氢化虽然收率高, 但产物几乎是消旋的, 最高ee 值为仅7% (Table 3, Entry 1). Rh(NBD)2BF 4/PPF-P(t -Bu)2的组合对2-呋喃甲酸取得了最高为24%的ee 值, 但收率只有3% (Table 3, Entry 4).当Cy 2PF-PCy 2作配体时, 收率为100%, 但ee 值仅为1% (Table 3, Entry 5). 甲醇或乙醇是该类反应的最好溶剂, 反应需在60 ℃, 10 MPa 的氢气压力下进行, 条件比较剧烈, 催化剂用量高, 且对映选择性较低.均相体系中, 对芳香单杂环化合物的不对称氢化的例子不多, 而且结果不好, 这是一个有待于进一步深入探索的研究领域.No. 6卢胜梅等:芳香杂环化合物不对称催化氢化反应的研究进展637表2 取代吡啶羧酸及酯的不对称催化氢化Table 2 Asymmetric hydrogenation of substituted pyridine carboxylic acids and esters EntryR L * Yield/%ee /%1 2-CO 2Et DIOP 4127 2 2-CO 2Et BINAP 96 25 3 2-CO 2Et BDPP 97 9 4 2-CO 2H Cy 2PF-PPh 2 100 25 5 3-CO 2Et DIOP 52 126 3-CO 2Et BDPP 45 177 3-CO 2H Cy 2PF-PCy 2 8 17 8 3-CO 2HPPF-P(t -Bu)2 5 6表3 取代呋喃的不对称催化氢化Table 3 Asymmetric hydrogenation of substituted furan EntryR L*Yield/% ee /% 1 CH 2OH BINAP 91 7 2 CH 2OH PROPHOS 98 5 3 CH 2OH DIOP 98 44 COOH PPF-P(t -Bu)2 3 245 COOHCy 2PF-PCy 2 100 12 非均相的不对称催化氢化非均相的催化氢化体系与均相相比具有催化剂回收方便、操作简单等优点, 从而引起了人们广泛的研究兴趣. 近年来已经有一些科学家把非均相的催化氢化体系应用到芳香杂环化合物的不对称氢化中. 1992年Brunner [18]等发现在硅胶上Rh(I)的金属前体和手性双磷配体反应生成的手性催化体系, 在NaH 2PO 4/Na 2HPO 4 (pH 7)组成的缓冲溶液中, 能选择性地氢化叶酸的杂环部分, 所得到的5,6,7,8-四氢叶酸在DNA 碱前体的生物合成中起着重要的作用. 接着, 他们又经过对金属前体、手性配体和担载物的优化后, 发现能与[Rh(COD)- Cl]2形成七元环的配体(-)-BPPM 和(-)-DIOP 的效果最好, 硅胶Merckosorb SI60 是最佳的担载物, 取得了最高为92.3%的de 值[19](Eq. 9). 这一非均相催化体系对其它类似底物的氢化未见报道.Hegedus [20]用手性脯氨酸甲酯作手性诱导试剂,10% Pd/C 作催化剂, 加热下对3-吡啶甲酸进行非对映选择性氢化. 溶剂对此反应速度有较大影响, 但对选择性影响不大. 甲醇和乙酸乙酯都是较好的溶剂. 在室温,即使10 MPa 的氢气压力下也不反应. 高温有利于转化率提高, 但选择性降低.经过条件优化, 他们在50 ℃,5.0 MPa 的氢气压力下, 反应10.5 h, 对2-位取代的吡啶羧酸10的氢化可获得79%的de 值(Eq. 10), 对3-位取代的吡啶羧酸11的氢化可获得94%的de 值(Eq. 11), 对2-位取代吡啶盐12的氢化可获得98%的de 值(Eq. 12), 但后经证实, 此结果并没有重复性, 可重复的最高de 值为30%[21a].638有 机 化 学 V ol. 25, 2005Pinel 和Besson 等[21]利用手性脯氨酸酯及其衍生物作辅助试剂, 先与2-甲基-3-吡啶甲酸反应, 然后用Rh/C 和Rh/Al 2O 3作催化剂, 对所生成的2-甲基-3-吡啶甲酸衍生物进行氢化(Eq. 13). 他们考察了催化剂、温度、溶剂、手性诱导试剂等对氢化反应的影响, 经过一系列实验, 他们发现Rh/Al 2O 3 (3.8%)和Rh/C (4.2%)的活性最好, 但前者的选择性好. 用他们作催化剂时, 随着温度升高, 反应速度增加, 但前者选择性降低, 而后者则不受影响. 甲醇是较好的溶剂, 酸的加入并没有提高选择性. 手性的泛酸内酯是最好的诱导试剂, 诱导的de 值最高为35%. 后来他们又尝试用其它方法来提高选择性, 结果并不理想[21b].Studer 等[22]使用10,11-二氢辛可尼定改性的钯催化剂对3-位取代的吡啶羧酸酯进行氢化(Eq. 14), 获得了手性的哌啶, 但首先要经过一步Pd/C 氢化获得四氢化物. 他们也尝试了Rh/C, Rh/PtO 2等金属催化剂, 但结果都不好. 经过一系列的筛选, 他们发现5% Pd/TiO 2在DMF/H 2O/AcOH (1∶1∶0.001, 体积比)中取得了最好的对映选择性(24% ee 值), 但收率仅有10% (Table 4, Entry 3), 且此结果重复性不好. 此反应需在50 ℃, 13.0 MPa 的氢气压力下进行, 催化剂的用量大(S /C =10/3), 催化体系不稳定. 尽管如此, 但这是第一例非均相体系中对映选择性氢化取代吡啶的报道.表4 取代吡啶的非均相不对称氢化Table 4 Asymmetric hydrogenation of substituted pyridine carboxylic estersEntry Catalyst Product/% ee /% 1 10% Pd/C 12 19a 2 10% Pd/C 81 2.5b 3 5% Pd/TiO 2 10 24c4 5% Rh/C 46 1.5b5 Rh/Pt oxide97 3baDMF 作溶剂; b n -Hexane 作溶剂; c DMF/H 2O/AcOH (1∶1∶0.001, V ∶V ∶V )作溶剂.在此基础上Thomas 和Johnson 等[23]利用中孔MCM-41固载二茂铁/Pd 的非均相催化剂对3-位取代的吡啶羧酸酯进行一步氢化(Eq. 15), 取得了最高为17%的ee 值, 转化率超过50%, 反应条件(40 ℃, 2.0 MPa H 2)比前者(50 ℃, 13.0 MPa H 2)温和. 中孔MCM-41孔外壁先用Ph 2SiCl 2去活化, 这样, 手性的金属配体只与孔内的活性部位反应, 整个手性环境被限制在孔内, 有利于底物的对映选择性氢化, 而它的均相体系给出消旋的产物. 虽然产物的ee 值较低, 但这为设计非均相催化剂提供了一种新的方法.Baiker 等[24]使用辛可尼啶改性的Pd/Al 2O 3的催化体系对取代的呋喃羧酸和苯并呋喃羧酸进行了非均相的不对称氢化, 对苯并呋喃羧酸13氢化后获得50%的ee 值, 但收率只有29% (Eq. 16). 对2-呋喃羧酸(14)在收率为95%情况下获得最高为32%的ee 值(Table 5, Entry 1);对二取代的呋喃羧酸来说, 在室温, 3.0 MPa 的氢气压力下, 全部得到的是顺式异构体, 但ee 值低(Table 5, En-tries 2 and 4 ) (Eq. 17). 底物中羧基是取得高对映选择性所必须的, 在同样条件下当把羧基换成酯基时, 则没有选择性. 推测原因可能是羧基和辛可尼啶的羟基和桥头氮之间可以形成氢键, 这种氢键相互作用一方面使底物靠近手性中心, 另一方面稳定过渡态复合物的结构, 而酯基不能形成氢键, 因此没有选择性. 在此催化条件下, 辛可尼啶能被部分氢化(Eq. 18), 因此在反应中, 需要不断地加入适量的辛可尼啶才能保证反应顺利进行.No. 6卢胜梅等:芳香杂环化合物不对称催化氢化反应的研究进展639表5 取代呋喃羧酸的非均相不对称氢化Table 5 Asymmetric hydrogenation of substituted furan car-boxylic acids Entry X Y Yield/% ee /% de /% 1 COOH H 95 32 — 2 COOH CH 3615 100 3 H COOH 100 23—4CH 3 COOH 222 1002004年, Glorius 等[25]在取代吡啶的2-位引入手性的唑烷基酮, 在无质子存在下, 由于偶极矩最小化合物最稳定, 因此构象16为主要存在形式. 但在酸性条件下, 因为存在氢键作用, 以构象19为主. 利用这种氢键作用可以控制底物的构象, 又利用唑烷基酮上的手性基团挡住一个面, 这样, 氢化只能从另一个面进行, 因此, 可以很好地控制产物的非对映选择性. 在10.0 MPa 的氢气压力下, 以乙酸作溶剂, Pd(OH)2/C, Rh/C 或Rh/Pd/C 等都能对其进行氢化, 在脱掉手性辅助试剂后, 可获得最高为98%的ee 值, 如果吡啶环上有多个取代基, 氢化后可同时产生多个手性中心. 这是在非均相体系中对吡啶类底物不对称氢化取得的最好结果(Scheme 1).3 展望综上所述, 在均相体系中对一些稠环的芳香杂环化合物的不对称催化氢化虽已取得了一些成绩, 但对其它类型的稠环芳香杂环化合物, 如异喹啉、苯并呋喃、苯并噻吩及其衍生物等的氢化还未有报道; 对单环的芳香杂环化合物的氢化结果目前都不令人满意. 在非均相体系中单环的芳香杂环化合物的不对称催化氢化研究较多, 但好的结果较少, 只有Glorius 利用底物诱导对取代吡啶取得了好的结果; 对稠环的芳香杂环化合物除了苯并呋喃羧酸外, 其它的都还未见报道. 研究对芳香杂环化合物的不对称催化氢化, 无论是均相的还是非均相的, 都是一个非常有意义和发展前景的课题. 新的均相和非均相催化剂的开发是将来芳香杂环化合物不对称催化氢化领域研究的重点.Scheme 1References1 (a) Ojima, I. Catalytic Asymmetric Synthesis , VCH Publish-ers, New York, 1999.(b) Noyori, R. Asymmetric Catalytysis in Organic Synthesis , Wiley, New York, 1994.(c) Jacobensen, E. N.; Pfaltz, A.; Yamamoto, H. Compre-hensive Asymmetric Catalysis , Springer, Berlin, 1999, Vol. 1.2 Elliott, M. A.; McNeil, D. Chemistry of Coal Utilization ,second Suppl. Vol. Wiely, New York, 1981, p. 1003.3 Barton, D.; Nakanishi, K.; Meth-Cohn, O. ComprehensiveNatural Products Chemistry , Elsevier, Oxford, 1999, Vol. 1~9.640有机化学V ol. 25, 2005thesis, Academic Press, New York 1979, p. 175.5 Bird, C. W. Tetrahedron Lett. 1992, 48, 335.6 (a) Murahashi, S.-I.; Imada, Y. Bull. Chem. Soc. Jpn. 1989,62, 2968.(b) Murahashi, S.-I.; Imada, Y.; Hirai, Y. Tetrahedron Lett.1987, 28, 77.7 (a) Fish, R. H.; Thormodsen, A. D.; Gremer, G. A. J. Am.Chem. Soc. 1982, 104, 5234.(b) Fish, R. H.; Tan, J. L.; Thormodsen, A. D. J. Org.Chem. 1984, 49, 4500.(c) Fish, R. H.; Tan, J. L.; Thormodsen, A. D. Or-ganometallics1985, 4, 1743.(d) Baralt, E.; Smith, S. J.; Hurwitz, J.; Horvath, I. T.; Fish,R. H. J. Am. Chem. Soc. 1992, 114, 5187.8 Murata, S.; Sugomoto, T.; Matsuura, S. Heterocycles1987,26, 763.9 Bianchini, C.; Barbaro, P.; Scapacci, G.; Farnetti, E.;Graziani, M. Organometallics1998, 17, 3308.10 Bianchini, C.; Barabro, P.; Scapacci, G. J. Organomet.Chem. 2001, 621, 26.11 (a) Cobley, C. J.; Henschke, J. P. Adv. Synth. Catal. 2003,345, 195.(b) Henschke, J. P.; Burk, M. J.; Malan, C. G.; Herzberg,D.; Peterson, J. A.; Wildsmith, A. J.; Cobley, C. J.; Casy, G.Adv. Synth. Catal. 2003, 345, 300.12 Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J.Am. Chem. Soc. 2000, 122, 7614. 13 Kuwano, R.; Kaneda, K.; Ito, T.; Sato, K.; Kurokawa, T.;Ito, Y. Org. Lett. 2004, 13, 2213.14 Wang, W. B.; Lu, S. M.; Yang, P. Y.; Han, X. W.; Zhou, Y.G. J. Am. Chem. Soc. 2003, 125, 10536.15 Yang, P. Y.; Zhou, Y. G. Tetrahedron: Asymmetry2004, 15,1145.16 Fuchs, R. EP 803502,1997[Chem. Abstr. 1998, 128,13286].17 Studer, M.; Wedemeyer-Exl, C.; Spindler, F.; Blaser, H. U.Monatsh. Chem. 2000, 131, 1335.18 Brunner, H.; Huber, C. Chem. Ber. 1992, 125, 2085.19 Brunner, H.; Bublak, P.; Helget, M. Chem. Ber. 1997, 130,55.20 Hegedus, L.; Hada, V.; Tungler, A.; Mathe, T.; Szepesy, L.Appl. Catal., A2000, 201, 107.21 (a) Douja, N.; Besson, M.; Gallezot, P.; Pinel, C. J. Mol.Catal. A: Chem.2002, 186, 145.(b) Douja, N.; Malacea, R.; Banciu, M.; Besson, M.; Pinel,C. Tetrahedron Lett. 2003, 44, 6991.22 Blaser, H.-U.; Honig, H.; Studer, M.; Wedemeyer-Exl, C. J.Mol. Catal. A: Chem.1999, 139, 253.23 Raynor, S. A.; Thomas, J. M.; Raja, R.; Johnson, B. F. G.;Bell, R. G.; Mantle, M. D. Chem. Commun. 2000, 1925.24 Maris, M.; Huck, W.-R.; Mallat, T.; Baiker, A. J. Catal.2003, 219, 52.25 Glorius, F.; Spielkamp, N.; Holle, S.; Goddard, R.; Lehman,C. W. Angew. Chem., Int. Ed. 2004, 43, 2850.(Y0408023 QIN, X. Q.; LING, J.)。
几类重要的不对称反应及新型手性配体

几类重要的不对称反应及新型手性配体欧阳志强1 欧阳迎春2(1.南昌大学材料科学与工程学院 南昌330047 2.江西师范大学理电学院南昌330027)摘 要:不对称合成是有机合成领域的热点,本文综述了以有机配体———金属配合物为手性催化剂的不对称合成的最新进展。
关键词:不对称合成 手性催化剂 手性配体 引 言自1968年美国孟山都公司的K nowlex和德国的H omer 分别发表了手性膦配体与铑配合物组成的手性催化剂进行的不均相催化氢化以来,人们相继研究开发了一大批具有立体选择性和高催化活性的新型手性配体,本文将就这方面的最新进展作一综述。
1 C =C 双键的不对称氢化反应2,2′一二(二苯基磷)一1,1′—联萘(BI NAP )的Ru络合物还年广泛用于C =C 双缝的不对称氢化。
主要有1,1′一二取代的不含杂原子的烯的不对称氢化;α,β—不饱和和β,γ—不饱和酸的不对称氢化———这类底物的不对称氢化应用于非麻醉性消炎药萘普森和异丁基布洛芬的工业生产上,潜力极大;以及前手性烯丙基醇的不对称氢化:产物为(R )一或(S )一香茅醇,ee 值高达96%-99%,香茅醇是合成L —薄荷醇的中间体。
结构与BI NAP 相似的2,2′—二氨基—1,1′一联萘(BI 2NAM )或其衍生物配体的Rh 配合物可以以36%-95%的光学收率催化a 一酰胺基丙烯酸与H 2的加成,以及前手性烯酰胺的不对称氢化,前手性酮的不对称还原。
Perea 等对平面手性二茂铁的双膦配体、氮膦配体、硫膦配体与Rh ,Ir 或Ru 形成的催化剂对C =C 的不对称氢化进行了考察,指出Rh 催化剂效果最好。
并对其反应底物的结构,溶剂效应及反应动力学等方面进行研究。
2 C =0双键的不对称还原加氢反应。
前手性酮的不对称还原得到光学活性的仲醇,2,2′—二羟基一1,1—联萘(BI NO L )改造的LiAIH 4还原剂(BI NO L -H )用于前手性不饱和酮的还原可得100%ee的相应仲醇,立体选择性依赖于温度、底物、溶剂、配位体等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烯烃不对称氢化
烯烃不对称氢化是一种有机化学反应,旨在将烯烃的双键加氢,同时保留烯烃的立体构型。
此反应可以通过多种催化剂实现,其中最常用的是手性配体催化剂。
手性配体催化剂可以选择性地催化烯烃的一个立体异构体,从而生成不对称的烷烃。
烯烃不对称氢化的机理是,催化剂将氢气加到烯烃的双键上,生成不对称的烷烃。
具体来说,该反应首先通过亲电试剂与烯烃反应构建三元环鎓离子中间体,随后该中间体与亲核试剂发生反应使鎓离子开环,从而获得双官能化产物。
烯烃不对称氢化在合成手性硫醚化合物等重要化合物方面具有重要意义。
对于非活化烯烃的不对称氢化反应,目前仍然存在很大的挑战性,需要发展更高效的策略来解决这个问题。