【原创】第一章 集合与函数概念1.1.3集合的基本运算(一)

合集下载

高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集

高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集

集合运算时忽略空集致错
• 典例 4 集合A={x|x2-3x+2=0},B={x|x2-2x+a- 1=0},A∩B=B,求a的取值范围.
• [错解] 由题意,得A={1,2}.∵A∩B=B,∴1∈B,或者 2∈B,∴a=2或a=1.
• [错因分析] A∩B=B⇔A⊇B.而B是二次方程的解集,它
可能为空集,如果B不为空集,它可能是A的真子集,也可
B.{x|-4<x<-2}
• C.{x|-2<x<2} D.{x|2<x<3}
• [解析] N={x|x2-x-6<0}={x|(x-3)(x+2)<0}={x|- 2<x<3},
• ∴M∩N={x|-4<x<2}∩{x|-2<x<3}
• ={x|-2<x<2},故选C.
• 4.(202X·江苏,1)已知集合A={-1,0,1,6},B={x|x>0, x∈R},则A∩B=___{_1,_6_} ______.
• 2.并集和交集的性质并集
简单 性质
A∪A=___A___; A∪∅=___A___
常用 结论
A∪B=B∪A; A⊆(A∪B); B⊆(A∪B);
A∪B=B⇔A⊆B
交集
A∩A=___A___; A∩∅=___∅___
A∩B=B∩A; (A∩B)⊆A; (A∩B)⊆B;
A∩B=B⇔B⊆A
• 1.(202X·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B= {x|x2≤1},则A∩B= ( A )
• 将x=-2代入x2-px-2=0,得p=-1,∴A={1,-2},
• ∵A∪B={-2,1,5},A∩B={-2},∴B={-2,5},

2014秋入学高中数学必修一第一章_集合与函数概念分节详解及练习

2014秋入学高中数学必修一第一章_集合与函数概念分节详解及练习

§1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R . 4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .【例3】试选择适当的方法表示下列集合:(1)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x=的自变量的值组成的集合.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .§1.1.2 集合间的基本关系¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}.A BB A A B A B A . B .C .D .【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.§1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到B (读作“B (读作“{|B x x ={|B x x =¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求ð.\【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()ABC ; (2)()A A BC ð.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C AB ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.§1.1.3 集合的基本运算(二)¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , AB .(教材P 14B 组题2)【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若AB =B ,求实数a的值.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= .§1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.§1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______..【例2】已知f (x )=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.【例3】画出下列函数的图象: (1)|2|y x =-;(2)|1||24|y x x =-++.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当(2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.§1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.【例4】已知31()2x f x x +=+,指出()f x 的单调区间.§1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac ba-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.【例3】求函数2y x =的最小值.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.§1.3.2 函数的奇偶性¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.复习【例1】已知a ,b 为常数,若22()43,()1024f x x x f ax b x x =+++=++,则5a b -= .【例2】已知()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并加以证明.【例3】集合{|17}A x x =-≤≤,{|231}B x m x m =-<<+,若A B B =,求实数m 的取值范围.【例4】设a 为实数,函数2()||1f x x x a =+-+,x ∈R .。

高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修14

高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修14
解:(1)因为A={x|x2-2x-15=0}={-3,5}, B={x|x2+x-6=0}={-3,2}. 所以A∩B={-3},A∪B={-3,2,5}.
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B,A∩B.
解:(2)将x≤-2或x>5及1<x≤7在数轴上表示出来, 据并集的定义,图中所有阴影部分即为A∪B, 所以A∪B={x|x≤-2,或x>1}. 据交集定义,图中公共阴影部分即为A∩B, 所以A∩B={x|5<x≤7}.
(2)并集的运算性质
性质 A∪B=B∪A (A∪B)∪C=A∪(B∪C)
A∪A=A A∪ = ∪A=A 如果 A⊆ B,则 A∪B=B A⊆ (A∪B),B⊆ (A∪B)
说明 并集运算满足交换律 并集运算满足结合律 集合与本身的并集仍为集合本身 任何集合与空集的并集仍为集合本身 任何集合与它子集的并集都是它本身 任何集合都是该集合与另一个集合的并集的子集
解:(2)①因为9∈(A∩B),所以9∈B且9∈A,所以2a-1=9或a2=9,所以 a=5或a=±3.检验知a=5或a=-3. ②因为{9}=A∩B,所以9∈(A∩B),所以a=5或a=-3.当a=5时,A={-4,9, 25},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去;当a=-3 时,A={-4,-7,9},B={-8,4,9},A∩B={9},满足题意. 综上可知a=-3.
解:如图,要使 S∪T=R,
则只需
a a
7 4, 1 2,
即-3≤a≤-1.
故 a 的取值范围为{a|-3≤a≤-1}.
一题多变2:本题(2)中,将集合A变为A={x|a-2≤x≤2a},其他条件不变, 求a的范围.

人教版高中数学必修一集合与函数基础知识讲解

人教版高中数学必修一集合与函数基础知识讲解
2、已知集合A={a+2,(a+1)2,a2+3a+3}若1∈A,求实数a的值。
【题型二】 元素的特征
1、⑴已知集合M={x∈N∣ ∈Z},求M
⑵已知集合C={ ∈Z∣x∈N},求C
点拔:要注意M与C的区别,集合M中的元素是自然数x,满足 是整数,集合
C是的元素是整数 ,满足条件是x∈N
练习:
1.给出下列四个关系式:① ∈R;②π Q;③0∈N;④0 其中正确的个数是( )
2.已知三个元素集合A={x,xy,x-y},B={0,∣x∣,y}且A=B,求x与y的值。
1.1.3集合间的基本运算(共1课时)
考察下列集合,说出集合C与集合A,B之间的关系:
(1) , ;
(2) , ;
1.并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B
的并集,即A与B的所有部分,
A.1 B.2 C.3 D.4
2.方程组 的解组成的集合是( )
A.{2,1}B.{-1,2}C.(2,1)D.{(2,1)}
3.把集合{-3≤x≤3,x∈N}用列举法表示,正确的是( )
A.{3,2,1}B.{3,2,1,0}C.{-2,-1,0,1,2}D.{-3,-2,-1,0,1,2,3}
4.下列说法正确的是( )
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大发明”
(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大
的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.
⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。.
如:方程(x-2)(x-1)2=0的解集表示为 1,-2 ,而不是 1,1,-2

高一数学第一章知识点总结

高一数学第一章知识点总结

2.最大(小)值 当一个函数f(x)的图像上有最高(低)点时,我们就说函数 有最大(小)值。
A
高一(3)王明康 赵一凡
A⊇B
A(B) A=B=∅
B
A
A⊃B
A=B
2.真子集:若集合A⊇B,存在元素x∈A且,x∉B则称集合B是A 的真子集。
B
A ⊇
空集为任何集合的子集,是任何非空集合的真子集
பைடு நூலகம்
1.1.3 集合的基本运算 1.并集 一般的,由所有属于集合A或集合B的元素组成的集合,称为集合A与 B的并集。 A
2.交集 一般地,由属于集合A,且属于集合B的所有元素组成的集合,称为A与B 的交集。 A A A∩B B
数 学 总 结
第一章 集合与函数的概念
1.1 集合
1.2 函数及其表示
1.3 函数的基本性质
1.1
集 合
1.1.1 集合的含义与表示
1.含义
一些能够确定的不同集合所构成的整体叫做集合。构 成集合的每个对象,叫做这个集合的元素。
2.集合中元素的性质 (1)确定性:对于一个给定的集合,集合中的元素是确定的,依赖 主观感觉的判读不能构成集合。 (2)互异性:一个给定集合中的元素是彼此不同的。 (3)无序性:集合中的元素不考虑顺序
A∩B={x丨x∈A,且x∈B}
3.补集与全集 全集:一般地,如果一个集合含有我们所研究问题中涉及的 所有元素,那么就称这个集合为全集,通常记为U。 补集:对于一个集合A,由全集中不属于集合A的所有元素组 成的集合称为集合A相对于全集U的补集,简称为集合A的补集。 A
1.2 函数及其表示
1.2.1 函数的概念
3.区间 a,b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端 点,则端点用实心点表示;若区间不包括端点,则端点用空心点表 示. A

高中数学 第一章 集合与函数概念 1.1.3.1 并集、交集课件 a必修1a高一必修1数学课件

高中数学 第一章 集合与函数概念 1.1.3.1 并集、交集课件 a必修1a高一必修1数学课件
解:∵A∪B=A,∴B⊆A. ∵A={x|0≤x≤4}≠∅,∴B=∅或 B≠∅. 当 B=∅时,有 m+1>1-m,解得 m>0. 当 B≠∅时,用数轴表示集合 A 和 B,如图所示,
2021/12/9
第三十四页,共四十五页。
m+1≤1-m, ∵B⊆A,∴0≤m+1,
1-m≤4,
解得-1≤m≤0.
2021/12/9
第三十二页,共四十五页。
求解“A∩B=B 或 A∪B=B”类问题的思路:利用“A∩B =B⇔B⊆A,A∪B=B⇔A⊆B”转化为集合的包含关系问题.当 题设中隐含有空集参与的集合关系时,其特殊性很容易被忽视, 从而引发解题失误.
2021/12/9
第三十三页,共四十五页。
[变式训练 4] 已知集合 A={x|0≤x≤4},集合 B={x|m+ 1≤x≤1-m},且 A∪B=A,求实数 m 的取值范围.
2021/12/9
第二十九页,共四十五页。
[变式训练 3] 设集合 A={x|x2+ax-12=0},B={x|x2+bx +c=0},且 A∪B={-3,4},A∩B={-3},求实数 a,b,c 的 值.
解:∵A∩B={-3},∴-3∈A,且-3∈B, 将-3 代入方程 x2+ax-12=0 得 a=-1, ∴A={-3,4}, 又 A∪B={-3,4},A≠B,∴B={-3}. ∵B={x|x2+bx+c=0}, ∴(-3)+(-3)=-b,(-3)×(-3)=c, 解得 b=6,c=9,则 a=-1,b=6,c=9.
2021/12/9
第十一页,共四十五页。
知识点二 交集
[填一填] 1.交集的定义
文字语言表述为:由所有 属于集合 A 且属于集合 B 的元素 所组成的集合,叫做 A 与 B 的交集,记作 A∩B ,读作 A 交 B .

高中数学第一章集合与函数概念1.1.3集合的基本运算第1课时并集、交集课件新人教A版必修1

高中数学第一章集合与函数概念1.1.3集合的基本运算第1课时并集、交集课件新人教A版必修1

1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的
是( )
A.N⊆M
B.M∪N=M
C.M∩N=N
D.M∩N={2}
【答案】D
【解析】∵-2∈N,但-2∉M,∴A,B,C三个选项均
不对.
2.已知集合S={(x,y)|y=1,x∈R},T={(x,y)|x=1,
y∈R},则S∩T=( )
A.∅
B.{1}
C.(1,1)
D.{(1,1)}
【答案】D
【解析】集合S表示直线y=1上的点,集合T表示直线x=1
上的点,S∩T表示直线y=1与直线x=1的交点,故选D.
3.若集合A={x|-2<x<5},B={x|x≤-1或x≥4},则A∪B =________,A∩B=________.
【答案】R {x|4≤x<5或-2<x≤-1} 【解析】借助数轴可知A∪B=R,A∩B={x|4≤x<5或-2 <x≤-1}.
类别
自然语言
符号语言
由属__于__集合 A_且__属__于_集
合 B 的所有元素组成的 A∩B=
交集 集合,称为 A 与 B 的交 __{_x_|x_∈__A_,____ 集,记作_A_∩_B___(读作 __且__x_∈__B_}____
“_A_交__B__”)
图形语言
2.并集与交集的运算性质
x,y43xx++y2=y=6,7
={(1,2)}.
【方法规律】求交集运算应关注两点: (1)求交集就是求两集合的所有公共元素形成的集合. (2)利用集合的并、交求参数的值时,要检验集合元素的互 异性.
2.已知M={1,2,a2-3a-1},N={-1,a,3},M∩N= {3},求实数a的值.

2020高中数学必修1知识点(超全)

2020高中数学必修1知识点(超全)

2020高中数学必修1知识点(超全)高中数学知识点必修1第一章集合与函数概念1.1.1 集合的含义与表示1) 集合的概念是指集合中的元素具有确定性、互异性和无序性。

2) 常用数集及其记法:N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集。

3) 集合与元素间的关系:对象a与集合M的关系是a∈M,或者a∉M,两者必居其一。

4) 集合的表示法包括自然语言法、列举法、描述法和图示法。

5) 集合的分类包括有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系6) 子集、真子集、集合相等的定义和符号表示如下:名称记号意义子集 A⊆B A中的任一元素都属于B真子集 A⊂B A⊆B,且B中至少有一元素不属于A集合相等 A=B A中的任一元素都属于B,B中的任一元素都属于A7) 已知集合A有n(n≥1)个元素,则它有2n个子集,2n-1个真子集,2n-1个非空子集和0个非空真子集。

1.1.3 集合的基本运算8) 交集、并集、补集的定义和符号表示如下:名称记号意义交集A∩B {x|x∈A,且x∈B}并集 A∪B {x|x∈A,或x∈B}补集 A' {x|x∈U,且x∉A}补充知识】含绝对值的不等式与一元二次不等式的解法1) 含绝对值的不等式|x|0)的解集为{-a<x<a}。

1.解一元一次不等式对于形如 $ax+b$ 的一元一次不等式,可以将其看成一个整体,化成 $|ax+b|a(a>0)$ 型的不等式来求解。

2.解一元二次不等式对于形如 $ax^2+bx+c$ 的一元二次不等式,首先计算其判别式 $\Delta=b^2-4ac$,然后根据二次函数$y=ax^2+bx+c(a>0)$ 的图像,分类讨论 $\Delta$ 的大小关系。

当 $\Delta>0$ 时,解集为 $\{x|xx_2\}$;当 $\Delta=0$ 时,解集为 $\{x|x=x_1\}$;当 $\Delta<0$ 时,无实数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①A∪A=

②A∪=

③A∪B=
.
性质:
①A∪A= A ;
②A∪=

③A∪B=
.
性质:
①A∪A= A ;
②A∪= A ;
③A∪B=
.
性质:
①A∪A= A ; ②A∪= A ; ③A∪B= B∪A .
2.交 集 示例2:考察下列各集合 A={4,3,5};B={2,4,6};C={4}.
2.交 集 示例2:考察下列各集合 A={4,3,5};B={2,4,6};C={4}.
A∩B={x|x∈A且x∈B}; ② A∩A=A,A∪A=A,
A∩=,A∪=A; ③ A∩B=B∩A,A∪B=B∪A.
课堂练习
教材P.11练习第1、2、3题
课后作业
教材P.12习题1.1A组第6、7、8题 B组第1、3题
练习册
求A∪B.
-1
123 x
A∪B={x|-1<x<3}.
例3已知集合A={x |-2≤x≤5}, 集合B={x | m+1≤x≤2m-1},
若A∪B=A,求m的取值范围.
例3已知集合A={x |-2≤x≤5}, 集合B={x | m+1≤x≤2m-1},
若A∪B=A,求m的取值范围.
A
-2
5
x
性质:
例5设集合A={y|y=x2,x∈R}, B={(x, y)|y=x+2,x∈R},
则A∩B =( )
A.{(-1, 1),(2, 4)} B. {(-1, 1)}
C {(2, 4)}
D.
例5设集合A={y|y=x2,x∈R}, B={(x, y)|y=x+2,x∈R},
则A∩B =( D )
用Venn图表示为:
AB
新课
示例1:观察下列各组集合
A={1,3,5} B={2,4,6}
A∪B=C
C={1,2,3,4,5,6}
集合C是由集合A或属于集合B的 元素组成的,则称C是A与B的并集.
例1 设集合A={4,5,6,8}, 集合B={3,5,7,8,9},
求A∪B.
例1 设集合A={4,5,6,8}, 集合B={3,5,7,8,9},
2.交 集 定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,记作 A∩B=C={x|x∈A且x∈B},读作A交B.
用Venn图表示为:
AB
例4⑴ A={2,4,6,8,10}, B={3,5,8,12}, C={6,8},
求①A∩B ②A∩(B∩C) ;
⑵ A={x |x是某班参加百米赛的同学}, B={x |x是某班参加跳高的同学}, 求A∩B.
集合C的元素既属于A,又属于B, 则称C为A与B的交集.
2.交 集
定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,
2.交 集
定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,记作 A∩B=C={x|x∈A且x∈B},
2.交 集
定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,记作 A∩B=C={x|x∈A且x∈B},读作A交B.
A.{(-1, 1),(2, 4)} B. {(-1, 1)}
C {(2, 4)}
D.
例6设A={x|x2+4x=0}, B={x2+2(a+1)x+a2-1=0}, 若A∩B=B,求a的值.
性质:
①A∩B={x|x∈A且x∈B}; ②A∩A=A,A∩=,
A∩B=B∩A.
课堂小结
1.交集,并集 2.性质 ⑴ A∪B={x|x∈A或x∈B},
定义:由所有属于集合A或B的元素组成 的集合,称为集合A与集合B的并集,
1.并 集
定义:由所有属于集合A或B的元素组成 的集合,称为集合A与集合B的并集,记 作A∪B,即A∪B={x|x∈A或x∈B}.
1.并 集 定义:由所有属于集合A或B的元素组成 的集合,称为集合A与集合B的并集,记 作A∪B,即A∪B={x|x∈A或x∈B}.
毓英中学 数学组 曾庆国
新课
示例1:观察下列各组集合 A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}
新课
示例1:观察下列各组集合 A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}
集合C是由集合A或属于集合B的 元素组∪B={3,4,5,6,7,8,9}.
例2设集合A={x |-1<x<2}, 集合B={x | 1<x<3},
求A∪B.
例2设集合A={x |-1<x<2}, 集合B={x | 1<x<3},
求A∪B.
-1
123 x
例2设集合A={x |-1<x<2}, 集合B={x | 1<x<3},
相关文档
最新文档