沪科版九年级数学二次函数和反比例函数测试卷

合集下载

九年级上册数学单元测试卷-第21章 二次函数与反比例函数-沪科版(含答案)

九年级上册数学单元测试卷-第21章 二次函数与反比例函数-沪科版(含答案)

九年级上册数学单元测试卷-第21章二次函数与反比例函数-沪科版(含答案)一、单选题(共15题,共计45分)1、小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc<0;③a-b+c>0;④2a-3b=0;⑤4a+2b+c>0.你认为其中正确的是()A.①②④B.①③⑤C.②③⑤D.①③④⑤2、已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是( )A. <x<2B. x>2或x<C. x<-2 或x>D.-2<x<3、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是( )A. abc<0B.4 ac-b2>0C. c-a>0 D.当x=-n2-2( n为实数)时,y≥c4、如图,在直角坐标系中,点是x轴正半轴上的一个定点,点是双曲线()上的一个动点,当点的横坐标逐渐增大时,的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小5、若,则二次函数的图象可能是()A. B. C. D.6、已知函数y=x-5,令x=, 1,, 2,, 3,, 4,, 5,可得函数图象上的十个点.在这十个点中随机取两个点P(x1, y1),Q(x2,y2),则P,Q两点在同一反比例函数图象上的概率是()A. B. C. D.7、若反比例函数的图象经过点(-5,2),则的值为().A.10B.-10C.-7D.78、如图,抛物线( 为常数)的图象交轴的正半轴于A,B两点,交轴的正半轴于C点.如果当时,,那么直线的图象可能是()A. B. C. D.9、一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示.设小矩形的长、宽分别为,剪去部分的面积为,若,则与的函数图像是()A. B. C.D.10、在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A.y=2(x-1) 2-3B.y=2(x-1) 2+3C.y=2(x+1) 2-3 D.y=2(x+1) 2+311、二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:⑴ac<0;⑵当x>1时,y的值随x值的增大而减小.⑶3是方程ax2+(b﹣1)x+c=0的一个根;⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个12、如图,一次函数与二次函数为的图象相交于点M,N,则关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根13、二次函数y=x2+px+q中,由于二次项系数为1>0,所以在对称轴左侧,y随x增大而减小,从而得到y越大则x越小,在对称轴右侧,y随x增大而减大,从而得到y越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x的方程x2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A.m<d<e<nB.d<m<n<eC.d<m<e<nD.m<d<n<e14、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:其中正确的结论有()①abc>0;②8a+2b=-1;③4a+3b+c>0;④4ac+24c<b2.A.1B.2C.3D.415、抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、把抛物线向左平移2个单位,再向上平移2个单位得到的抛物线解析式为________;17、如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为________.18、直线y=x+2与抛物线y=x2的交点坐标是________.19、如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为________.20、在平面直角坐标系xoy中,直线(k为常数)与抛物线交于A,B两点,且A点在y轴右侧,P点的坐标为(0,4)连接PA,PB.(1)△PAB的面积的最小值为________;(2)当时,=________21、如图,一次函数y=kx+b 的图象l与坐标轴分别交于点E、F,与双曲线y=- (x<0)(x<0)交于点P(﹣1,n),且F 是PE 的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________。

沪科版九年级上册数学第21章 二次函数与反比例函数含答案(含解析)

沪科版九年级上册数学第21章 二次函数与反比例函数含答案(含解析)

沪科版九年级上册数学第21章二次函数与反比例函数含答案一、单选题(共15题,共计45分)1、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )A.a<0B.b<0C.c>0D.b 2-4ac<02、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定3、直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是()A. B. C. D.4、如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y= (k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2=10,则k 的值是()A.5B.10C.15D.205、若是反比例函数,则必须满足()A. B. C. 或 D. 且6、小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个7、若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣4的值为()A.0B.-2C.2D.-68、二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C.D.9、一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B. C.D.10、将抛物线y=2x2平移,得到抛物线y=2(x+4)2+1,下列平移正确的是()A.先向左平移4个单位,再向上平移1个单位B.先向左平移4个单位,再向下平移1个单位C.先向右平移4个单位,再向上平移1个单位 D.先向右平移4个单位,再向下平移1个单位11、将抛物线y=(x﹣2)2+2向左平移2个单位,得到的新抛物线为()A.y=(x﹣2)B.y=(x﹣2)+4C.y=x +2D.y=(x﹣4)+212、已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0B.b>0,c<0C.b<0,c<0D.b<0,c>013、如图,△ABC.的三个顶点分别为A(1,2),B(5,2),C(5,5).若反比例函数在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤25B.2≤k≤10C.1≤k≤5D.10≤k≤2514、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-215、如图,在平面直角坐标系中,点A、B的坐标分别为(-2,3)、(0,1),将线段AB沿x轴的正方向平移m(m>0)个单位,得到线段A' B'。

第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、函数y=x(x﹣4)是()A.一次函数B.二次函数C.正比例函数D.反比例函数2、如图,A是反比例函数y=的图象上一点,AB⊥y轴于点B.若△ABO面积为2,则k为值为()A.-4B.1C.2D.43、有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是,将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是随的增大而增大的概率是()A. B. C. D.14、两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径5、当时,函数与在同一坐标系内的图象可能是()A. B. C. D.6、二次函数y = ax2-2x-3(a<0)的图象一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7、将抛物线y=3x2先向右平移1个单位,再向上平移2个单位得到的抛物线的解析式是()A.y=3(x-1)2+2B.y=3(x+1)2-2C.y=3(x-1)2-2 D.y=3(x+1)2+28、如图,在平面直角坐标系中有两点A(6,2),B(6,0),以原点为位似中心,相似比为3∶1,把线段AB缩小得到A′B′,则过A′点对应点的反比例函数的解析式为( )A.y=B.y=C.y=-D.y=9、如图,正比例函数y1=k1x的图象与反比例函数的图象相交于A,B两点,其中点A的横坐标为2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2 D.﹣2<x<0或x>210、如图,点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=()A.2B.3C.4D.511、如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y= 在第一象限内的图象经过点D,交BC于点E,若AB=4,CE=2BE,,则k的值为()A.3B.C.6D.1212、反比例函数y=的图象,当x>0时,y随x的增大而增大,则m的取值范围是()A.m<3B.m≤3C.m>3D.m≥313、函数图像的大致位置如图所示,则ab,bc,2a+b,,,b2-a2 等代数式的值中,正数有()A.2个B.3个C.4个D.5个14、已知二次函数y=ax2+bx-1(a≠0)的图象经过点(2,4),则代数式1﹣2a﹣b的值为( )A.-4B.-C.D.15、如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形,它们分别是△P1A1O、△P2A2O、△P3A30,设它们的面积分别是S1、S2、S3,则()A.S1<S2<S3B.S2<S1<S3C.S3<S1<S2D.S1=S2=S3二、填空题(共10题,共计30分)16、如图,直线l:,一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3)…B n(n,y n)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1, 0),A2(x2, 0),A3(x3, 0)…,A n+1(x n+1, 0)(n为正整数),设x1=d(0<d<1)若其中一条抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则我们把这条抛物线就称为:“美丽抛物线”.则当d(0<d<1)的大小变化时能产生美丽抛物线相应的d的值是________.17、若点A(﹣5,y1),B(1,y2),C(2,y3)在反比例函数(a为常数)的图象上,则y1, y2, y3的大小关系是________.(用“<”连接)18、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④若点A(一3,y l)、点B(- ,y2)、点C( ,y3)在该函数图象上,则y l<y3<y2;⑤若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则x1<-1<5<x2.其中正确的结论有________ (只需填写序号)19、二次函数的图像开口方向________ 。

沪科新版九年级数学上册 第21章 二次函数与反比例函数 单元测试(含解析)

沪科新版九年级数学上册 第21章 二次函数与反比例函数 单元测试(含解析)

沪科九上数学试卷一、单选题 (本题共计 10 小题,共计40分)1、 点在反比例函数的图象上,则下列各点在此函数图象上的是A .B .C .D .2、如图,在中,点D ,E 分别为AB ,AC 边上的点,且,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是A .B .C .D .3、比较二次函数2y x =与2y x =-的图象,下列结论错误的是( ) A .对称轴相同 B .顶点相同 C .图象都有最高点 D .开口方向相反4、如图,已知函数和的图象交于点、,则根据图象可得关于的不等式的解集是( )A .B .-3<x <0或C .D .5、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )6、如图,已知矩形ABCD 中,AB =3,BE =2,EF ⊥BC .若四边形EFDC 与四边形BEF A 相似而不全等,则CE =( )A .3B .3.5C .4D .4.57、如果23a b =,那么a a b+等于( ) A .3:2B .2:5C .5:3D .3:58、如图,△ABC 的顶点A 在反比例函数y =(x >0)的图象上,顶点C 在x 轴上,AB ∥x 轴,若点B 的坐标为(1,3),S △ABC =2,则k 的值为( )A .4B .﹣4C .7D .﹣79、如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC .若34AE AC =, AD=9,则AB 等于( )A .10B .11C .12D .1610、二次函数的图像如图,下列结论:①;②;③;④.正确的个数为( )A .1个B .2个C .3个D .4个二、填空题 (本题共计 4 小题,共计20分)11、已知二次函数y=ax 2+bx+c 经过点(-1,0),(0,-2),(1,-2).则这个二次函数的解析式为______. 12、如图,已知函数y=﹣与y=ax 2+bx (a >0,b >0)的图象交于点P ,点P 的纵坐标为1,则关于x 的不等式bx+>的解集为_____.13、若3a=4b ,则(a-b):(a+b)的值是_________14、如图,已知点C 是线段AB 的黄金分割点,且BC AC >.若1S 表示以BC 为边的正方形的面积,2S 表示长为()AD AD AB =、宽为AC 的矩形的面积,则1S 与2S 的大小关系为__________.三、解答题 (本题共计 9 小题,共计90分)15、泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y (℃)与时间x (min )成一次函数关系;停止加热过了1分钟后,水壶中水的温度y (℃)与时间x (min )近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃. (1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?16、已知抛物线y =ax 2+bx +3与x 轴交于点A (﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D (0,74)作x 轴的平行线交抛物线于E ,F 两点,求EF 的长; (3)当y ≤74时,直接写出x 的取值范围是 .17、图是5×5的网格图,每个小正方形的边长为1,请按要求作格点图形(图形的每个顶点都在格点上) (1)在图①中以线段PQ 为一边作一个等腰直角三角形;(2)在图②中,作△DEF 相似于△ABC ,且△ABC 与△DEF 的相似比是1:2.18、我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z (元/件)与年销售量x (万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W 万元.(毛利润=销售额﹣生产费用)(1)请直接写出y 与x 以及z 与x 之间的函数关系式;(写出自变量x 的取值范围)(2)求W 与x 之间的函数关系式;(写出自变量x 的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?19、如图,在Rt △ABC 中,∠C=90°,Rt △BAP 中,∠BAP=90°,已知∠CBO=∠ABP ,BP 交AC 于点O ,E为AC 上一点,且AE=OC . (1)求证:AP=AO ; (2)求证:PE ⊥AO ;(3)当AE=AC ,AB=10时,求线段BO 的长度.20、某班“数学兴趣小组”对函数y =﹣x 2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …﹣3﹣52﹣2﹣10 1 2523 …y …﹣2﹣14m 2 1 2 1﹣14﹣2…其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①方程﹣x2+2|x|+1=0有个实数根;②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是.21、如图,直线y=﹣2x+4与x轴,y轴分别交于点C,A,点D为点B(﹣3,0)关于AC的对称点,反比例函数y=的图象经过点D.(1)求证:四边形ABCD为菱形;(2)求反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求点M的坐标.22、如图,□ABCD的对角线交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:△BDE是直角三角形;(2)如果OE⊥CD,试判断△BDE与△DCE是否相似,并说明理由.23、在△ABC中,点E、F在边BC上,点D在边AC上,连接ED、DF,ABAC=m,∠A=∠EDF=120°(1)如图1,点E、B重合,m=1时①若BD平分∠ABC,求证:CD2=CF•CB;②若213CFBF=,则ADCD=;(2)如图2,点E、B不重合.若BE=CF,=AB DFAC DE=m,37BEEF=,求m的值.答案解析一、单选题1、【答案】B【解析】∵点(2,-3)在反比例函数y=的图象上,∴k=2×(-3)=-6. A 、∵2×3=6≠-6,∴此点不在函数图象上; B 、∵3×(-2)=-6,∴此点在函数图象上; C 、∵(-2)×(-3)=6≠-6,此点不在函数图象上; D 、∵(-1)×(-6)=6≠-6,此点不在函数图象上. 故选B . 2、【答案】C【解析】 【分析】 由可得到∽,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】 A.∵, ∴ ,故不正确;B. ∵, ∴ ,故不正确;C. ∵,∴∽,∽,, .,故正确;D. ∵, ∴,故不正确;故选:C . 【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.3、【答案】C 【解析】二次函数2y x =,开口向上, ∴有最小值,二次函数2y x =-,开口向下, ∴有最大值, 故选C.4、【答案】B【解析】 【分析】观察图象得到当﹣3<x <0或x >1时,函数图象y 1=kx +b 都在的图象上方,即有kx +b >.【详解】当﹣3<x <0或x >1时,kx +b >. 故选B . 【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了观察图象的能力.5、【答案】C.【解析】试题分析:观察图形,可知AB=10,AC=2,BC=2,A 选项中的阴影部分三边分别是1,5,22,B 选项中的三边分别是3,2,5,C 选项中的三边分别是1,2,5,D 选项中的三边分别是2,5,13,根据三边的比相等的两个三角形相似,可知选项C 正确.考点:相似三角形的判定.6、【答案】D【解析】【分析】可设CE =x ,由四边形EFDC 与四边形BEF A 相似,根据相似多边形对应边的比相等列出比例式,求解即可. 【详解】 设CE =x .∵四边形EFDC 与四边形BEF A 相似,∴.∵AB =3,BE =2,EF =AB ,∴,解得:x =4.5.故选D . 【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC与四边形BEF A相似得到比例式.7、【答案】B【解析】∵ab=23的两个内项是b、2,两外项是a、3,∴32ba=,∴根据合比定理,得23522a ba++==,即52a ba+=;同理,得aa b+=2:5.故选B.8、【答案】C【解析】∵AB∥x轴,若点B的坐标为(1,3),∴设点A(a,3)∵S△ABC=(a-1)×3=2,∴a=,∴点A(,3)∵点A在反比例函数y=(x>0)的图象上,∴k=7,故选:C.9、【答案】C【解析】试题分析:根据平行线分线段成比例定理可以得到AE ADAC AB=,求得AB的长.试题解析:∵DE∥BC,∴AE AD AC AB=,即394AB =,解得:AB=12.故选C.考点:平行线分线段成比例.10、【答案】D【解析】∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为直线x==-1,∴b<0,∴abc>0,故①正确,∵抛物线与x 轴有两个交点,∴b2-4ac>0,即4ac-b2<0,故②正确,∵=-1,∴a=,∵x=1时,a+b+c<0,∴+b+c<0,即3b+2c<0,故③正确,当x=-1时,a-b+c>0,故④正确,综上所述:正确的结论有①②③④共4个,故选D.二、填空题11、【答案】y=x2-x-2.【解析】将此三个点代入解析式里得{22a b cca b c-+==-++=-解得a=1,b=-1,c=-2,故解析式为y=x2-x-2.12、【答案】x<﹣3或x>0.【解析】【分析】所求不等式变形后,可以看做求二次函数的函数值大于反比例函数值时x的范围,由二次函数与反比例函数图象的交点,利用图象即可得到满足题意的x的范围,即为所求不等式的解集.【详解】∵反比例函数与二次函数图象交于点P,且P的纵坐标为1,∴将y=1代入反比例函数y=-得:x=-3,∴P的坐标为(-3,1),将所求的不等式变形得:ax2+bx>- ,由图象可得:x<-3或x>0,则关于x的不等式ax2+bx +>0的解为x<-3或x>0.故答案为:x<-3或x>0【点睛】此题考查了二次函数与不等式(组),利用了数形结合的数学思想,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.13、【答案】【解析】∵3a=4b,∴a=b,∴(a-b):(a+b)= b: b=1:7.故答案为.14、【答案】12S S=【解析】∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AC•AB,∵S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,∴S1=BC2,S2=AC•AB,∴S1=S2.故答案为:S1=S2.三、解答题15、【答案】(1)y=100(8<x≤9);y =(9<x≤45);(2)等待2分钟.【解析】(1)停止加热时,设,由题意得:50=,解得:k=900,∴y =,当y=100时,解得:x=9,∴C点坐标为(9,100),∴B点坐标为(8,100),当加热烧水时,设y=ax+20,由题意得:100=8a+20,解得:a=10,∴当加热烧水,函数关系式为y=10x+20(0≤x≤8);当停止加热,得y与x的函数关系式为y=100(8<x≤9);y =(9<x≤45);(2)把y=90代入y =,得x=10,因此从烧水开到泡茶需要等待10﹣8=2分钟.16、【答案】(1)y=﹣x2+2x+3;(2)EF长为2;(312x≤或32x≥.【解析】(1)把A(﹣1,0),B(3,0)代入y=ax2+bx +3,解得:a=﹣1,b=2,抛物线的解析式为y=﹣x2+2x+3;(2)把点D的y坐标y=74,代入y=﹣x2+2x+3,解得:x=12或32,则EF长312 22⎛⎫=--=⎪⎝⎭;(3)由题意得:当y≤74时,直接写出x 的取值范围是:12x≤或32x≥,故答案为:12x≤或32x≥.17、【答案】(1)见解析;(2)见解析. 【解析】(1)如图所示,△PQM即为所求;(2)∵AB=2,BC2=,AC221310=+=,△ABC与△DEF的相似比是1:2.∴2AB BC ACDE EF DF===,∴DE=22,EF=2,DF=210,∴△DEF即为所求.18、【答案】(1)y=x2.z=﹣x+30(0≤x≤100);(2)年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)今年最多可获得毛利润1080万元【解析】【分析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=,故y与x之间的关系式为y=x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则,解得:,故z与x之间的关系式为z=﹣x+30(0≤x≤100);(2)W=zx﹣y =﹣x2+30x ﹣x2=﹣x2+30x=﹣(x2﹣150x)=﹣(x﹣75)2+1125,∵﹣<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W =﹣(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.19、【答案】(1)证明见解析;(2)证明见解析;(3)BO=.【解析】试题分析:(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.试题解析:(1)∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠ABP,∵∠BOC=∠AOP,∴∠AOP=∠ABP,∴AP=AO;(2)如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,∴∠AOD=∠PAE,在△AOD和△PAE中,∵AE=OD,∠AOD=∠PAE,AP=AO,∴△AOD≌△PAE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k,由∠CBO=∠ABP,根据轴对称BC=BD=10﹣4k,∵∠BOC=∠EOP,∠C=∠PEO=90°,∴△BCO∽△PEO,∴,即,解得k=1.∴BD=10﹣4k=6,OD=3k=3,在Rt△BDO中,由勾股定理得:BO=.考点:1.相似三角形的判定与性质2.全等三角形的判定与性质3.角平分线的性质4.等腰三角形的判定与性质.20、【答案】(1)1;(2)详见解析;(3)①函数的最大值是2,没有最小值;②当x>1时,y随x的增大而减小;(4)①2;②1<a<2.【解析】(1)由表格可知:图象的对称轴是y轴,∴m=1,故答案为:1;(2)如图所示;(3)性质:①函数的最大值是2,没有最小值;②当x>1时,y随x的增大而减小;(4)①由图象得:抛物线与x轴有两个交点∴方程﹣x2+2|x|+1=0有2个实数根;故答案为:2;②由图象可知:﹣x2+2|x|+1=a有4个实数根时,即y=a时,与图象有4个交点,所以a的取值范围是:1<a<2.故答案为:1<a<2.21、【答案】(1)证明见解析;(2)反比例函数解析式为y =;(3)点M的坐标为(0,).【解析】(1)∵直线y=﹣2x+4与x轴,y轴分别交于点C,A,∴A(0,4),C(2,0),∴AB ==5,BC=5,∵D为B点关于AC的对称点,∴AD=AB=5,CD=CB=5,∴AB=BC=CD=DA,∴四边形ABCD为菱形.(2)∵四边形ABCD为菱形,∴AD∥BC,而AD=5,A(0,4),∴D(5,4),把D(5,4)代入y =得k=5×4=20,∴反比例函数解析式为y =.(3)∵四边形ABMN是平行四边形,∴AB∥NM,AB=NM,∴MN是AB经过平移得到的,∵点M是点B在水平方向向右平移3个单位长度,∴点N的横坐标为3,代入y =中,得:y =,∴点M 的纵坐标为﹣4=,∴点M的坐标为(0,).22、【答案】(1)证明见解析;(2)相似,理由见解析.【解析】试题分析:(1)由平行四边形ABCD对角线互相平分、已知条件OE=OB以及等边对等角推知∠BED=∠OEB+∠OED=90°,则DE⊥BE,即△BDE是直角三角形;(2)利用两角法证得△BDE与△DCE相似.证明:(1)∵四边形ABCD是平行四边形,∴OB=OD,∵OE=OB,∴OE=OD,∴∠OBE=∠OEB,∠ODE=∠OED,∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠BED=∠OEB+∠OED=90°,∴DE⊥BE,即△BDE是直角三角形;(2)△BDE与△DCE相似.理由如下:∵OE⊥CD,∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵∠OBE=∠OEB,∴∠DBE=∠CDE,∵∠BED=∠DEC=90°,∴△BDE∽△DCE.23、【答案】(1)①见解析;②12或23;(2)m=12.【解析】(1)①∵1ABmAC==,∴AB=AC,∵BD平分∠ABC,∴∠ABD=∠DBF,∵∠BDC=∠A+∠ABD=∠BDF+∠CDF,且∠A=∠BDF=120°,∴∠ABD=∠CDF=∠DBF,且∠C=∠C,∴△CDF∽△CBD,∴CD CF BC CD=,∴CD2=BC•CF;②如图1,过A作AG⊥BC于G,过F作FH⊥BC,交AC于H,∵∠C=30°,∴CH=2FH,设FH=2a,CH=4a,则CF=23a,∵213CFBF=,∴BC=153a,∵CG=153a,∴AG=152a,AC=15a,∴AH=11a,∵∠BAD=∠BDF=∠DHF=120°,∴∠ADB+∠FDH=∠ADB+∠ABD=180°﹣120°=60°,∴∠ABD=∠FDH,∴△ABD∽△HDF,∴AB ADHD FH=,即152a ADHD a=,设AD=x,则DH=11a﹣x,∴30a2=x(11a﹣x),x2﹣11ax+30a2=0,(x﹣5a)(x﹣6a)=0,x=5a或6a,∴51102AB aCD a==或6293AD aCD a==,故答案为:12或23;(2)如图2,过E作EH∥AB,交AC于H,过D作DM⊥EH于M,过F作FG∥ED,交AC于G,∵BE=CF,37BEEF=,∴37CFEF=,∵FG∥ED,∴37CF CGEF DG==,∴设CG=3a,DG=7a,∵AB DFAC DE=m,∠A=∠EDF=120°,∴△ABC∽△DFE,∴∠DEC=∠C,∴DE=DC=10a,∵FG∥DE,∴∠GFC=∠DEF=∠C,∴FG=CG=3a,同理由(1)得:△EHD∽△DFG,∴ED DHDG FG=,即1073a DHa a=,DH=307a,Rt△DHM中,∠DHM=60°,∴∠HDM=30°,∴HM=12DH=157a,DM153a,∴EM222215365(10)()77DE DM a a a-=-=,∴EH=657a﹣157a=507a,∴m=5017302107aAB EHAC CH a a===+.。

第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、若是反比例函数,则a的取值为()A.1B.﹣1C.±1D.任意实数2、某直角三角形的面积为3,两直角边分别为x、y,则y关于x的函数解析式及x的取值范围分别是()A.y= , x≠0B.y= , x>0C.y= , x≠0 D.y= , x>03、下列函数中,y是x的反比例函数的是()A. B. C. D.4、已知反比例函数y= ,当1<x<3时,y的最小整数值是()A.3B.4C.5D.65、小明为了研究关于的方程的根的个数问题,先将该等式转化为,再分别画出函数的图象与函数的图象(如图),当方程有且只有四个根时,的取值范围是()A. B. C. D.6、将抛物线y=x2先向上平移1个单位,再向左平移2个单位,则新的函数解析式为().A. B. C. D.7、二次函数y=(x﹣2)2+3的最小值是()A.2B.3C.﹣2D.﹣38、若点A(﹣2,y1),B(1,y2),C(3,y3)在二次函数y=2x2+4x﹣1的图象上,则y1, y2, y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39、已知四点,,,,若一个二次函数的图象经过这四点中的三点,则这个二次函数图象的对称轴为()A. B. C. D.10、如图,点A、M是第一象限内双曲线(k为常数,,)上的点(点M在点A的左侧),若M点的纵坐标为1,且△OAM为等边三角形,则k的值为()A. B. C. D.11、已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC 相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为y=(x>0);④,其中正确的结论有()个。

2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)

2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)

2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)一、选择题1.下列函数是二次函数的是()A.y=2x2﹣3B.y=ax2C.y=2(x+3)2﹣2x2D.2.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)3.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2B.0C.2D.无法确定4.函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限C.三,四象限D.一,二,四象限5.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2B.﹣2C.4D.﹣46.如图,正△AOB顶点A在反比例函数y=(x>0)的图象上,则点B的坐标为()A.(2,0)B.(,0)C.(,0)D.(,0)7.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.28.函数y=ax+b和y=ax2+bx+c在同一平面直角坐标系内的图象大致是()A.B.C.D.9.如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y=(x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为()A.(,0)B.(,0)C.(3,0)D.(,0)10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题11.抛物线y=x2﹣(b﹣2)x+3b的顶点在y轴上,则b的值为.12.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上的图象上,顶点B在反比例函数y=的图象上,点C在x轴的正半轴上,则平行四边形OABC的面积是.13.抛物线y=x2+bx+3的对称轴为直线x=1,若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.14.二次函数y=x2﹣2x﹣3,当m﹣2≤x≤m时函数有最大值5,则m的值可能为.三、解答题15.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.16.抛物线y=﹣2x2+8x﹣6.(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.17.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?18.已知:函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=﹣1;当x =3时,y=5.求y关于x的函数关系式.19.关于x的函数y=(m2﹣1)x2﹣(2m+2)x+2的图象与x轴只有一个公共点,求m的值.20.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图,连接AC,P A,PC,若S△P AC=,求点P的坐标.21.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y1=k1x+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与x轴的交点的坐标及△AOB的面积;(3)当x取何值时,y1=y2;当x取何值时,y1>y2.22.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)23.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.参考答案一、选择题1.解:A、y=2x2﹣3,是二次函数,故此选项符合题意;B、当a=0时,y=ax2不是二次函数,故此选项不符合题意;C、y=2(x+3)2﹣2x2,是一次函数,故此选项不符合题意;D、y=+2,不是二次函数,故此选项不符合题意;故选:A.2.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.3.解:根据题意得:m(m﹣2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,所以m=2.故选:C.4.解:∵y=ax2+bx+c的顶点坐标公式为(,),∴y=2x2﹣3x+4的顶点坐标为(,),而a=2>0,所以抛物线过第一,二象限.故选:B.5.解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选:D.6.解:如图,过点A作AC⊥y轴于C,∵△OAB是正三角形,∴∠AOB=60°,∴∠AOC=30°,∴设AC=a,则OC=a,∴点A的坐标是(a,a),把这点代入反比例函数的解析式就得到a=,∴a=±1,∵x>0,∴a=1,则OA=2,∴OB=2,则点B的坐标为(2,0).故选:A.7.解:因为对称轴是直线x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.8.解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.9.解:∵△OAP是等腰直角三角形∴P A=OA∴设P点的坐标是(a,a)把(a,a)代入解析式得到a=2∴P的坐标是(2,2)则OA=2∵△ABQ是等腰直角三角形∴BQ=AB∴设Q的纵坐标是b∴横坐标是b+2把Q的坐标代入解析式y=∴b=∴b=﹣1b+2=﹣1+2=+1∴点B的坐标为(+1,0).故选:B.10.解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题11.解:根据题意,把解析式转化为顶点形式为:y=x2﹣(b﹣2)x+3b=(x﹣)2+3b﹣()2,顶点坐标为(,3b﹣()2),∵顶点在y轴上,∴=0,∴b=2.12.解:延长BA交y轴于点D,作BE⊥x轴于点E,则四边形ODBE是矩形,∠ADO=∠CEB=90°,∴S△ADO==,S矩形ODBE=|5|=5,∵AB∥OC,OA∥BC,∴∠DAO=∠DBC=∠ECB,又∵AO=BC,∴△DAO≌△ECB(AAS),∴S△ADO=S△ECB=,∴S▱ABCO=S矩形ODBE﹣S△ADO﹣S△ECB=5﹣﹣=.故答案为:.13.解:∵抛物线y=x2+bx+3的对称轴为直线x=1,∴﹣=1,得b=﹣2,∴y=x2﹣2x+3=(x﹣1)2+2,∴当﹣1<x<4时,y的取值范围是2≤y<11,当y=t时,t=x2﹣2x+3,即x2+bx+3﹣t=0,∵关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,∴t的取值范围是2≤t<11,故答案为:2≤t<11.14.解:∵二次函数y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该函数的对称轴是直线x=1,∵当m﹣2≤x≤m时函数有最大值5,∴当m=2时,m﹣2,m距离对称轴的距离相等,即当m=2时取得最大值,此时y=(2﹣1)2﹣4=﹣3≠5;当m>2时,在x=m处取得最大值,即m2﹣2m﹣3=5,解得m=4或m=﹣2(舍去);当m<2时,在x=m﹣2处取得最大值,即(m﹣2)2﹣2(m﹣2)﹣3=5,解得m=0或m=6(舍去);由上可得,m的值可能是0或4,故答案为:0或4.三、解答题15.解:设抛物线解析式为y=a(x﹣1)2+4,把(﹣2,﹣5)代入得a(﹣2﹣1)2+4=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x﹣1)2+4.16.解:(1)∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2;(2)∵a=﹣2<0,抛物线开口向下,对称轴为直线x=2,∴当x>2时,y随x的增大而减小;(3)令y=0,即﹣2x2+8x﹣6=0,解得x=1或3,抛物线开口向下,∴当x=1或x=3时,y=0;当1<x<3时,y>0;当x<1或x>3时,y<0.17.解:(1)已知一边长为xcm,则另一边长为(10﹣x)cm.则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.18.解:∵y1与x成正比例,y2与x成反比例,∴设y1=k1x,y2=,∴y=k1x+,∵x=1时,y=﹣1;当x=3时,y=5.∴,解得:,∴y关于x的函数关系式为:y=2x﹣.19.解:①当m2﹣1=0,且2m+2≠0,即m=1时,该函数是一次函数,则其图象与x轴只有一个公共点;②当m2﹣1≠0,即m≠±1时,该函数是二次函数,则△=(2m+2)2﹣8(m2﹣1)=0,解得m=3,m=﹣1(舍去).综上所述,m的值是1或3.20.解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴该二次函数的解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4.(2)如图,连接OP,设P(m,m2﹣m﹣4),由题意可知:A(﹣2,0)、C(0,﹣4);∵S△P AC=S△AOC+S△OPC﹣S△AOP,∴×2×4+×4×m﹣×2×(﹣m2+m+4)=;整理得:m2+2m﹣15=0,解得m=3或m=﹣5(舍弃),∴P(3,﹣).21.解:(1)∵B(2,﹣4)在反比例函数的图象上,∴k2=﹣8.∴反比例函数的解析式为y2=﹣.∵点A(﹣4,n)在y2=﹣上,∴n=2.∴A(﹣4,2).∵y1=k1x+b经过A(﹣4,2),B(2,﹣4),∴.解得.∴一次函数的解析式为y1=﹣x﹣2.(2)∴C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6.(3)由图象,得,当x=﹣4或x=2时,y1=y2;当x<﹣4或0<x<2时,y1>y2.22.解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣7)2+2.88;当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,当x=18时,y=﹣(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6≈8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.23.解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1经过点B(2,3),直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),点(0,1),A(1,2),B(2,3)在直线上,点(0,1),A(1,2)在抛物线上,直线与抛物线不可能有三个交点,∵B(2,3),C(2,1)两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线的解析式为y=﹣x2+2x+1,设平移后的抛物线的解析式为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.(3)另解∵平移抛物线y=﹣x2+2x+1,其顶点仍在直线为y=x+1上,设平移后的抛物线的解析式为y=﹣(x﹣h)2+h+1,∴y=﹣x2+2hx﹣h2+h+1,设平移后所得抛物线与y轴交点的纵坐标为c,则c=﹣h2+h+1=﹣(h﹣)2+∴当h=时,平移后所得抛物线与y轴交点纵坐标的最大值为.。

沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

第21章《二次函数与反比例函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.反比例函数y=k−2x过点(1,2),则关于一次函数y=kx+k−5说法正确的是( )A.不过第一象限 B.y随x的增大而增大C.一次函数过点(2,9) D.一次函数与坐标轴围成的三角形的面积是4 2.一次函数y=cx−b与二次函数y=a x2+bx+c在同一平面直角坐标系中的图象可能是( )A.B.C.D.3.已知抛物线y=x2+(m+1)x−14m2−1(m为整数)与x轴交于点A,与y轴交于点B,且OA=OB,则m等于( )A.2+5B.2−5C.2D.−24.已知点A(a,y1),B(a+2,y2),在反比例函数y=|k|+1x的图像上,若y1−y2>0,则a的取值范围为()A.a<0B.a<−2C.−2<a<0D.a<−2或a>05.已知二次函数y=m x2−2mx+2(m≠0)在−2≤x<2时有最小值−2,则m=( )A.−4或−12B.4或−12C.−4或12D.4或126.已知二次函数y=−(x+m−1)(x−m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是( )A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>−1,则y1>y2D.若x1+x2<−1,则y1<y27.如图,点A是反比例函数y=4x图像上的一动点,连接AO并延长交图像的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足()A.mn=−2B.mn=−4C.n=−2m D.n=−4m8.已知抛物线y=a x2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,−3),若该抛物线的顶点在第三象限,记m=2a−b+c,则m的取值范围是( )A.0<m<3B.−6<m<3C.−3<m<6D.−3<m<09.如图是抛物线y=a x2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c−a=n;③抛物线另一个交点(m,0)在−2到−1之间;④当x<0时,a x2+(b+2)x≥0;⑤一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根;其中正确的是()A.①②③B.①④⑤C.②④⑤D.②③⑤10.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C、D,若点C的横坐标为6,BE=2DE,则k的值为( )A .372B .725C .965D .18二.填空题(共6小题,满分18分,每小题3分)11.如图,抛物线y =a x 2+bx +c 与直线y =kx +ℎ交于A 、B 两点,则关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为 .12.将二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,则该二次函数图像的顶点的纵坐标为 .13.抛物线y =−12x 2+x +4与x 轴交于A ,B 两点(点A 在点B 的左侧),点C(2,y)在在这条抛物线上.(1)则点C 的坐标为 ;(2)若点P 为y 轴的正半轴上的一点,且△BCP 为等腰三角形,则点P 的坐标为 .14.如图,抛物线y =x 2−2x −3与x 轴交于A 、B 两点,与y 轴交于C 点.点D 是抛物线上的一个点,作DE ∥AB 交抛物线于D 、E 两点,以线段DE 为对角线作菱形DPEQ ,点P 在x 轴上,若PQ =12DE 时,则菱形对角线DE 的长为 .15.如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1O A 1=∠B 2B 1A 2=∠B 3B 2A 3=⋅⋅⋅⋅⋅⋅,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是 .16.如图,在平面直角坐标系中,O 为坐标原点,△OAB 是等边三角形,且点B 的坐标为(4,0),点A 在反比例函数y =kx (k >0)的图象上.(1)反比例函数y =kx的表达式为 ;(2)把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1.①若此时另一个反比例函数y =k 1x的图象经过点A 1,则k 和k 1的大小关系是:k k 1(填“<”、“>”或“=”);②当函数y =kx的图象经△O 1A 1B 1一边的中点时,则a = .三.解答题(共7小题,满分52分)17.(6分)如图,一次函数y=x−2与反比例函数y=k(k>0)相交于点A(3,n),与x轴交于x点B,(1)求反比例函数解析式(2)点P是y轴上一动点,连接PA,PB,当PA+PB的值最小时,求P点坐标;(3)在(2)的条件下,C为直线y=x−2的动点,连接PC,将点C绕点P逆时针旋转90°得到点D,在C运动过程中,求PD的最小值.18.(6分)在平面直角坐标系中,已知二次函数y=−x2+bx+c(b,c是常数).(1)当b=−2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,−3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.19.(8分)如图,抛物线y=a x2+bx−5经过A(−1,0),B(5,0)两点.2(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(8分)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(−3,−10).运2动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,),正常情况下,运动员在距水面高度5米以前,必须运动员在空中最高处A点的坐标为(1,54完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x−ℎ)2+k,且顶点C距水面4米,若该运动员出水点D在MN 之间(包括M,N两点),请直接写出a的取值范围.21.(8分)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=kx(x<0)的图象相交于点B(−3,1).(1)求这两个函数的表达式;(2)当y 1随x 的增大而增大,且y 1<y 2时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数y 1的图象相交于点C 、D (点C 在点D 的右边),与函数y 2的图象相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.22.(8分)如图,在平面直角坐标系中,二次函数y =a x 2+bx −4(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC =4OB .(1)求直线CA 的表达式;(2)求该二次函数的解析式,并写出函数值y 随x 的增大而减小时x 的取值范围;(3)点P是抛物线上的一个动点,设点P的横坐标为n(0<n<4).当△PCA的面积取最大值时,求点P的坐标;(4)当−1≤x≤m时,二次函数的最大值与最小值的差是一个定值,请直接写出m的取值范围.23.(8分)如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于点C(4,m),D(−2,−4).(1)求一次函数和反比例函数表达式;(2)点E为y轴正半轴上一点,当△CDE的面积为9时,求点E的坐标;(3)在(2)的条件下,将直线AB向上平移,平移后的直线交反比例函数图象于点F(2,n),交y 轴于点G,点H为平面直角坐标系内一点,若以点E、F、G、H为顶点的四边形是平行四边形,写出所有符合条件的点H的坐标;并写出求解点H的坐标的其中一种情况的过程.答案解析一.选择题1.B【分析】把点(1,2)代入反比例函数y=k−2x,求出k的值,再把k的值代入一次函数y=kx+k−5,再根据一次函数的性质即可解答.【详解】解:∵反比例函数y=k−2x过点(1,2),∴2=k−2,解得k=4,∴一次函数y=kx+k−5的解析式为y=4x−1,∴函数图像过一三四象限,不过第二象限,故A错误,不符合题意;∵4>0,∴y随x的增大而增大,故B正确,符合题意;∵当x=2时,y=4×2−1=7,∴一次函数不过点(2,9),故C错误,不符合题意;∵y=4x−1与坐标轴的交点为(0,−1),(14,0),∴一次函数与坐标轴围成的三角形的面积为12×1×14=18,故D错误,不符合题意.故选:B.2.D【分析】先假设c<0,根据二次函数y=a x2+bx+c图象与y轴交点的位置可判断A,C是否成立;再假设c>0,b<0,判断一次函数y=cx−b的图象位置及增减性,再根据二次函数y=a x2 +bx+c的开口方向及对称轴位置确定B,D是否成立.【详解】解:若c<0,则一次函数y=cx−b图象y随x的增大而减小,此时二次函数y=a x2 +bx+c的图象与y轴的交点在y轴负半轴,故A,C错;若c>0,b<0,则一次函数y=cx−b图象y随x的增大而增大,且图象与y的交点在y轴正半轴上,此时二次函数y=a x2+bx+c的图象与y轴的交点也在y轴正半轴,若a>0,则对称轴x=−b2a >0,故B错;若a<0,则对称轴x=−b2a<0,则D可能成立.故选:D.3.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.4.D【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a,y1)、(a+2,y2)在图象的同一分支上时;②当点(a,y1)、(a+2,y2)在图象的两支上时,分别求解即可.【详解】解:∵|k|+1>0,∴图像在一、三象限,在反比例函数图像的每一支上,y随x的增大而减小,∵y1−y2>0,∴ y1>y2,①当点(a,y1)、(a+2,y2)在同一象限时,∵y1>y2,i.当在第一象限时,∴0<a<a+2,解得a>0;ii.当在第三象限时,∴a<a+2<0,解得a<−2;综上所述:a<−2或a>0;②当点(a,y1)、(a+2,y2)不在同一象限时,∵y1>y2,∴a>0,a+2<0,此不等式组无解,因此,本题a的取值范围为a<−2或a>0,故选:D.5.B【分析】先求出二次函数对称轴为直线x=1,再分m>0和m<0两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数y=m x2−2mx+2=m(x−1)2−m+2,∴对称轴为直线x=1,①当m>0,抛物线开口向上,x=1时,有最小值y=−m+2=−2,解得:m=4;②当m<0,抛物线开口向下,∵对称轴为直线x=1,在−2≤x<2时有最小值−2,∴x=−2时,有最小值y=9m−m+2=−2,解得:m=−12.故选:B.6.A【分析】将函数化为二次函数的一般形式,可以求得对称轴为x=12,然后根据函数图像上点的坐标与对称轴的关系即可得到答案;【详解】解:∵y=−(x+m−1)(x−m)+1=−x2+x+m2−m+1∴函数图像开口向下,对称轴为x=12当x1+x2=1时,A、B两点关于对称轴对称,此时y1=y2;当x1+x2>1时,A、B在对称轴右侧或分别在对称轴两侧且A到对称轴的距离小于B到对称轴的距离,此时y1>y2;当x1+x2<1时,A、B在对称轴左侧或分别在对称轴两侧,且A到对称轴的距离大于B到对称轴的距离,此时y1<y2;由此可判断选项,只有A选项符合,故选A;7.B【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,根据等腰直角三角形的性质得出OC=OA,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出ΔAOE≅ΔCOF,根据全等三角形的性质,可得出A(−m,n),进而得到−mn=4,进一步得到mn=−4.【详解】解:连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,如图所示:∵由直线AB与反比例函数y=4x的对称性可知A、B点关于O点对称,∴AO=BO,又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=12AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴ΔAOE≅ΔCOF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=−m,OF=n,∴AE=−m,OE=n,∴A(n,−m),图像上,∵点A是反比例函数y=4x∴−mn=4,即mn=−4,故选:B.8.B【分析】由顶点在第三象限,经过点A(1,0)和点B(0,−3),可得出:a>0,−b<0,即可2a得出0<a<3,又由于m=2a−b+c=2a−(3−a)+(−3)=3a−6,求出3a−6的范围即可.【详解】∵抛物线y=a x2+bx+c过点(1,0)和点(0,−3),∴c=−3,a+b+c=0,即b=3−a,∵顶点在第三象限,经过点A(1,0)和点B(0,−3),∴a>0,−b<0,2a∴b>0,∴b=3−a>0,∴a<3,∴0<a<3∵m=2a−b+c=2a−(3−a)+(−3)=3a−6,∵0<a<3,∴0<3a<9∴−6<3a−6<3,∴−6<m<3.故选:B.9.D【分析】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【详解】解:①因为抛物线的顶点坐标为(1,n),则其对称轴为x=1,即−b2a=1,所以b=−2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=−2a,所以c−a=n,所以②正确;③因为抛物线的对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在−2到−1之间;所以③正确;④因为a x2+(b+2)x≥0,即a x2+bx≥−2x,根据图象可知:把抛物线y=a x2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=a x2+bx(a≠0)的图象,所以当x<0时,a x2+bx<−2x,即a x2+(b+2)x<0.所以④错误;⑤一元二次方程a x2+(b−12)x+c=0,Δ=(b−12)2−4ac,因为根据图象可知:a<0,c>0,所以−4ac>0,所以Δ=(b−12)2−4ac>0,所以一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根.所以⑤正确.综上,正确的有②③⑤,故选:D.10.C【分析】过点D作DF⊥BC于点F,由勾股定理构造方程求出DE=125,BE=DF=245,再根据反比例函数图像同时经过顶点C、D,即可解答.【详解】解:过点D作DF⊥BC于点F,∵点C的横坐标为6,,∴BC=6.∵四边形ABCD是菱形,∴CD=BC=6.C∵BE=2DE,∴设DE=x,则BE=2x.∴DF=BE=2x,BF=DE=x,FC=BC−BF=6−x.在Rt△DCF中,∵D F2+C F2=C D2,∴(2x)2+(6−x)2=62.解得:x1=0(不合题意,舍去),x2=125,∴DE=125,BE=DF=245.设OB=a,则D(125,a+245),C(6,a)∵反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C,D,∴k=125×(a+245)=6a.解得:a=165.∴k=6a=965.故选C.二.填空题11.x <2或x >4【分析】根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,进而结合函数图象得出x 的取值范围.【详解】解:根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,由图象可得:关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为:x <2或x >4,故答案为:x <2或x >4.12.−8【分析】设设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n 4,再进行变形得出(x 1+x 2)2−4x 1x 2=8,再代入可得m 2−1616=8,进而可得出该二次函数图像的顶点的纵坐标【详解】∵二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,∴翻折前两交点间的距离不变,设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n4,∴|x 1−x 2|=22,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴(−m4)2−4×n 4=8,∴m 2−1616=8,又∵y =4x 2+mx +n 的纵坐标为4×4n −m 24×4=16n −m 216,∴16−m 216=−8,即该二次函数图像顶点纵坐标为−8故答案为:−813.(2,4)(0,2),(0,1)2【分析】(1)将点C(2,y)代入函数解析式即可得出结论;(2)令y=0,求得点B的坐标,依据分类讨论的思想方法,利用△BCP为等腰三角形和等腰三角形的解答即可得出结论.【详解】解:(1)∵点C(2,y)在抛物线y=−1x2+x+4上,2∴y=4,∴C(2,4),故答案为:(2,4);(2)令y=0,则−1x2+x+4=0,2解得:x=4或x=−2.∵抛物线y=−1x2+x+4与x轴交于A,B两点,点A在点B的左侧,2∴B(4,0).∵点P为y轴的正半轴上的一点,①当BP=BC时,如图,过点C作CD⊥OB于点D,∵C(2,4),B(4,0),∴CD=4,OB=4,OD=2,∴CD=OB.在Rt△BPO和Rt△BCD中,{BP=BCOB=DC,∴Rt△BPO≌Rt△BCD(HL),∴OP=BD.∵OB=4,OD=2,∴BD=OB−OD=2,∴OP=BD=2,∴P(0,2);②当BP=PC时,如图,过点C作CE⊥y轴于点E,∵C(2,4),B(4,0),∴CE=2,OE=4,OB=4,设点P(0,a),∵点P为y轴的正半轴上的一点,∴OP=a,EP=4−a,∵BP=PC,∴B P2=P C2,∴E P2+C E2=O P2+O B2,∴(4−a)2+22=a2+42,,解得:a=12).∴P(0,12综上,当△BCP为等腰三角形,则点P的坐标为(0,2)或(0,1).2故答案为:(0,2)或(0,1).214.1+652或−1+652【分析】设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM= 12PQ ,设点D 的横坐标为t ,由此表示出DE 的长,PM 的长,进而可得PQ 的长,根据PQ = 12DE 建立方程,求解即可.【详解】解:如图,由抛物线的解析式可知,抛物线y =x 2−2x −3的对称轴为直线x =1,设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM = 12PQ ,∵点D 是抛物线上的一个点,且DE ∥AB ,设点D 的横坐标为t ,∴D (t ,t 2−2t −3),∵DE ∥AB ,∴点D ,点E 关于对称轴对称,∴点P 和点Q 在对称轴上,∴E(2−t ,t 2−2t −3),∴DE =(2−2t),PM=|t 2−2t −3|,∴PQ =2PM =2|t 2−2t −3|,∵PQ =12DE ,∴2|t 2−2t −3|=12(2−2t ),解得t 1= 5−654,t 2= 5+654(舍去),t 3= 3−654,t 4= 3+654(舍去),∴DE =2−2t = 1+652或−1+652.故答案为:1+652或−1+652.15.(0,2n )【分析】如图,过A1作A1H⊥y轴于H,求解A1(1,1),结合题意,△O A1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出O B1,O B2,O B3,O B4,…,探究规律,利用规律解决问题即可得出结论.【详解】解:如图,过A1作A1H⊥y轴于H,∵{y=1x y=x,其中x>0,解得:{x=1y=1,即A1(1,1),∴OH=A1H=1,∴∠A1OH=45°,∵B1A1⊥O A1,∴△O A1B1是等腰直角三角形,∴O B1=2;同理可得:△B1A2B2,△B2A3B3,…,都是等腰直角三角形,同理设A2(m,m+2),∴m(2+m)=1,解得m=2−1,(负根舍去)∴O B2=2+22−2=22,同理可得:O B3=23,⋅⋅⋅⋅⋅⋅∴O Bn=2n,∴Bn(0,2n).故答案为:(0,2n).16.y=43x<1或3【分析】(1)如图所示,过点A作AC⊥OB于C,利用等边三角形的性质和勾股定理求出A (2,23),再利用待定系数法求解即可;(2)求出A1(2+a,23),由a>0,得到2+a>2,则k1>43=k;(3)分当函数y=kx 的图象经过O1A1的中点时,当函数y=kx的图象经过A1B1的中点时,两种情况利用两点中点坐标公式和待定系数法求解即可.【详解】解:(1)如图所示,过点A作AC⊥OB于C,∵(4,0),∴OB=4,∵△AOB是等边三角形,∴OC=BC=12OB=2,OA=OB=4,∴AC=O A2−O C2=23,∴A(2,23),∵点A在反比例函数y=kx(k>0)的图象上,∴23=k2,∴k=43,∴反比例函数y=kx 的表达式为y=43x,故答案为:y=43x;(2)①∵把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1,∴A 1(2+a ,23),∵反比例函数y =k 1x的图象经过点A 1,∴23=k 12+a,∴k 1=23(2+a ),∵a >0,∴2+a >2,∴k 1>43=k ,故答案为:<;(3)当函数y =kx 的图象经过O 1A 1的中点时,∵O 1(a ,0),A 1(a +2,23),∴函数y =kx 的图象经过点(a +a +22,232),∴3=43a +1,∴a =3;当函数y =kx 的图象经过A 1B 1的中点时,∵B 1(a +4,0),A 1(a +2,23),∴函数y =k x 的图象经过点(a +4+a +22,232),∴3=43a +3,∴a =1,故答案为:1或3.三.解答题17.(1)解:∵点A (3,n )在一次函数y =x −2的图象上,∴n =3−2=1,∴点A (3,1),∵点A (3,1)在反比例函数y =kx (k >0)的图象上,∴k =3×1=3,∴反比例函数解析式为y =3x ;(2)解:作点B 关于y 轴的对称点B ',连接A B '交y 轴于点P ,此时PA +PB 的值最小,令y =0,则0=x −2,解得x =2,∴点B (2,0),点B '(−2,0),设直线A B '的解析式为y =kx +b ,∴{3k +b =1−2k +b =0,解得{k =15b =25,∴直线A B '的解析式为y =15x +25,令x =0,则y =25,∴P 点坐标为(0,25);(3)解:由旋转的性质知PC =PD ,当PC ⊥AB 时,PC 有最小值,此时PD的值最小,设直线AB交y轴于点E,令x=0,则y=0−2=−2,,点E(0,−2),∴OE=2,OB=2,∴BE=22+22=22,∵S△PBE =12PE×OB=12BE×PC,∴PC=(25+2)×222=625,∴PD的最小值为625.18.(1)解:当b=−2,c=3时,y=−x2−2x+3=−(x+1)2+4,∴此时该函数图象的顶点坐标为(−1,4);(2)解:∵该函数图象经过点(1,−3),∴−1+b+c=−3,则c=−2−b,∵该二次函数图象的顶点坐标是(m,n),∴m=−b2×(−1)=b2,n=4×(−1)×c−b24×(−1)=4c+b24=c+b24,∴b=2m,c=−2−2m,∴n=−2−2m+4m24,即n=m2−2m−2;(3)解:当b=2c+1时,二次函数y=−x2+(2c+1)x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c +12≤2即−12≤c ≤32时,该函数的最大值为4×(−1)×c −(2c +1)24×(−1)=c +(2c +1)24=8,即4c 2+8c −31=0,解得c 1=−1+352(不合题意,舍去),c 2=−1−352(不合题意,舍去);当c +12<0即c <−12时,0≤x ≤2时,y 随x 的增大而减小,∴当x =0时,y 有最大值为c =8,不合题意,舍去;当c +12>2即c >32时,0≤x ≤2时,y 随x 的增大而增大,∴当x =2时,y 有最大值为−22+2(2c +1)+c =8,解得c =2,符合题意,综上,满足条件的c 的值为2.19.(1)解:∵抛物线y =a x 2+bx −52经过A (−1,0),B (5,0)两点,∴{a −b −52=025a +5b −52=0,解得:a =12,b =−2,∴此拋物线的解析式为y =12x 2−2x −52;(2)如图,连接BC ,交对称轴于点P ,∵拋物线的解析式为y =12x 2−2x −52,∴其对称轴为直线x =−b2a =−−22×12=2,当x =0时,y =−52,∴C (0,−52),又∵B (5,0),∴设BC 的解析式为y =kx +b (k ≠0),∴{5k +b =0b =−52,解得:k =12,b =−52,∴ BC 的解析式为y =12x −52,当x =2时,y =2×12−52=−32,∴P (2,−32),∴PA +PC =(−1−2)2+(32+0)2+(0−2)2+(−52+32)2=552;(3)存在,如图所示:①当点N 在x 轴下方时,∵抛物线的对称轴为x =2,C (0,−52),∴N 1(4,−52),②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△A N 2D 和△M 2CO 中,{∠N 2AD =∠C M 2OA N 2=C M 2∠N 2DA =∠CO M 2,∴△A N 2D ≌△M 2CO (ASA ), ∴N 2D =OC =52,即N 2点的纵坐标为52∴12x 2−2x −52=52,解得:x =2+14或x =2−14,∴N 2(2+14,52),N 3(2−14,52),综上所述符合条件的N 的坐标有(4,−52),(2+14,52),(2−14,52).20.(1)解:设抛物线的解析式为y =a 0(x −1)2+54将(0,0)代入解析式得:a 0=−54∴抛物线的解析式为y =−54(x −1)2+54令y =−10,则−10=−54(x −1)2+54解得:x 1=−2(舍去),x 2=4∴入水处B 点的坐标(4,−10)(2)解:距点E 的水平距离为5米,对应的横坐标为:x =5−32=72将x =72代入解析式得:y =−54×(72−1)2+54=−10516∵−10516−(−10)=5516<5∴该运动员此次跳水失误了(3)解:∵EM=212,EN =272,点E 的坐标为(−32,−10)∴点M 、N 的坐标分别为:(9,−10),(12,−10)∵该运动员入水后运动路线对应的抛物线解析式为y =a (x −ℎ)2+k ,顶点C 距水面4米y =a (x −132)2−14,∴当抛物线经过点M时,把点M(9,−10)代入得:a=1625同理,当抛物线经过点N(12,−10)时,a=14由点D在MN之间可得:14≤a≤162521.(1)解:∵二次函数y1=x2+mx+1的图像与反比例函数y2=kx(x>0)的图像相交于点B(−3,1),∴(−3)2−3m+1=1,k−3=1,解得m=3,k=−3,∴二次函数的解析式为y1=x2+3x+1,反比例函数的解析式为y2=−3x(x>0).(2)∵二次函数的解析式为y1=x2+3x+1,∴对称轴为直线x=−32,由图象知,当y1随x的增大而增大,且y1<y2时,−32≤x<0(3)由题意作图如下:∵当x=0时,y1=1,∴A(0,1),∵B(−3,1),∴△ACE的CE边上的高与△BDE的DE边上的高相等,∵△ACE与△BDE的面积相等,∴CE=DE,即E点是二次函数的对称轴与反比例函数的交点,当x=−32时,y2=2,∴E(−32,2).22.(1)解:令x=0,则y=−4,∴C(0,−4),∴OC=4,∵OA=OC,∴AO=4,∴A(4,0),设直线AC的解析式为y=kx+b,∴{4k+b=0b=−4,解得{k=1b=−4,∴y=x−4;(2)解:∵OC=4OB,∴OB=1,∴B(−1,0),将A(4,0),B(−1,0)代入y=a x2+bx−4,∴{16a+4b−4=0a−b−4=0,解得{a=1b=−3,∴y=x2−3x−4,∵y=x2−3x−4=(x−32)2−254,a=1>0,∴抛物线开口向上,对称轴为直线x=32,∴函数值y随x的增大而减小时x的取值范围为x<32;(3)解:过点P作PQ∥y轴交AC于点Q,∵点P 的横坐标为n ,∴ P (n ,n 2−3n −4),则Q (n ,n −4),∴ PQ =n −4−(n 2−3n −4)=−n 2+4n ,由(1)得A (4,0),C (0,−4),∴ S △PCA =S △PCQ +S △PAQ=12QP (x P −x C )+12QP (x A −x P )=12QP (x P −x C +x A −x P )=12QP (x A −x C )=12×4×(−n 2+4n )=−2(n −2)2+8,∵ 0<n <4,∴当n =2时,△PCA 的面积有最大值,此时P (2,−6);(4)解:当32≤m ≤4时,二次函数的最大值与最小值的差是一个定值,∵ y =x 2−3x −4=(x −32)2−254,∴抛物线的对称轴为直线x =32,①当−1<m <32时,x =−1,y 有最大值0,x =m ,y 有最小值m 2−3m −4,∴ 0−(m 2−3m −4)=−m 2+3m+4,此时二次函数的最大值与最小值的差随m 的变化而变化;②当32≤m ≤4时,x =32,y 有最小值−254,x =−1,y 有最大值0,∴0−(−254)=254,此时二次函数的最大值与最小值的差是一个定值;③当m>4时,x=32,y有最小值−254,x=m,y有最大值m2−3m−4,∴m2−4m−4+254=m2−3m+94,此时二次函数的最大值与最小值的差随m的变化而变化;综上所述:32≤m≤4时,二次函数的最大值与最小值的差是一个定值.23.(1)∵点C(4,m),D(−2,−4)在反比例函数图象上,∴4m=(−2)×(−4),解得m=2,∴C(4,2),∴反比例函数的解析式为y=8x;设一次函数的解析式为y=kx+b,∴{−2k+b=−44k+b=2,解得{k=1b=−2,∴一次函数的解析式为y=x−2;(2)直线y=x−2与y轴的交点B(0,−2),设E(0,t),t>0,∴EB=t+2,∴SΔCDE =12×BE×(4+2)=9,∴3(t+2)=9,解得t=1,∴E(0,1);(3)设直线AB向上平移后的函数解析式为y=x−2+ℎ,∵F(2,n)在反比例函数图象上,∴n=4,∴F(2,4),将F点代入y=x−2+ℎ,则ℎ=4,∴平移后的直线解析式为y=x+2,∴G(0,2),设H(x,y),①当HE为平行四边形的对角线时,x=2,y+1=6,∴H(2,5);②当HF为平行四边形的对角线时,x+2=0,y+4=3,∴H(−2,−1);③当HG为平行四边形的对角线时,x=2,y+2=5,∴H(2,3);综上所述:H点坐标为(2,5)或(−2,−1)或(2,3).。

第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,点P(2,1)是反比例函数y=的图象上一点,则当y<1时,自变量x的取值范围是()A.x<2B.x>2C.x<2且x≠0D.x>2或x<02、二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是( )A. B. C. D.3、已知点在反比例函数(a为常数)的图象上,则为的大小关系是()A. B. C. D.4、下列函数关系中,不可以看作二次函数y=ax2+bx+c(a≠0)模型的是()A.圆的半径和其面积变化关系B.我国人口年自然增长率x,两年中从12亿增加到y亿的x与y的变化关系C.掷铅球水平距离与高度的关系 D.面积一定的三角板底边与高的关系5、已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6、如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为()A. B. C. D.7、如图,已知抛物线的对称轴为直线,与x轴的两个交点是A,B,其中点A的坐标为,则下列结论:①;②;③点B的坐标是;④点、是抛物线上的两点,若,则,其中正确结论的个数是()A.1个B.2个C.3个D.4个8、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-29、小英同时掷甲、乙两个质地均匀的骰子(6个面上分别标有1,2,3,4,5,6这6个数字).记甲朝上的一面数字为x,乙朝上的一面数字为y,这样确定点P的一个坐标(x,y),那么点P落在y= 上的概率()A. B. C. D.10、函数y=ax(a≠0)与y=在同一坐标系中的大致图象是()A. B. C. D.11、抛物线与x轴的交点坐标是(-1,0)和(3,0),则此抛物线的对称轴是A.直线x=-1B.直线x=0C.直线x=1D.直线x= 312、如图,已知A(﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,则三角形AOB的面积是()A.5B.6C.7D.813、在平面直角坐标系中,下列函数的图象经过原点的是()A.y=B.y=﹣2x﹣3C.y=2x 2+1D.y=5x14、如图,反比例函数y=的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1B.0<y<lC.y>2D.0<y<215、关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征. 甲:函数图象经过点;乙:函数图象经过第四象限;丙:当时,y随x的增大而增大.则这个函数表达式可能是()A. B. C. D.二、填空题(共10题,共计30分)16、已知A(﹣,3)是反比例函数y=图象上一点,则k的值为________.17、如图,正比例函数与反比例函数的图象在第一角限内交于点A,且AO=2,则k=________ .18、已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为________.19、如图,四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值是________.20、若抛物线y=x2-4x+c的顶点在x轴上,则c的值是________.21、如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=________.22、将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个;若这种商品的零售价在一定范围内每降价2元,其日销售量就增加4个,为了获得最大利润,则售价为________元,最大利润为________元.23、已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …m 5 2 1 2 …则m的值是________,当y<5时,x的取值范围是________.24、若抛物线y=a(x-3)2+2经过点(1,-2),则a=________25、已知点A的坐标为,点B的坐标为,点P在函数的图象上,如果的面积是6,则点P的坐标是________.三、解答题(共5题,共计25分)26、我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.27、已知x1, x2, x3是y= 图像上三个点的横坐标,且满足x3>x2>x1>0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学试卷
一、选择题(本题共10 小题,每小题4 分,满分40分)
1.下面的函数是二次函数的是
A . 13+=x y
B .x x y 22
+= C . 2x y = D .x
y 2= 2.抛物线2
3x y =,23x y -=,13
12
+=
x y 共有的性质是 A .开口向上 B .对称轴是y 轴
C .顶点坐标都是(0,0)
D .在对称轴的右边y 随x 的增大而增大
3.把抛物线2
y x =-向左平移1个单位,再向上平移3个单位,则平移后抛物线的解析式为 A .2
(1)3y x =--- B .2
(1)3y x =-+- C .2
(1)3y x =--+ D .2
(1)3y x =-++ 4. 抛物线44
12
-+-
=x x y 的对称轴是 A.x=-2 B.x=2 C .x=-4 D.x=-4 5.下列抛物线与x 轴只有一个公共点的是
A .2)2(21-=
x y B .132+=x y C.1242++=x x y D.3)3(2
1
2+--=x y 6.二次函数c bx ax y ++=2
的图象如图,则点),(a
c b 在
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
7.对于任意实数t ,抛物线t x t x y +-+=)2(2
总经过一个固定的点,这个点是 A.(1,0) B (-1,0) C.-1,3) D.(1,3) 8.在反比例函数4
y x
=的图象中,阴影部分的面积不等于4的是
A .
B .
C .
D .
8.在同一直角坐标系中,函数b ax y +=2
与)0(≠+=ab b ax y 的图象大致如图 ( )
9.二次函数2
y ax bx c =++的图象如图,则下列关于a ,b ,c 间的函数关系判断正确的是
y
y
y y
x
x
x
x
O O
O
O
A
B
C
D
( )
A .0ab <
B .0bc <
C .0a b c ++>
D .0a b c -+<
9. 函数2
y ax b y ax bx c =+=++和在同一直角坐标系内的图象大
致是
10.为了更好保护水资源,造福人类,某工厂计划建一个容积V (m 3)一定的污水处理池,池的底面积S (m 2)与其深度h (m )满足关系式:V=Sh (V≠0),则S 关于h 的函数图象大致是 A .
B .
C .
D .
二、填空题(本题共4小题,每小题 5 分,满分 20 分)
13. 在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是_______米.
14. 如图,是二次函数y=ax 2+bx+c (a≠0)的图象的一部分,给出下列命题: ①abc <0;②b >2a ;③a+b+c=0 ④ax 2+bx+c=0的两根分别为﹣3和1; ⑤8a+c >0.其中正确的命题是 .
三.(本题共2小题,每小题8分,满分16分)
15.已知:y 与2
x 成反比例,且当x=2时,y=4.求x=1.5时的y 值. 【解】
四、(本题共 2 小题,每小题 8 分,满分 16 分)
第13题图
第14题图
17. 已知函数3)1(2
1
2--=
x y ,求(1)抛物线的顶点坐标及对称轴。

【解】
(2)x 在什么范围内,函数值y 随x 的增大而减小? 【解】
(3)当x 取何值时,函数值y=0? 【解】
五、(本题共 2 小题,每小题 10 分,满分 20分)
19. 一男生推铅球,铅球出手后运动的高度)(m y ,与水平距离)(m x 之间的函数关系是
3
5
321212++-
=x x y ,那么这个男生的铅球能推出几米? 【解】
20.如图,一次函数y kx b =+的图象与反比例函数m
y x
=
的图象相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式 【解】
(2)根据图象写出使一次函数的值小于反比例函数的 值的x 的取值范围. 【解】
六、(本题题满分12 分)
21. 某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。

(1)要使每天获得利润700元,请你帮忙确定售价; 【解】
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润。

【解】
七、(本题题满分12 分)
22. 如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20米,水位上升3m 就达到警戒线CD ,这是水面宽度为10米,
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2米的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
【解】
八、(本题满分 14 分)
23. “绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车
场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y 值表示7:00时的存量,x=2时的y 值表示8:00时的存量…依此类推.他发现存量y (辆)与x (x 为整数)满足如图所示的一个二次函数关系.
根据所给图表信息,解决下列问题:
(1)m= ,解释m 的实际意义: ;
时段
x 还车数 (辆) 借车数 (辆) 存量y (辆)
6:00﹣7:00 1 45 5 100 7:00﹣8:00 2 43
11
n





第22题图
(2)求整点时刻的自行车存量y 与x 之间满足的二次函数关系式; 【解】
(3)已知9:00~10:00这个时段的还车数比借车数的3倍少4,求此时段的借车数. 【解】 22.(7分)如图二次函数y=ax 2+bx+c 的图象经过A 、B 、C 三点,
(1)观察图象,写出A 、B 、C 三点的坐标,并求出抛物线解析式,
(2)求此抛物线的顶点坐标和对称轴
(3)观察图象,当x 取何值时,y<0?y=0?y>0? 13.(8分)某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB= 4米,顶部C 离地面高为4.4米,现有一辆载满货物的汽车欲通过大门,货物顶点距地面米,请通过计算,判断这辆汽车能否顺利通过大门?
24.(9延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变。

现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元。

据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价是每千克20元。

(1)设x 天后每千克活蟹的市场价为P 元,写出P 关于x 的函数关系式;
(2)如果放养x 天后将活蟹一次性出售,并记1000千克蟹的销售总额Q 元,写出Q 关于x 的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少
25、(9分)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s (万元)与时间t (月)之间的函数关系式; (2)求截止到几月末公司累积利润可达30万元; (3)求第8个月公司所获利润是多少万元?
26、(10分)如图(7)一位篮球运动员跳起投篮,球沿抛物线y =-1
5x 2+3.5运行,然后准确
落人篮框内。

已知篮框的中心离地面的距离为3.05米。

(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为 2.25米,请问他距离篮框中心的水平距离是多少?
x (m) 5 10 20 30 40 50 y (m)
0.125 0.5
2
4.5
8
12.5
27、(本题10分)如图1是某河床横断面的示意图。

查阅该河段的水文资料,得到下表中的数据: 请你以上表中的各对数据(x, y )作为点的坐标,尝试在图2所示的坐标系中画出y 关于 x 的函数图像;
(2x
5
10
20
30 40 50 y
x 2
25
1 25
1 25
1
② 根据所填表中呈现的规律,猜想出用x 表示y 的二次函数的表达式:________________. (1) 当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否
在这个河段安全通过?为什么?。

相关文档
最新文档