沪科版九年级数学二次函数和反比例函数测试卷
九年级上册数学单元测试卷-第21章 二次函数与反比例函数-沪科版(含答案)

九年级上册数学单元测试卷-第21章二次函数与反比例函数-沪科版(含答案)一、单选题(共15题,共计45分)1、小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc<0;③a-b+c>0;④2a-3b=0;⑤4a+2b+c>0.你认为其中正确的是()A.①②④B.①③⑤C.②③⑤D.①③④⑤2、已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是( )A. <x<2B. x>2或x<C. x<-2 或x>D.-2<x<3、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是( )A. abc<0B.4 ac-b2>0C. c-a>0 D.当x=-n2-2( n为实数)时,y≥c4、如图,在直角坐标系中,点是x轴正半轴上的一个定点,点是双曲线()上的一个动点,当点的横坐标逐渐增大时,的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小5、若,则二次函数的图象可能是()A. B. C. D.6、已知函数y=x-5,令x=, 1,, 2,, 3,, 4,, 5,可得函数图象上的十个点.在这十个点中随机取两个点P(x1, y1),Q(x2,y2),则P,Q两点在同一反比例函数图象上的概率是()A. B. C. D.7、若反比例函数的图象经过点(-5,2),则的值为().A.10B.-10C.-7D.78、如图,抛物线( 为常数)的图象交轴的正半轴于A,B两点,交轴的正半轴于C点.如果当时,,那么直线的图象可能是()A. B. C. D.9、一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示.设小矩形的长、宽分别为,剪去部分的面积为,若,则与的函数图像是()A. B. C.D.10、在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A.y=2(x-1) 2-3B.y=2(x-1) 2+3C.y=2(x+1) 2-3 D.y=2(x+1) 2+311、二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:⑴ac<0;⑵当x>1时,y的值随x值的增大而减小.⑶3是方程ax2+(b﹣1)x+c=0的一个根;⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个12、如图,一次函数与二次函数为的图象相交于点M,N,则关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根13、二次函数y=x2+px+q中,由于二次项系数为1>0,所以在对称轴左侧,y随x增大而减小,从而得到y越大则x越小,在对称轴右侧,y随x增大而减大,从而得到y越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x的方程x2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A.m<d<e<nB.d<m<n<eC.d<m<e<nD.m<d<n<e14、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:其中正确的结论有()①abc>0;②8a+2b=-1;③4a+3b+c>0;④4ac+24c<b2.A.1B.2C.3D.415、抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、把抛物线向左平移2个单位,再向上平移2个单位得到的抛物线解析式为________;17、如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为________.18、直线y=x+2与抛物线y=x2的交点坐标是________.19、如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为________.20、在平面直角坐标系xoy中,直线(k为常数)与抛物线交于A,B两点,且A点在y轴右侧,P点的坐标为(0,4)连接PA,PB.(1)△PAB的面积的最小值为________;(2)当时,=________21、如图,一次函数y=kx+b 的图象l与坐标轴分别交于点E、F,与双曲线y=- (x<0)(x<0)交于点P(﹣1,n),且F 是PE 的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________。
沪科版九年级上册数学第21章 二次函数与反比例函数含答案(含解析)

沪科版九年级上册数学第21章二次函数与反比例函数含答案一、单选题(共15题,共计45分)1、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )A.a<0B.b<0C.c>0D.b 2-4ac<02、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定3、直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是()A. B. C. D.4、如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y= (k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2=10,则k 的值是()A.5B.10C.15D.205、若是反比例函数,则必须满足()A. B. C. 或 D. 且6、小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个7、若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣4的值为()A.0B.-2C.2D.-68、二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C.D.9、一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B. C.D.10、将抛物线y=2x2平移,得到抛物线y=2(x+4)2+1,下列平移正确的是()A.先向左平移4个单位,再向上平移1个单位B.先向左平移4个单位,再向下平移1个单位C.先向右平移4个单位,再向上平移1个单位 D.先向右平移4个单位,再向下平移1个单位11、将抛物线y=(x﹣2)2+2向左平移2个单位,得到的新抛物线为()A.y=(x﹣2)B.y=(x﹣2)+4C.y=x +2D.y=(x﹣4)+212、已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0B.b>0,c<0C.b<0,c<0D.b<0,c>013、如图,△ABC.的三个顶点分别为A(1,2),B(5,2),C(5,5).若反比例函数在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤25B.2≤k≤10C.1≤k≤5D.10≤k≤2514、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-215、如图,在平面直角坐标系中,点A、B的坐标分别为(-2,3)、(0,1),将线段AB沿x轴的正方向平移m(m>0)个单位,得到线段A' B'。
第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、函数y=x(x﹣4)是()A.一次函数B.二次函数C.正比例函数D.反比例函数2、如图,A是反比例函数y=的图象上一点,AB⊥y轴于点B.若△ABO面积为2,则k为值为()A.-4B.1C.2D.43、有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是,将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是随的增大而增大的概率是()A. B. C. D.14、两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径5、当时,函数与在同一坐标系内的图象可能是()A. B. C. D.6、二次函数y = ax2-2x-3(a<0)的图象一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7、将抛物线y=3x2先向右平移1个单位,再向上平移2个单位得到的抛物线的解析式是()A.y=3(x-1)2+2B.y=3(x+1)2-2C.y=3(x-1)2-2 D.y=3(x+1)2+28、如图,在平面直角坐标系中有两点A(6,2),B(6,0),以原点为位似中心,相似比为3∶1,把线段AB缩小得到A′B′,则过A′点对应点的反比例函数的解析式为( )A.y=B.y=C.y=-D.y=9、如图,正比例函数y1=k1x的图象与反比例函数的图象相交于A,B两点,其中点A的横坐标为2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2 D.﹣2<x<0或x>210、如图,点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=()A.2B.3C.4D.511、如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y= 在第一象限内的图象经过点D,交BC于点E,若AB=4,CE=2BE,,则k的值为()A.3B.C.6D.1212、反比例函数y=的图象,当x>0时,y随x的增大而增大,则m的取值范围是()A.m<3B.m≤3C.m>3D.m≥313、函数图像的大致位置如图所示,则ab,bc,2a+b,,,b2-a2 等代数式的值中,正数有()A.2个B.3个C.4个D.5个14、已知二次函数y=ax2+bx-1(a≠0)的图象经过点(2,4),则代数式1﹣2a﹣b的值为( )A.-4B.-C.D.15、如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形,它们分别是△P1A1O、△P2A2O、△P3A30,设它们的面积分别是S1、S2、S3,则()A.S1<S2<S3B.S2<S1<S3C.S3<S1<S2D.S1=S2=S3二、填空题(共10题,共计30分)16、如图,直线l:,一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3)…B n(n,y n)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1, 0),A2(x2, 0),A3(x3, 0)…,A n+1(x n+1, 0)(n为正整数),设x1=d(0<d<1)若其中一条抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则我们把这条抛物线就称为:“美丽抛物线”.则当d(0<d<1)的大小变化时能产生美丽抛物线相应的d的值是________.17、若点A(﹣5,y1),B(1,y2),C(2,y3)在反比例函数(a为常数)的图象上,则y1, y2, y3的大小关系是________.(用“<”连接)18、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④若点A(一3,y l)、点B(- ,y2)、点C( ,y3)在该函数图象上,则y l<y3<y2;⑤若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则x1<-1<5<x2.其中正确的结论有________ (只需填写序号)19、二次函数的图像开口方向________ 。
沪科新版九年级数学上册 第21章 二次函数与反比例函数 单元测试(含解析)

沪科九上数学试卷一、单选题 (本题共计 10 小题,共计40分)1、 点在反比例函数的图象上,则下列各点在此函数图象上的是A .B .C .D .2、如图,在中,点D ,E 分别为AB ,AC 边上的点,且,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是A .B .C .D .3、比较二次函数2y x =与2y x =-的图象,下列结论错误的是( ) A .对称轴相同 B .顶点相同 C .图象都有最高点 D .开口方向相反4、如图,已知函数和的图象交于点、,则根据图象可得关于的不等式的解集是( )A .B .-3<x <0或C .D .5、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )6、如图,已知矩形ABCD 中,AB =3,BE =2,EF ⊥BC .若四边形EFDC 与四边形BEF A 相似而不全等,则CE =( )A .3B .3.5C .4D .4.57、如果23a b =,那么a a b+等于( ) A .3:2B .2:5C .5:3D .3:58、如图,△ABC 的顶点A 在反比例函数y =(x >0)的图象上,顶点C 在x 轴上,AB ∥x 轴,若点B 的坐标为(1,3),S △ABC =2,则k 的值为( )A .4B .﹣4C .7D .﹣79、如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC .若34AE AC =, AD=9,则AB 等于( )A .10B .11C .12D .1610、二次函数的图像如图,下列结论:①;②;③;④.正确的个数为( )A .1个B .2个C .3个D .4个二、填空题 (本题共计 4 小题,共计20分)11、已知二次函数y=ax 2+bx+c 经过点(-1,0),(0,-2),(1,-2).则这个二次函数的解析式为______. 12、如图,已知函数y=﹣与y=ax 2+bx (a >0,b >0)的图象交于点P ,点P 的纵坐标为1,则关于x 的不等式bx+>的解集为_____.13、若3a=4b ,则(a-b):(a+b)的值是_________14、如图,已知点C 是线段AB 的黄金分割点,且BC AC >.若1S 表示以BC 为边的正方形的面积,2S 表示长为()AD AD AB =、宽为AC 的矩形的面积,则1S 与2S 的大小关系为__________.三、解答题 (本题共计 9 小题,共计90分)15、泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y (℃)与时间x (min )成一次函数关系;停止加热过了1分钟后,水壶中水的温度y (℃)与时间x (min )近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃. (1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?16、已知抛物线y =ax 2+bx +3与x 轴交于点A (﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D (0,74)作x 轴的平行线交抛物线于E ,F 两点,求EF 的长; (3)当y ≤74时,直接写出x 的取值范围是 .17、图是5×5的网格图,每个小正方形的边长为1,请按要求作格点图形(图形的每个顶点都在格点上) (1)在图①中以线段PQ 为一边作一个等腰直角三角形;(2)在图②中,作△DEF 相似于△ABC ,且△ABC 与△DEF 的相似比是1:2.18、我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z (元/件)与年销售量x (万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W 万元.(毛利润=销售额﹣生产费用)(1)请直接写出y 与x 以及z 与x 之间的函数关系式;(写出自变量x 的取值范围)(2)求W 与x 之间的函数关系式;(写出自变量x 的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?19、如图,在Rt △ABC 中,∠C=90°,Rt △BAP 中,∠BAP=90°,已知∠CBO=∠ABP ,BP 交AC 于点O ,E为AC 上一点,且AE=OC . (1)求证:AP=AO ; (2)求证:PE ⊥AO ;(3)当AE=AC ,AB=10时,求线段BO 的长度.20、某班“数学兴趣小组”对函数y =﹣x 2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …﹣3﹣52﹣2﹣10 1 2523 …y …﹣2﹣14m 2 1 2 1﹣14﹣2…其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①方程﹣x2+2|x|+1=0有个实数根;②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是.21、如图,直线y=﹣2x+4与x轴,y轴分别交于点C,A,点D为点B(﹣3,0)关于AC的对称点,反比例函数y=的图象经过点D.(1)求证:四边形ABCD为菱形;(2)求反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求点M的坐标.22、如图,□ABCD的对角线交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:△BDE是直角三角形;(2)如果OE⊥CD,试判断△BDE与△DCE是否相似,并说明理由.23、在△ABC中,点E、F在边BC上,点D在边AC上,连接ED、DF,ABAC=m,∠A=∠EDF=120°(1)如图1,点E、B重合,m=1时①若BD平分∠ABC,求证:CD2=CF•CB;②若213CFBF=,则ADCD=;(2)如图2,点E、B不重合.若BE=CF,=AB DFAC DE=m,37BEEF=,求m的值.答案解析一、单选题1、【答案】B【解析】∵点(2,-3)在反比例函数y=的图象上,∴k=2×(-3)=-6. A 、∵2×3=6≠-6,∴此点不在函数图象上; B 、∵3×(-2)=-6,∴此点在函数图象上; C 、∵(-2)×(-3)=6≠-6,此点不在函数图象上; D 、∵(-1)×(-6)=6≠-6,此点不在函数图象上. 故选B . 2、【答案】C【解析】 【分析】 由可得到∽,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】 A.∵, ∴ ,故不正确;B. ∵, ∴ ,故不正确;C. ∵,∴∽,∽,, .,故正确;D. ∵, ∴,故不正确;故选:C . 【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.3、【答案】C 【解析】二次函数2y x =,开口向上, ∴有最小值,二次函数2y x =-,开口向下, ∴有最大值, 故选C.4、【答案】B【解析】 【分析】观察图象得到当﹣3<x <0或x >1时,函数图象y 1=kx +b 都在的图象上方,即有kx +b >.【详解】当﹣3<x <0或x >1时,kx +b >. 故选B . 【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了观察图象的能力.5、【答案】C.【解析】试题分析:观察图形,可知AB=10,AC=2,BC=2,A 选项中的阴影部分三边分别是1,5,22,B 选项中的三边分别是3,2,5,C 选项中的三边分别是1,2,5,D 选项中的三边分别是2,5,13,根据三边的比相等的两个三角形相似,可知选项C 正确.考点:相似三角形的判定.6、【答案】D【解析】【分析】可设CE =x ,由四边形EFDC 与四边形BEF A 相似,根据相似多边形对应边的比相等列出比例式,求解即可. 【详解】 设CE =x .∵四边形EFDC 与四边形BEF A 相似,∴.∵AB =3,BE =2,EF =AB ,∴,解得:x =4.5.故选D . 【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC与四边形BEF A相似得到比例式.7、【答案】B【解析】∵ab=23的两个内项是b、2,两外项是a、3,∴32ba=,∴根据合比定理,得23522a ba++==,即52a ba+=;同理,得aa b+=2:5.故选B.8、【答案】C【解析】∵AB∥x轴,若点B的坐标为(1,3),∴设点A(a,3)∵S△ABC=(a-1)×3=2,∴a=,∴点A(,3)∵点A在反比例函数y=(x>0)的图象上,∴k=7,故选:C.9、【答案】C【解析】试题分析:根据平行线分线段成比例定理可以得到AE ADAC AB=,求得AB的长.试题解析:∵DE∥BC,∴AE AD AC AB=,即394AB =,解得:AB=12.故选C.考点:平行线分线段成比例.10、【答案】D【解析】∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为直线x==-1,∴b<0,∴abc>0,故①正确,∵抛物线与x 轴有两个交点,∴b2-4ac>0,即4ac-b2<0,故②正确,∵=-1,∴a=,∵x=1时,a+b+c<0,∴+b+c<0,即3b+2c<0,故③正确,当x=-1时,a-b+c>0,故④正确,综上所述:正确的结论有①②③④共4个,故选D.二、填空题11、【答案】y=x2-x-2.【解析】将此三个点代入解析式里得{22a b cca b c-+==-++=-解得a=1,b=-1,c=-2,故解析式为y=x2-x-2.12、【答案】x<﹣3或x>0.【解析】【分析】所求不等式变形后,可以看做求二次函数的函数值大于反比例函数值时x的范围,由二次函数与反比例函数图象的交点,利用图象即可得到满足题意的x的范围,即为所求不等式的解集.【详解】∵反比例函数与二次函数图象交于点P,且P的纵坐标为1,∴将y=1代入反比例函数y=-得:x=-3,∴P的坐标为(-3,1),将所求的不等式变形得:ax2+bx>- ,由图象可得:x<-3或x>0,则关于x的不等式ax2+bx +>0的解为x<-3或x>0.故答案为:x<-3或x>0【点睛】此题考查了二次函数与不等式(组),利用了数形结合的数学思想,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.13、【答案】【解析】∵3a=4b,∴a=b,∴(a-b):(a+b)= b: b=1:7.故答案为.14、【答案】12S S=【解析】∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AC•AB,∵S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,∴S1=BC2,S2=AC•AB,∴S1=S2.故答案为:S1=S2.三、解答题15、【答案】(1)y=100(8<x≤9);y =(9<x≤45);(2)等待2分钟.【解析】(1)停止加热时,设,由题意得:50=,解得:k=900,∴y =,当y=100时,解得:x=9,∴C点坐标为(9,100),∴B点坐标为(8,100),当加热烧水时,设y=ax+20,由题意得:100=8a+20,解得:a=10,∴当加热烧水,函数关系式为y=10x+20(0≤x≤8);当停止加热,得y与x的函数关系式为y=100(8<x≤9);y =(9<x≤45);(2)把y=90代入y =,得x=10,因此从烧水开到泡茶需要等待10﹣8=2分钟.16、【答案】(1)y=﹣x2+2x+3;(2)EF长为2;(312x≤或32x≥.【解析】(1)把A(﹣1,0),B(3,0)代入y=ax2+bx +3,解得:a=﹣1,b=2,抛物线的解析式为y=﹣x2+2x+3;(2)把点D的y坐标y=74,代入y=﹣x2+2x+3,解得:x=12或32,则EF长312 22⎛⎫=--=⎪⎝⎭;(3)由题意得:当y≤74时,直接写出x 的取值范围是:12x≤或32x≥,故答案为:12x≤或32x≥.17、【答案】(1)见解析;(2)见解析. 【解析】(1)如图所示,△PQM即为所求;(2)∵AB=2,BC2=,AC221310=+=,△ABC与△DEF的相似比是1:2.∴2AB BC ACDE EF DF===,∴DE=22,EF=2,DF=210,∴△DEF即为所求.18、【答案】(1)y=x2.z=﹣x+30(0≤x≤100);(2)年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)今年最多可获得毛利润1080万元【解析】【分析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=,故y与x之间的关系式为y=x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则,解得:,故z与x之间的关系式为z=﹣x+30(0≤x≤100);(2)W=zx﹣y =﹣x2+30x ﹣x2=﹣x2+30x=﹣(x2﹣150x)=﹣(x﹣75)2+1125,∵﹣<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W =﹣(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.19、【答案】(1)证明见解析;(2)证明见解析;(3)BO=.【解析】试题分析:(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.试题解析:(1)∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠ABP,∵∠BOC=∠AOP,∴∠AOP=∠ABP,∴AP=AO;(2)如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,∴∠AOD=∠PAE,在△AOD和△PAE中,∵AE=OD,∠AOD=∠PAE,AP=AO,∴△AOD≌△PAE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k,由∠CBO=∠ABP,根据轴对称BC=BD=10﹣4k,∵∠BOC=∠EOP,∠C=∠PEO=90°,∴△BCO∽△PEO,∴,即,解得k=1.∴BD=10﹣4k=6,OD=3k=3,在Rt△BDO中,由勾股定理得:BO=.考点:1.相似三角形的判定与性质2.全等三角形的判定与性质3.角平分线的性质4.等腰三角形的判定与性质.20、【答案】(1)1;(2)详见解析;(3)①函数的最大值是2,没有最小值;②当x>1时,y随x的增大而减小;(4)①2;②1<a<2.【解析】(1)由表格可知:图象的对称轴是y轴,∴m=1,故答案为:1;(2)如图所示;(3)性质:①函数的最大值是2,没有最小值;②当x>1时,y随x的增大而减小;(4)①由图象得:抛物线与x轴有两个交点∴方程﹣x2+2|x|+1=0有2个实数根;故答案为:2;②由图象可知:﹣x2+2|x|+1=a有4个实数根时,即y=a时,与图象有4个交点,所以a的取值范围是:1<a<2.故答案为:1<a<2.21、【答案】(1)证明见解析;(2)反比例函数解析式为y =;(3)点M的坐标为(0,).【解析】(1)∵直线y=﹣2x+4与x轴,y轴分别交于点C,A,∴A(0,4),C(2,0),∴AB ==5,BC=5,∵D为B点关于AC的对称点,∴AD=AB=5,CD=CB=5,∴AB=BC=CD=DA,∴四边形ABCD为菱形.(2)∵四边形ABCD为菱形,∴AD∥BC,而AD=5,A(0,4),∴D(5,4),把D(5,4)代入y =得k=5×4=20,∴反比例函数解析式为y =.(3)∵四边形ABMN是平行四边形,∴AB∥NM,AB=NM,∴MN是AB经过平移得到的,∵点M是点B在水平方向向右平移3个单位长度,∴点N的横坐标为3,代入y =中,得:y =,∴点M 的纵坐标为﹣4=,∴点M的坐标为(0,).22、【答案】(1)证明见解析;(2)相似,理由见解析.【解析】试题分析:(1)由平行四边形ABCD对角线互相平分、已知条件OE=OB以及等边对等角推知∠BED=∠OEB+∠OED=90°,则DE⊥BE,即△BDE是直角三角形;(2)利用两角法证得△BDE与△DCE相似.证明:(1)∵四边形ABCD是平行四边形,∴OB=OD,∵OE=OB,∴OE=OD,∴∠OBE=∠OEB,∠ODE=∠OED,∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠BED=∠OEB+∠OED=90°,∴DE⊥BE,即△BDE是直角三角形;(2)△BDE与△DCE相似.理由如下:∵OE⊥CD,∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵∠OBE=∠OEB,∴∠DBE=∠CDE,∵∠BED=∠DEC=90°,∴△BDE∽△DCE.23、【答案】(1)①见解析;②12或23;(2)m=12.【解析】(1)①∵1ABmAC==,∴AB=AC,∵BD平分∠ABC,∴∠ABD=∠DBF,∵∠BDC=∠A+∠ABD=∠BDF+∠CDF,且∠A=∠BDF=120°,∴∠ABD=∠CDF=∠DBF,且∠C=∠C,∴△CDF∽△CBD,∴CD CF BC CD=,∴CD2=BC•CF;②如图1,过A作AG⊥BC于G,过F作FH⊥BC,交AC于H,∵∠C=30°,∴CH=2FH,设FH=2a,CH=4a,则CF=23a,∵213CFBF=,∴BC=153a,∵CG=153a,∴AG=152a,AC=15a,∴AH=11a,∵∠BAD=∠BDF=∠DHF=120°,∴∠ADB+∠FDH=∠ADB+∠ABD=180°﹣120°=60°,∴∠ABD=∠FDH,∴△ABD∽△HDF,∴AB ADHD FH=,即152a ADHD a=,设AD=x,则DH=11a﹣x,∴30a2=x(11a﹣x),x2﹣11ax+30a2=0,(x﹣5a)(x﹣6a)=0,x=5a或6a,∴51102AB aCD a==或6293AD aCD a==,故答案为:12或23;(2)如图2,过E作EH∥AB,交AC于H,过D作DM⊥EH于M,过F作FG∥ED,交AC于G,∵BE=CF,37BEEF=,∴37CFEF=,∵FG∥ED,∴37CF CGEF DG==,∴设CG=3a,DG=7a,∵AB DFAC DE=m,∠A=∠EDF=120°,∴△ABC∽△DFE,∴∠DEC=∠C,∴DE=DC=10a,∵FG∥DE,∴∠GFC=∠DEF=∠C,∴FG=CG=3a,同理由(1)得:△EHD∽△DFG,∴ED DHDG FG=,即1073a DHa a=,DH=307a,Rt△DHM中,∠DHM=60°,∴∠HDM=30°,∴HM=12DH=157a,DM153a,∴EM222215365(10)()77DE DM a a a-=-=,∴EH=657a﹣157a=507a,∴m=5017302107aAB EHAC CH a a===+.。
第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、若是反比例函数,则a的取值为()A.1B.﹣1C.±1D.任意实数2、某直角三角形的面积为3,两直角边分别为x、y,则y关于x的函数解析式及x的取值范围分别是()A.y= , x≠0B.y= , x>0C.y= , x≠0 D.y= , x>03、下列函数中,y是x的反比例函数的是()A. B. C. D.4、已知反比例函数y= ,当1<x<3时,y的最小整数值是()A.3B.4C.5D.65、小明为了研究关于的方程的根的个数问题,先将该等式转化为,再分别画出函数的图象与函数的图象(如图),当方程有且只有四个根时,的取值范围是()A. B. C. D.6、将抛物线y=x2先向上平移1个单位,再向左平移2个单位,则新的函数解析式为().A. B. C. D.7、二次函数y=(x﹣2)2+3的最小值是()A.2B.3C.﹣2D.﹣38、若点A(﹣2,y1),B(1,y2),C(3,y3)在二次函数y=2x2+4x﹣1的图象上,则y1, y2, y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39、已知四点,,,,若一个二次函数的图象经过这四点中的三点,则这个二次函数图象的对称轴为()A. B. C. D.10、如图,点A、M是第一象限内双曲线(k为常数,,)上的点(点M在点A的左侧),若M点的纵坐标为1,且△OAM为等边三角形,则k的值为()A. B. C. D.11、已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC 相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为y=(x>0);④,其中正确的结论有()个。
2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)

2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)一、选择题1.下列函数是二次函数的是()A.y=2x2﹣3B.y=ax2C.y=2(x+3)2﹣2x2D.2.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)3.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2B.0C.2D.无法确定4.函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限C.三,四象限D.一,二,四象限5.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2B.﹣2C.4D.﹣46.如图,正△AOB顶点A在反比例函数y=(x>0)的图象上,则点B的坐标为()A.(2,0)B.(,0)C.(,0)D.(,0)7.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.28.函数y=ax+b和y=ax2+bx+c在同一平面直角坐标系内的图象大致是()A.B.C.D.9.如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y=(x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为()A.(,0)B.(,0)C.(3,0)D.(,0)10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题11.抛物线y=x2﹣(b﹣2)x+3b的顶点在y轴上,则b的值为.12.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上的图象上,顶点B在反比例函数y=的图象上,点C在x轴的正半轴上,则平行四边形OABC的面积是.13.抛物线y=x2+bx+3的对称轴为直线x=1,若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.14.二次函数y=x2﹣2x﹣3,当m﹣2≤x≤m时函数有最大值5,则m的值可能为.三、解答题15.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.16.抛物线y=﹣2x2+8x﹣6.(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.17.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?18.已知:函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=﹣1;当x =3时,y=5.求y关于x的函数关系式.19.关于x的函数y=(m2﹣1)x2﹣(2m+2)x+2的图象与x轴只有一个公共点,求m的值.20.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图,连接AC,P A,PC,若S△P AC=,求点P的坐标.21.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y1=k1x+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与x轴的交点的坐标及△AOB的面积;(3)当x取何值时,y1=y2;当x取何值时,y1>y2.22.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)23.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.参考答案一、选择题1.解:A、y=2x2﹣3,是二次函数,故此选项符合题意;B、当a=0时,y=ax2不是二次函数,故此选项不符合题意;C、y=2(x+3)2﹣2x2,是一次函数,故此选项不符合题意;D、y=+2,不是二次函数,故此选项不符合题意;故选:A.2.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.3.解:根据题意得:m(m﹣2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,所以m=2.故选:C.4.解:∵y=ax2+bx+c的顶点坐标公式为(,),∴y=2x2﹣3x+4的顶点坐标为(,),而a=2>0,所以抛物线过第一,二象限.故选:B.5.解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选:D.6.解:如图,过点A作AC⊥y轴于C,∵△OAB是正三角形,∴∠AOB=60°,∴∠AOC=30°,∴设AC=a,则OC=a,∴点A的坐标是(a,a),把这点代入反比例函数的解析式就得到a=,∴a=±1,∵x>0,∴a=1,则OA=2,∴OB=2,则点B的坐标为(2,0).故选:A.7.解:因为对称轴是直线x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.8.解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.9.解:∵△OAP是等腰直角三角形∴P A=OA∴设P点的坐标是(a,a)把(a,a)代入解析式得到a=2∴P的坐标是(2,2)则OA=2∵△ABQ是等腰直角三角形∴BQ=AB∴设Q的纵坐标是b∴横坐标是b+2把Q的坐标代入解析式y=∴b=∴b=﹣1b+2=﹣1+2=+1∴点B的坐标为(+1,0).故选:B.10.解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题11.解:根据题意,把解析式转化为顶点形式为:y=x2﹣(b﹣2)x+3b=(x﹣)2+3b﹣()2,顶点坐标为(,3b﹣()2),∵顶点在y轴上,∴=0,∴b=2.12.解:延长BA交y轴于点D,作BE⊥x轴于点E,则四边形ODBE是矩形,∠ADO=∠CEB=90°,∴S△ADO==,S矩形ODBE=|5|=5,∵AB∥OC,OA∥BC,∴∠DAO=∠DBC=∠ECB,又∵AO=BC,∴△DAO≌△ECB(AAS),∴S△ADO=S△ECB=,∴S▱ABCO=S矩形ODBE﹣S△ADO﹣S△ECB=5﹣﹣=.故答案为:.13.解:∵抛物线y=x2+bx+3的对称轴为直线x=1,∴﹣=1,得b=﹣2,∴y=x2﹣2x+3=(x﹣1)2+2,∴当﹣1<x<4时,y的取值范围是2≤y<11,当y=t时,t=x2﹣2x+3,即x2+bx+3﹣t=0,∵关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,∴t的取值范围是2≤t<11,故答案为:2≤t<11.14.解:∵二次函数y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该函数的对称轴是直线x=1,∵当m﹣2≤x≤m时函数有最大值5,∴当m=2时,m﹣2,m距离对称轴的距离相等,即当m=2时取得最大值,此时y=(2﹣1)2﹣4=﹣3≠5;当m>2时,在x=m处取得最大值,即m2﹣2m﹣3=5,解得m=4或m=﹣2(舍去);当m<2时,在x=m﹣2处取得最大值,即(m﹣2)2﹣2(m﹣2)﹣3=5,解得m=0或m=6(舍去);由上可得,m的值可能是0或4,故答案为:0或4.三、解答题15.解:设抛物线解析式为y=a(x﹣1)2+4,把(﹣2,﹣5)代入得a(﹣2﹣1)2+4=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x﹣1)2+4.16.解:(1)∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2;(2)∵a=﹣2<0,抛物线开口向下,对称轴为直线x=2,∴当x>2时,y随x的增大而减小;(3)令y=0,即﹣2x2+8x﹣6=0,解得x=1或3,抛物线开口向下,∴当x=1或x=3时,y=0;当1<x<3时,y>0;当x<1或x>3时,y<0.17.解:(1)已知一边长为xcm,则另一边长为(10﹣x)cm.则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.18.解:∵y1与x成正比例,y2与x成反比例,∴设y1=k1x,y2=,∴y=k1x+,∵x=1时,y=﹣1;当x=3时,y=5.∴,解得:,∴y关于x的函数关系式为:y=2x﹣.19.解:①当m2﹣1=0,且2m+2≠0,即m=1时,该函数是一次函数,则其图象与x轴只有一个公共点;②当m2﹣1≠0,即m≠±1时,该函数是二次函数,则△=(2m+2)2﹣8(m2﹣1)=0,解得m=3,m=﹣1(舍去).综上所述,m的值是1或3.20.解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴该二次函数的解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4.(2)如图,连接OP,设P(m,m2﹣m﹣4),由题意可知:A(﹣2,0)、C(0,﹣4);∵S△P AC=S△AOC+S△OPC﹣S△AOP,∴×2×4+×4×m﹣×2×(﹣m2+m+4)=;整理得:m2+2m﹣15=0,解得m=3或m=﹣5(舍弃),∴P(3,﹣).21.解:(1)∵B(2,﹣4)在反比例函数的图象上,∴k2=﹣8.∴反比例函数的解析式为y2=﹣.∵点A(﹣4,n)在y2=﹣上,∴n=2.∴A(﹣4,2).∵y1=k1x+b经过A(﹣4,2),B(2,﹣4),∴.解得.∴一次函数的解析式为y1=﹣x﹣2.(2)∴C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6.(3)由图象,得,当x=﹣4或x=2时,y1=y2;当x<﹣4或0<x<2时,y1>y2.22.解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣7)2+2.88;当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,当x=18时,y=﹣(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6≈8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.23.解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1经过点B(2,3),直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),点(0,1),A(1,2),B(2,3)在直线上,点(0,1),A(1,2)在抛物线上,直线与抛物线不可能有三个交点,∵B(2,3),C(2,1)两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线的解析式为y=﹣x2+2x+1,设平移后的抛物线的解析式为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.(3)另解∵平移抛物线y=﹣x2+2x+1,其顶点仍在直线为y=x+1上,设平移后的抛物线的解析式为y=﹣(x﹣h)2+h+1,∴y=﹣x2+2hx﹣h2+h+1,设平移后所得抛物线与y轴交点的纵坐标为c,则c=﹣h2+h+1=﹣(h﹣)2+∴当h=时,平移后所得抛物线与y轴交点纵坐标的最大值为.。
沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

第21章《二次函数与反比例函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.反比例函数y=k−2x过点(1,2),则关于一次函数y=kx+k−5说法正确的是( )A.不过第一象限 B.y随x的增大而增大C.一次函数过点(2,9) D.一次函数与坐标轴围成的三角形的面积是4 2.一次函数y=cx−b与二次函数y=a x2+bx+c在同一平面直角坐标系中的图象可能是( )A.B.C.D.3.已知抛物线y=x2+(m+1)x−14m2−1(m为整数)与x轴交于点A,与y轴交于点B,且OA=OB,则m等于( )A.2+5B.2−5C.2D.−24.已知点A(a,y1),B(a+2,y2),在反比例函数y=|k|+1x的图像上,若y1−y2>0,则a的取值范围为()A.a<0B.a<−2C.−2<a<0D.a<−2或a>05.已知二次函数y=m x2−2mx+2(m≠0)在−2≤x<2时有最小值−2,则m=( )A.−4或−12B.4或−12C.−4或12D.4或126.已知二次函数y=−(x+m−1)(x−m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是( )A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>−1,则y1>y2D.若x1+x2<−1,则y1<y27.如图,点A是反比例函数y=4x图像上的一动点,连接AO并延长交图像的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足()A.mn=−2B.mn=−4C.n=−2m D.n=−4m8.已知抛物线y=a x2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,−3),若该抛物线的顶点在第三象限,记m=2a−b+c,则m的取值范围是( )A.0<m<3B.−6<m<3C.−3<m<6D.−3<m<09.如图是抛物线y=a x2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c−a=n;③抛物线另一个交点(m,0)在−2到−1之间;④当x<0时,a x2+(b+2)x≥0;⑤一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根;其中正确的是()A.①②③B.①④⑤C.②④⑤D.②③⑤10.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C、D,若点C的横坐标为6,BE=2DE,则k的值为( )A .372B .725C .965D .18二.填空题(共6小题,满分18分,每小题3分)11.如图,抛物线y =a x 2+bx +c 与直线y =kx +ℎ交于A 、B 两点,则关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为 .12.将二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,则该二次函数图像的顶点的纵坐标为 .13.抛物线y =−12x 2+x +4与x 轴交于A ,B 两点(点A 在点B 的左侧),点C(2,y)在在这条抛物线上.(1)则点C 的坐标为 ;(2)若点P 为y 轴的正半轴上的一点,且△BCP 为等腰三角形,则点P 的坐标为 .14.如图,抛物线y =x 2−2x −3与x 轴交于A 、B 两点,与y 轴交于C 点.点D 是抛物线上的一个点,作DE ∥AB 交抛物线于D 、E 两点,以线段DE 为对角线作菱形DPEQ ,点P 在x 轴上,若PQ =12DE 时,则菱形对角线DE 的长为 .15.如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1O A 1=∠B 2B 1A 2=∠B 3B 2A 3=⋅⋅⋅⋅⋅⋅,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是 .16.如图,在平面直角坐标系中,O 为坐标原点,△OAB 是等边三角形,且点B 的坐标为(4,0),点A 在反比例函数y =kx (k >0)的图象上.(1)反比例函数y =kx的表达式为 ;(2)把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1.①若此时另一个反比例函数y =k 1x的图象经过点A 1,则k 和k 1的大小关系是:k k 1(填“<”、“>”或“=”);②当函数y =kx的图象经△O 1A 1B 1一边的中点时,则a = .三.解答题(共7小题,满分52分)17.(6分)如图,一次函数y=x−2与反比例函数y=k(k>0)相交于点A(3,n),与x轴交于x点B,(1)求反比例函数解析式(2)点P是y轴上一动点,连接PA,PB,当PA+PB的值最小时,求P点坐标;(3)在(2)的条件下,C为直线y=x−2的动点,连接PC,将点C绕点P逆时针旋转90°得到点D,在C运动过程中,求PD的最小值.18.(6分)在平面直角坐标系中,已知二次函数y=−x2+bx+c(b,c是常数).(1)当b=−2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,−3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.19.(8分)如图,抛物线y=a x2+bx−5经过A(−1,0),B(5,0)两点.2(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(8分)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(−3,−10).运2动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,),正常情况下,运动员在距水面高度5米以前,必须运动员在空中最高处A点的坐标为(1,54完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x−ℎ)2+k,且顶点C距水面4米,若该运动员出水点D在MN 之间(包括M,N两点),请直接写出a的取值范围.21.(8分)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=kx(x<0)的图象相交于点B(−3,1).(1)求这两个函数的表达式;(2)当y 1随x 的增大而增大,且y 1<y 2时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数y 1的图象相交于点C 、D (点C 在点D 的右边),与函数y 2的图象相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.22.(8分)如图,在平面直角坐标系中,二次函数y =a x 2+bx −4(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC =4OB .(1)求直线CA 的表达式;(2)求该二次函数的解析式,并写出函数值y 随x 的增大而减小时x 的取值范围;(3)点P是抛物线上的一个动点,设点P的横坐标为n(0<n<4).当△PCA的面积取最大值时,求点P的坐标;(4)当−1≤x≤m时,二次函数的最大值与最小值的差是一个定值,请直接写出m的取值范围.23.(8分)如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于点C(4,m),D(−2,−4).(1)求一次函数和反比例函数表达式;(2)点E为y轴正半轴上一点,当△CDE的面积为9时,求点E的坐标;(3)在(2)的条件下,将直线AB向上平移,平移后的直线交反比例函数图象于点F(2,n),交y 轴于点G,点H为平面直角坐标系内一点,若以点E、F、G、H为顶点的四边形是平行四边形,写出所有符合条件的点H的坐标;并写出求解点H的坐标的其中一种情况的过程.答案解析一.选择题1.B【分析】把点(1,2)代入反比例函数y=k−2x,求出k的值,再把k的值代入一次函数y=kx+k−5,再根据一次函数的性质即可解答.【详解】解:∵反比例函数y=k−2x过点(1,2),∴2=k−2,解得k=4,∴一次函数y=kx+k−5的解析式为y=4x−1,∴函数图像过一三四象限,不过第二象限,故A错误,不符合题意;∵4>0,∴y随x的增大而增大,故B正确,符合题意;∵当x=2时,y=4×2−1=7,∴一次函数不过点(2,9),故C错误,不符合题意;∵y=4x−1与坐标轴的交点为(0,−1),(14,0),∴一次函数与坐标轴围成的三角形的面积为12×1×14=18,故D错误,不符合题意.故选:B.2.D【分析】先假设c<0,根据二次函数y=a x2+bx+c图象与y轴交点的位置可判断A,C是否成立;再假设c>0,b<0,判断一次函数y=cx−b的图象位置及增减性,再根据二次函数y=a x2 +bx+c的开口方向及对称轴位置确定B,D是否成立.【详解】解:若c<0,则一次函数y=cx−b图象y随x的增大而减小,此时二次函数y=a x2 +bx+c的图象与y轴的交点在y轴负半轴,故A,C错;若c>0,b<0,则一次函数y=cx−b图象y随x的增大而增大,且图象与y的交点在y轴正半轴上,此时二次函数y=a x2+bx+c的图象与y轴的交点也在y轴正半轴,若a>0,则对称轴x=−b2a >0,故B错;若a<0,则对称轴x=−b2a<0,则D可能成立.故选:D.3.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.4.D【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a,y1)、(a+2,y2)在图象的同一分支上时;②当点(a,y1)、(a+2,y2)在图象的两支上时,分别求解即可.【详解】解:∵|k|+1>0,∴图像在一、三象限,在反比例函数图像的每一支上,y随x的增大而减小,∵y1−y2>0,∴ y1>y2,①当点(a,y1)、(a+2,y2)在同一象限时,∵y1>y2,i.当在第一象限时,∴0<a<a+2,解得a>0;ii.当在第三象限时,∴a<a+2<0,解得a<−2;综上所述:a<−2或a>0;②当点(a,y1)、(a+2,y2)不在同一象限时,∵y1>y2,∴a>0,a+2<0,此不等式组无解,因此,本题a的取值范围为a<−2或a>0,故选:D.5.B【分析】先求出二次函数对称轴为直线x=1,再分m>0和m<0两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数y=m x2−2mx+2=m(x−1)2−m+2,∴对称轴为直线x=1,①当m>0,抛物线开口向上,x=1时,有最小值y=−m+2=−2,解得:m=4;②当m<0,抛物线开口向下,∵对称轴为直线x=1,在−2≤x<2时有最小值−2,∴x=−2时,有最小值y=9m−m+2=−2,解得:m=−12.故选:B.6.A【分析】将函数化为二次函数的一般形式,可以求得对称轴为x=12,然后根据函数图像上点的坐标与对称轴的关系即可得到答案;【详解】解:∵y=−(x+m−1)(x−m)+1=−x2+x+m2−m+1∴函数图像开口向下,对称轴为x=12当x1+x2=1时,A、B两点关于对称轴对称,此时y1=y2;当x1+x2>1时,A、B在对称轴右侧或分别在对称轴两侧且A到对称轴的距离小于B到对称轴的距离,此时y1>y2;当x1+x2<1时,A、B在对称轴左侧或分别在对称轴两侧,且A到对称轴的距离大于B到对称轴的距离,此时y1<y2;由此可判断选项,只有A选项符合,故选A;7.B【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,根据等腰直角三角形的性质得出OC=OA,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出ΔAOE≅ΔCOF,根据全等三角形的性质,可得出A(−m,n),进而得到−mn=4,进一步得到mn=−4.【详解】解:连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,如图所示:∵由直线AB与反比例函数y=4x的对称性可知A、B点关于O点对称,∴AO=BO,又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=12AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴ΔAOE≅ΔCOF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=−m,OF=n,∴AE=−m,OE=n,∴A(n,−m),图像上,∵点A是反比例函数y=4x∴−mn=4,即mn=−4,故选:B.8.B【分析】由顶点在第三象限,经过点A(1,0)和点B(0,−3),可得出:a>0,−b<0,即可2a得出0<a<3,又由于m=2a−b+c=2a−(3−a)+(−3)=3a−6,求出3a−6的范围即可.【详解】∵抛物线y=a x2+bx+c过点(1,0)和点(0,−3),∴c=−3,a+b+c=0,即b=3−a,∵顶点在第三象限,经过点A(1,0)和点B(0,−3),∴a>0,−b<0,2a∴b>0,∴b=3−a>0,∴a<3,∴0<a<3∵m=2a−b+c=2a−(3−a)+(−3)=3a−6,∵0<a<3,∴0<3a<9∴−6<3a−6<3,∴−6<m<3.故选:B.9.D【分析】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【详解】解:①因为抛物线的顶点坐标为(1,n),则其对称轴为x=1,即−b2a=1,所以b=−2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=−2a,所以c−a=n,所以②正确;③因为抛物线的对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在−2到−1之间;所以③正确;④因为a x2+(b+2)x≥0,即a x2+bx≥−2x,根据图象可知:把抛物线y=a x2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=a x2+bx(a≠0)的图象,所以当x<0时,a x2+bx<−2x,即a x2+(b+2)x<0.所以④错误;⑤一元二次方程a x2+(b−12)x+c=0,Δ=(b−12)2−4ac,因为根据图象可知:a<0,c>0,所以−4ac>0,所以Δ=(b−12)2−4ac>0,所以一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根.所以⑤正确.综上,正确的有②③⑤,故选:D.10.C【分析】过点D作DF⊥BC于点F,由勾股定理构造方程求出DE=125,BE=DF=245,再根据反比例函数图像同时经过顶点C、D,即可解答.【详解】解:过点D作DF⊥BC于点F,∵点C的横坐标为6,,∴BC=6.∵四边形ABCD是菱形,∴CD=BC=6.C∵BE=2DE,∴设DE=x,则BE=2x.∴DF=BE=2x,BF=DE=x,FC=BC−BF=6−x.在Rt△DCF中,∵D F2+C F2=C D2,∴(2x)2+(6−x)2=62.解得:x1=0(不合题意,舍去),x2=125,∴DE=125,BE=DF=245.设OB=a,则D(125,a+245),C(6,a)∵反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C,D,∴k=125×(a+245)=6a.解得:a=165.∴k=6a=965.故选C.二.填空题11.x <2或x >4【分析】根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,进而结合函数图象得出x 的取值范围.【详解】解:根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,由图象可得:关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为:x <2或x >4,故答案为:x <2或x >4.12.−8【分析】设设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n 4,再进行变形得出(x 1+x 2)2−4x 1x 2=8,再代入可得m 2−1616=8,进而可得出该二次函数图像的顶点的纵坐标【详解】∵二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,∴翻折前两交点间的距离不变,设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n4,∴|x 1−x 2|=22,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴(−m4)2−4×n 4=8,∴m 2−1616=8,又∵y =4x 2+mx +n 的纵坐标为4×4n −m 24×4=16n −m 216,∴16−m 216=−8,即该二次函数图像顶点纵坐标为−8故答案为:−813.(2,4)(0,2),(0,1)2【分析】(1)将点C(2,y)代入函数解析式即可得出结论;(2)令y=0,求得点B的坐标,依据分类讨论的思想方法,利用△BCP为等腰三角形和等腰三角形的解答即可得出结论.【详解】解:(1)∵点C(2,y)在抛物线y=−1x2+x+4上,2∴y=4,∴C(2,4),故答案为:(2,4);(2)令y=0,则−1x2+x+4=0,2解得:x=4或x=−2.∵抛物线y=−1x2+x+4与x轴交于A,B两点,点A在点B的左侧,2∴B(4,0).∵点P为y轴的正半轴上的一点,①当BP=BC时,如图,过点C作CD⊥OB于点D,∵C(2,4),B(4,0),∴CD=4,OB=4,OD=2,∴CD=OB.在Rt△BPO和Rt△BCD中,{BP=BCOB=DC,∴Rt△BPO≌Rt△BCD(HL),∴OP=BD.∵OB=4,OD=2,∴BD=OB−OD=2,∴OP=BD=2,∴P(0,2);②当BP=PC时,如图,过点C作CE⊥y轴于点E,∵C(2,4),B(4,0),∴CE=2,OE=4,OB=4,设点P(0,a),∵点P为y轴的正半轴上的一点,∴OP=a,EP=4−a,∵BP=PC,∴B P2=P C2,∴E P2+C E2=O P2+O B2,∴(4−a)2+22=a2+42,,解得:a=12).∴P(0,12综上,当△BCP为等腰三角形,则点P的坐标为(0,2)或(0,1).2故答案为:(0,2)或(0,1).214.1+652或−1+652【分析】设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM= 12PQ ,设点D 的横坐标为t ,由此表示出DE 的长,PM 的长,进而可得PQ 的长,根据PQ = 12DE 建立方程,求解即可.【详解】解:如图,由抛物线的解析式可知,抛物线y =x 2−2x −3的对称轴为直线x =1,设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM = 12PQ ,∵点D 是抛物线上的一个点,且DE ∥AB ,设点D 的横坐标为t ,∴D (t ,t 2−2t −3),∵DE ∥AB ,∴点D ,点E 关于对称轴对称,∴点P 和点Q 在对称轴上,∴E(2−t ,t 2−2t −3),∴DE =(2−2t),PM=|t 2−2t −3|,∴PQ =2PM =2|t 2−2t −3|,∵PQ =12DE ,∴2|t 2−2t −3|=12(2−2t ),解得t 1= 5−654,t 2= 5+654(舍去),t 3= 3−654,t 4= 3+654(舍去),∴DE =2−2t = 1+652或−1+652.故答案为:1+652或−1+652.15.(0,2n )【分析】如图,过A1作A1H⊥y轴于H,求解A1(1,1),结合题意,△O A1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出O B1,O B2,O B3,O B4,…,探究规律,利用规律解决问题即可得出结论.【详解】解:如图,过A1作A1H⊥y轴于H,∵{y=1x y=x,其中x>0,解得:{x=1y=1,即A1(1,1),∴OH=A1H=1,∴∠A1OH=45°,∵B1A1⊥O A1,∴△O A1B1是等腰直角三角形,∴O B1=2;同理可得:△B1A2B2,△B2A3B3,…,都是等腰直角三角形,同理设A2(m,m+2),∴m(2+m)=1,解得m=2−1,(负根舍去)∴O B2=2+22−2=22,同理可得:O B3=23,⋅⋅⋅⋅⋅⋅∴O Bn=2n,∴Bn(0,2n).故答案为:(0,2n).16.y=43x<1或3【分析】(1)如图所示,过点A作AC⊥OB于C,利用等边三角形的性质和勾股定理求出A (2,23),再利用待定系数法求解即可;(2)求出A1(2+a,23),由a>0,得到2+a>2,则k1>43=k;(3)分当函数y=kx 的图象经过O1A1的中点时,当函数y=kx的图象经过A1B1的中点时,两种情况利用两点中点坐标公式和待定系数法求解即可.【详解】解:(1)如图所示,过点A作AC⊥OB于C,∵(4,0),∴OB=4,∵△AOB是等边三角形,∴OC=BC=12OB=2,OA=OB=4,∴AC=O A2−O C2=23,∴A(2,23),∵点A在反比例函数y=kx(k>0)的图象上,∴23=k2,∴k=43,∴反比例函数y=kx 的表达式为y=43x,故答案为:y=43x;(2)①∵把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1,∴A 1(2+a ,23),∵反比例函数y =k 1x的图象经过点A 1,∴23=k 12+a,∴k 1=23(2+a ),∵a >0,∴2+a >2,∴k 1>43=k ,故答案为:<;(3)当函数y =kx 的图象经过O 1A 1的中点时,∵O 1(a ,0),A 1(a +2,23),∴函数y =kx 的图象经过点(a +a +22,232),∴3=43a +1,∴a =3;当函数y =kx 的图象经过A 1B 1的中点时,∵B 1(a +4,0),A 1(a +2,23),∴函数y =k x 的图象经过点(a +4+a +22,232),∴3=43a +3,∴a =1,故答案为:1或3.三.解答题17.(1)解:∵点A (3,n )在一次函数y =x −2的图象上,∴n =3−2=1,∴点A (3,1),∵点A (3,1)在反比例函数y =kx (k >0)的图象上,∴k =3×1=3,∴反比例函数解析式为y =3x ;(2)解:作点B 关于y 轴的对称点B ',连接A B '交y 轴于点P ,此时PA +PB 的值最小,令y =0,则0=x −2,解得x =2,∴点B (2,0),点B '(−2,0),设直线A B '的解析式为y =kx +b ,∴{3k +b =1−2k +b =0,解得{k =15b =25,∴直线A B '的解析式为y =15x +25,令x =0,则y =25,∴P 点坐标为(0,25);(3)解:由旋转的性质知PC =PD ,当PC ⊥AB 时,PC 有最小值,此时PD的值最小,设直线AB交y轴于点E,令x=0,则y=0−2=−2,,点E(0,−2),∴OE=2,OB=2,∴BE=22+22=22,∵S△PBE =12PE×OB=12BE×PC,∴PC=(25+2)×222=625,∴PD的最小值为625.18.(1)解:当b=−2,c=3时,y=−x2−2x+3=−(x+1)2+4,∴此时该函数图象的顶点坐标为(−1,4);(2)解:∵该函数图象经过点(1,−3),∴−1+b+c=−3,则c=−2−b,∵该二次函数图象的顶点坐标是(m,n),∴m=−b2×(−1)=b2,n=4×(−1)×c−b24×(−1)=4c+b24=c+b24,∴b=2m,c=−2−2m,∴n=−2−2m+4m24,即n=m2−2m−2;(3)解:当b=2c+1时,二次函数y=−x2+(2c+1)x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c +12≤2即−12≤c ≤32时,该函数的最大值为4×(−1)×c −(2c +1)24×(−1)=c +(2c +1)24=8,即4c 2+8c −31=0,解得c 1=−1+352(不合题意,舍去),c 2=−1−352(不合题意,舍去);当c +12<0即c <−12时,0≤x ≤2时,y 随x 的增大而减小,∴当x =0时,y 有最大值为c =8,不合题意,舍去;当c +12>2即c >32时,0≤x ≤2时,y 随x 的增大而增大,∴当x =2时,y 有最大值为−22+2(2c +1)+c =8,解得c =2,符合题意,综上,满足条件的c 的值为2.19.(1)解:∵抛物线y =a x 2+bx −52经过A (−1,0),B (5,0)两点,∴{a −b −52=025a +5b −52=0,解得:a =12,b =−2,∴此拋物线的解析式为y =12x 2−2x −52;(2)如图,连接BC ,交对称轴于点P ,∵拋物线的解析式为y =12x 2−2x −52,∴其对称轴为直线x =−b2a =−−22×12=2,当x =0时,y =−52,∴C (0,−52),又∵B (5,0),∴设BC 的解析式为y =kx +b (k ≠0),∴{5k +b =0b =−52,解得:k =12,b =−52,∴ BC 的解析式为y =12x −52,当x =2时,y =2×12−52=−32,∴P (2,−32),∴PA +PC =(−1−2)2+(32+0)2+(0−2)2+(−52+32)2=552;(3)存在,如图所示:①当点N 在x 轴下方时,∵抛物线的对称轴为x =2,C (0,−52),∴N 1(4,−52),②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△A N 2D 和△M 2CO 中,{∠N 2AD =∠C M 2OA N 2=C M 2∠N 2DA =∠CO M 2,∴△A N 2D ≌△M 2CO (ASA ), ∴N 2D =OC =52,即N 2点的纵坐标为52∴12x 2−2x −52=52,解得:x =2+14或x =2−14,∴N 2(2+14,52),N 3(2−14,52),综上所述符合条件的N 的坐标有(4,−52),(2+14,52),(2−14,52).20.(1)解:设抛物线的解析式为y =a 0(x −1)2+54将(0,0)代入解析式得:a 0=−54∴抛物线的解析式为y =−54(x −1)2+54令y =−10,则−10=−54(x −1)2+54解得:x 1=−2(舍去),x 2=4∴入水处B 点的坐标(4,−10)(2)解:距点E 的水平距离为5米,对应的横坐标为:x =5−32=72将x =72代入解析式得:y =−54×(72−1)2+54=−10516∵−10516−(−10)=5516<5∴该运动员此次跳水失误了(3)解:∵EM=212,EN =272,点E 的坐标为(−32,−10)∴点M 、N 的坐标分别为:(9,−10),(12,−10)∵该运动员入水后运动路线对应的抛物线解析式为y =a (x −ℎ)2+k ,顶点C 距水面4米y =a (x −132)2−14,∴当抛物线经过点M时,把点M(9,−10)代入得:a=1625同理,当抛物线经过点N(12,−10)时,a=14由点D在MN之间可得:14≤a≤162521.(1)解:∵二次函数y1=x2+mx+1的图像与反比例函数y2=kx(x>0)的图像相交于点B(−3,1),∴(−3)2−3m+1=1,k−3=1,解得m=3,k=−3,∴二次函数的解析式为y1=x2+3x+1,反比例函数的解析式为y2=−3x(x>0).(2)∵二次函数的解析式为y1=x2+3x+1,∴对称轴为直线x=−32,由图象知,当y1随x的增大而增大,且y1<y2时,−32≤x<0(3)由题意作图如下:∵当x=0时,y1=1,∴A(0,1),∵B(−3,1),∴△ACE的CE边上的高与△BDE的DE边上的高相等,∵△ACE与△BDE的面积相等,∴CE=DE,即E点是二次函数的对称轴与反比例函数的交点,当x=−32时,y2=2,∴E(−32,2).22.(1)解:令x=0,则y=−4,∴C(0,−4),∴OC=4,∵OA=OC,∴AO=4,∴A(4,0),设直线AC的解析式为y=kx+b,∴{4k+b=0b=−4,解得{k=1b=−4,∴y=x−4;(2)解:∵OC=4OB,∴OB=1,∴B(−1,0),将A(4,0),B(−1,0)代入y=a x2+bx−4,∴{16a+4b−4=0a−b−4=0,解得{a=1b=−3,∴y=x2−3x−4,∵y=x2−3x−4=(x−32)2−254,a=1>0,∴抛物线开口向上,对称轴为直线x=32,∴函数值y随x的增大而减小时x的取值范围为x<32;(3)解:过点P作PQ∥y轴交AC于点Q,∵点P 的横坐标为n ,∴ P (n ,n 2−3n −4),则Q (n ,n −4),∴ PQ =n −4−(n 2−3n −4)=−n 2+4n ,由(1)得A (4,0),C (0,−4),∴ S △PCA =S △PCQ +S △PAQ=12QP (x P −x C )+12QP (x A −x P )=12QP (x P −x C +x A −x P )=12QP (x A −x C )=12×4×(−n 2+4n )=−2(n −2)2+8,∵ 0<n <4,∴当n =2时,△PCA 的面积有最大值,此时P (2,−6);(4)解:当32≤m ≤4时,二次函数的最大值与最小值的差是一个定值,∵ y =x 2−3x −4=(x −32)2−254,∴抛物线的对称轴为直线x =32,①当−1<m <32时,x =−1,y 有最大值0,x =m ,y 有最小值m 2−3m −4,∴ 0−(m 2−3m −4)=−m 2+3m+4,此时二次函数的最大值与最小值的差随m 的变化而变化;②当32≤m ≤4时,x =32,y 有最小值−254,x =−1,y 有最大值0,∴0−(−254)=254,此时二次函数的最大值与最小值的差是一个定值;③当m>4时,x=32,y有最小值−254,x=m,y有最大值m2−3m−4,∴m2−4m−4+254=m2−3m+94,此时二次函数的最大值与最小值的差随m的变化而变化;综上所述:32≤m≤4时,二次函数的最大值与最小值的差是一个定值.23.(1)∵点C(4,m),D(−2,−4)在反比例函数图象上,∴4m=(−2)×(−4),解得m=2,∴C(4,2),∴反比例函数的解析式为y=8x;设一次函数的解析式为y=kx+b,∴{−2k+b=−44k+b=2,解得{k=1b=−2,∴一次函数的解析式为y=x−2;(2)直线y=x−2与y轴的交点B(0,−2),设E(0,t),t>0,∴EB=t+2,∴SΔCDE =12×BE×(4+2)=9,∴3(t+2)=9,解得t=1,∴E(0,1);(3)设直线AB向上平移后的函数解析式为y=x−2+ℎ,∵F(2,n)在反比例函数图象上,∴n=4,∴F(2,4),将F点代入y=x−2+ℎ,则ℎ=4,∴平移后的直线解析式为y=x+2,∴G(0,2),设H(x,y),①当HE为平行四边形的对角线时,x=2,y+1=6,∴H(2,5);②当HF为平行四边形的对角线时,x+2=0,y+4=3,∴H(−2,−1);③当HG为平行四边形的对角线时,x=2,y+2=5,∴H(2,3);综上所述:H点坐标为(2,5)或(−2,−1)或(2,3).。
第21章 二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)

第21章二次函数与反比例函数数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,点P(2,1)是反比例函数y=的图象上一点,则当y<1时,自变量x的取值范围是()A.x<2B.x>2C.x<2且x≠0D.x>2或x<02、二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是( )A. B. C. D.3、已知点在反比例函数(a为常数)的图象上,则为的大小关系是()A. B. C. D.4、下列函数关系中,不可以看作二次函数y=ax2+bx+c(a≠0)模型的是()A.圆的半径和其面积变化关系B.我国人口年自然增长率x,两年中从12亿增加到y亿的x与y的变化关系C.掷铅球水平距离与高度的关系 D.面积一定的三角板底边与高的关系5、已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6、如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为()A. B. C. D.7、如图,已知抛物线的对称轴为直线,与x轴的两个交点是A,B,其中点A的坐标为,则下列结论:①;②;③点B的坐标是;④点、是抛物线上的两点,若,则,其中正确结论的个数是()A.1个B.2个C.3个D.4个8、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-29、小英同时掷甲、乙两个质地均匀的骰子(6个面上分别标有1,2,3,4,5,6这6个数字).记甲朝上的一面数字为x,乙朝上的一面数字为y,这样确定点P的一个坐标(x,y),那么点P落在y= 上的概率()A. B. C. D.10、函数y=ax(a≠0)与y=在同一坐标系中的大致图象是()A. B. C. D.11、抛物线与x轴的交点坐标是(-1,0)和(3,0),则此抛物线的对称轴是A.直线x=-1B.直线x=0C.直线x=1D.直线x= 312、如图,已知A(﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,则三角形AOB的面积是()A.5B.6C.7D.813、在平面直角坐标系中,下列函数的图象经过原点的是()A.y=B.y=﹣2x﹣3C.y=2x 2+1D.y=5x14、如图,反比例函数y=的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1B.0<y<lC.y>2D.0<y<215、关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征. 甲:函数图象经过点;乙:函数图象经过第四象限;丙:当时,y随x的增大而增大.则这个函数表达式可能是()A. B. C. D.二、填空题(共10题,共计30分)16、已知A(﹣,3)是反比例函数y=图象上一点,则k的值为________.17、如图,正比例函数与反比例函数的图象在第一角限内交于点A,且AO=2,则k=________ .18、已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为________.19、如图,四边形ABCD是矩形,BC=2AB,A,B两点的坐标分别是(﹣1,0),(0,1),C,D两点在反比例函数y=(x<0)的图象上,则k的值是________.20、若抛物线y=x2-4x+c的顶点在x轴上,则c的值是________.21、如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=________.22、将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个;若这种商品的零售价在一定范围内每降价2元,其日销售量就增加4个,为了获得最大利润,则售价为________元,最大利润为________元.23、已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …m 5 2 1 2 …则m的值是________,当y<5时,x的取值范围是________.24、若抛物线y=a(x-3)2+2经过点(1,-2),则a=________25、已知点A的坐标为,点B的坐标为,点P在函数的图象上,如果的面积是6,则点P的坐标是________.三、解答题(共5题,共计25分)26、我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.27、已知x1, x2, x3是y= 图像上三个点的横坐标,且满足x3>x2>x1>0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学试卷
一、选择题(本题共10 小题,每小题4 分,满分40分)
1.下面的函数是二次函数的是
A . 13+=x y
B .x x y 22
+= C . 2x y = D .x
y 2= 2.抛物线2
3x y =,23x y -=,13
12
+=
x y 共有的性质是 A .开口向上 B .对称轴是y 轴
C .顶点坐标都是(0,0)
D .在对称轴的右边y 随x 的增大而增大
3.把抛物线2
y x =-向左平移1个单位,再向上平移3个单位,则平移后抛物线的解析式为 A .2
(1)3y x =--- B .2
(1)3y x =-+- C .2
(1)3y x =--+ D .2
(1)3y x =-++ 4. 抛物线44
12
-+-
=x x y 的对称轴是 A.x=-2 B.x=2 C .x=-4 D.x=-4 5.下列抛物线与x 轴只有一个公共点的是
A .2)2(21-=
x y B .132+=x y C.1242++=x x y D.3)3(2
1
2+--=x y 6.二次函数c bx ax y ++=2
的图象如图,则点),(a
c b 在
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
7.对于任意实数t ,抛物线t x t x y +-+=)2(2
总经过一个固定的点,这个点是 A.(1,0) B (-1,0) C.-1,3) D.(1,3) 8.在反比例函数4
y x
=的图象中,阴影部分的面积不等于4的是
A .
B .
C .
D .
8.在同一直角坐标系中,函数b ax y +=2
与)0(≠+=ab b ax y 的图象大致如图 ( )
9.二次函数2
y ax bx c =++的图象如图,则下列关于a ,b ,c 间的函数关系判断正确的是
y
y
y y
x
x
x
x
O O
O
O
A
B
C
D
( )
A .0ab <
B .0bc <
C .0a b c ++>
D .0a b c -+<
9. 函数2
y ax b y ax bx c =+=++和在同一直角坐标系内的图象大
致是
10.为了更好保护水资源,造福人类,某工厂计划建一个容积V (m 3)一定的污水处理池,池的底面积S (m 2)与其深度h (m )满足关系式:V=Sh (V≠0),则S 关于h 的函数图象大致是 A .
B .
C .
D .
二、填空题(本题共4小题,每小题 5 分,满分 20 分)
13. 在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是_______米.
14. 如图,是二次函数y=ax 2+bx+c (a≠0)的图象的一部分,给出下列命题: ①abc <0;②b >2a ;③a+b+c=0 ④ax 2+bx+c=0的两根分别为﹣3和1; ⑤8a+c >0.其中正确的命题是 .
三.(本题共2小题,每小题8分,满分16分)
15.已知:y 与2
x 成反比例,且当x=2时,y=4.求x=1.5时的y 值. 【解】
四、(本题共 2 小题,每小题 8 分,满分 16 分)
第13题图
第14题图
17. 已知函数3)1(2
1
2--=
x y ,求(1)抛物线的顶点坐标及对称轴。
【解】
(2)x 在什么范围内,函数值y 随x 的增大而减小? 【解】
(3)当x 取何值时,函数值y=0? 【解】
五、(本题共 2 小题,每小题 10 分,满分 20分)
19. 一男生推铅球,铅球出手后运动的高度)(m y ,与水平距离)(m x 之间的函数关系是
3
5
321212++-
=x x y ,那么这个男生的铅球能推出几米? 【解】
20.如图,一次函数y kx b =+的图象与反比例函数m
y x
=
的图象相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式 【解】
(2)根据图象写出使一次函数的值小于反比例函数的 值的x 的取值范围. 【解】
六、(本题题满分12 分)
21. 某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。
(1)要使每天获得利润700元,请你帮忙确定售价; 【解】
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润。
【解】
七、(本题题满分12 分)
22. 如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20米,水位上升3m 就达到警戒线CD ,这是水面宽度为10米,
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2米的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
【解】
八、(本题满分 14 分)
23. “绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车
场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y 值表示7:00时的存量,x=2时的y 值表示8:00时的存量…依此类推.他发现存量y (辆)与x (x 为整数)满足如图所示的一个二次函数关系.
根据所给图表信息,解决下列问题:
(1)m= ,解释m 的实际意义: ;
时段
x 还车数 (辆) 借车数 (辆) 存量y (辆)
6:00﹣7:00 1 45 5 100 7:00﹣8:00 2 43
11
n
…
…
…
…
…
第22题图
(2)求整点时刻的自行车存量y 与x 之间满足的二次函数关系式; 【解】
(3)已知9:00~10:00这个时段的还车数比借车数的3倍少4,求此时段的借车数. 【解】 22.(7分)如图二次函数y=ax 2+bx+c 的图象经过A 、B 、C 三点,
(1)观察图象,写出A 、B 、C 三点的坐标,并求出抛物线解析式,
(2)求此抛物线的顶点坐标和对称轴
(3)观察图象,当x 取何值时,y<0?y=0?y>0? 13.(8分)某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB= 4米,顶部C 离地面高为4.4米,现有一辆载满货物的汽车欲通过大门,货物顶点距地面米,请通过计算,判断这辆汽车能否顺利通过大门?
24.(9延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变。
现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元。
据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价是每千克20元。
(1)设x 天后每千克活蟹的市场价为P 元,写出P 关于x 的函数关系式;
(2)如果放养x 天后将活蟹一次性出售,并记1000千克蟹的销售总额Q 元,写出Q 关于x 的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少
25、(9分)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s (万元)与时间t (月)之间的函数关系式; (2)求截止到几月末公司累积利润可达30万元; (3)求第8个月公司所获利润是多少万元?
26、(10分)如图(7)一位篮球运动员跳起投篮,球沿抛物线y =-1
5x 2+3.5运行,然后准确
落人篮框内。
已知篮框的中心离地面的距离为3.05米。
(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为 2.25米,请问他距离篮框中心的水平距离是多少?
x (m) 5 10 20 30 40 50 y (m)
0.125 0.5
2
4.5
8
12.5
27、(本题10分)如图1是某河床横断面的示意图。
查阅该河段的水文资料,得到下表中的数据: 请你以上表中的各对数据(x, y )作为点的坐标,尝试在图2所示的坐标系中画出y 关于 x 的函数图像;
(2x
5
10
20
30 40 50 y
x 2
25
1 25
1 25
1
② 根据所填表中呈现的规律,猜想出用x 表示y 的二次函数的表达式:________________. (1) 当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否
在这个河段安全通过?为什么?。