最新沪科版九年级上数学《二次函数》单元测试题及答案
九年级上册数学单元测试卷-第21章 二次函数与反比例函数-沪科版(含答案)

九年级上册数学单元测试卷-第21章二次函数与反比例函数-沪科版(含答案)一、单选题(共15题,共计45分)1、小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc<0;③a-b+c>0;④2a-3b=0;⑤4a+2b+c>0.你认为其中正确的是()A.①②④B.①③⑤C.②③⑤D.①③④⑤2、已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是( )A. <x<2B. x>2或x<C. x<-2 或x>D.-2<x<3、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是( )A. abc<0B.4 ac-b2>0C. c-a>0 D.当x=-n2-2( n为实数)时,y≥c4、如图,在直角坐标系中,点是x轴正半轴上的一个定点,点是双曲线()上的一个动点,当点的横坐标逐渐增大时,的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小5、若,则二次函数的图象可能是()A. B. C. D.6、已知函数y=x-5,令x=, 1,, 2,, 3,, 4,, 5,可得函数图象上的十个点.在这十个点中随机取两个点P(x1, y1),Q(x2,y2),则P,Q两点在同一反比例函数图象上的概率是()A. B. C. D.7、若反比例函数的图象经过点(-5,2),则的值为().A.10B.-10C.-7D.78、如图,抛物线( 为常数)的图象交轴的正半轴于A,B两点,交轴的正半轴于C点.如果当时,,那么直线的图象可能是()A. B. C. D.9、一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示.设小矩形的长、宽分别为,剪去部分的面积为,若,则与的函数图像是()A. B. C.D.10、在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A.y=2(x-1) 2-3B.y=2(x-1) 2+3C.y=2(x+1) 2-3 D.y=2(x+1) 2+311、二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:⑴ac<0;⑵当x>1时,y的值随x值的增大而减小.⑶3是方程ax2+(b﹣1)x+c=0的一个根;⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个12、如图,一次函数与二次函数为的图象相交于点M,N,则关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根13、二次函数y=x2+px+q中,由于二次项系数为1>0,所以在对称轴左侧,y随x增大而减小,从而得到y越大则x越小,在对称轴右侧,y随x增大而减大,从而得到y越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x的方程x2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A.m<d<e<nB.d<m<n<eC.d<m<e<nD.m<d<n<e14、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:其中正确的结论有()①abc>0;②8a+2b=-1;③4a+3b+c>0;④4ac+24c<b2.A.1B.2C.3D.415、抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、把抛物线向左平移2个单位,再向上平移2个单位得到的抛物线解析式为________;17、如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为________.18、直线y=x+2与抛物线y=x2的交点坐标是________.19、如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为________.20、在平面直角坐标系xoy中,直线(k为常数)与抛物线交于A,B两点,且A点在y轴右侧,P点的坐标为(0,4)连接PA,PB.(1)△PAB的面积的最小值为________;(2)当时,=________21、如图,一次函数y=kx+b 的图象l与坐标轴分别交于点E、F,与双曲线y=- (x<0)(x<0)交于点P(﹣1,n),且F 是PE 的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________。
沪科版-数学-九年级上册-九年级第22章二次函数单元测试题及答案

二次函数综合能力测试(说明:本试题共100分,90分钟完成)一、填空题:(每空2分,共24分)1.当m 时,函数m x m x m m y +-+--=)2()32(22是二次函数;2.正方形边长是3,若边长增加x ,则面积增加y ,则y 与x 之间的函数关系式为 3.函数)0(2≠+=a c ax y 的对称轴是 ;顶点是 ;4.要函数2mx y -=开口向上,则 m ;5.抛物线y=-x 2上有两点(x 1,y 1), (x 2,y 2)若x 1<x 2<0,则y 1______y 2 (比较大小) . 6.抛物线2)2(31-=x y 的图象可由抛物线231x y =向 平移 个单位得到。
7.抛物线1)1(22-++-=a ax x a y 经过原点,则a = ;8.抛物线2ax y =与直线x y -=交于(1,m ),则抛物线的解析式为_________ 9.如图:在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm 2,金色纸边的宽为xcm ,则y与x的关系式是___________________. 10.如图,在平面直角坐标系中,二次函数2(0)y ax c a =+≠的图象过正方形ABOC 的三个顶点A B C ,,,则ac 的值是 .二.选择题:(每题3分,共36分)11.对于)0(2≠=a ax y 的图象下列叙述正确的是 ( )A a 的值越大,开口越大B a 的值越小,开口越小C a 的绝对值越小,开口越大D a 的绝对值越小,开口越小CAOBy x第10题图12.抛物线22n mx x y --=)0(≠mn 的图象与x 轴交点为 ( ) A . 二个交点 B . 一个交点 C . 无交点 D . 不能确定13. 根据如图的程序计算出函数值,若输入的x 的值为32,则输出的结果为( ). A 72 B 94 C 12 D 9214.57x x 41y 2--=与y 轴的交点坐标为( ). A -5 B (0,-5) C (-5,0) D (0,-20) 15. 若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( )A. 开口向下,对称轴在y 轴右侧,图象与y 轴正半轴相交B. 开口向下,对称轴在y 轴左侧,图象与y 轴正半轴相交C. 开口向上,对称轴在y 轴左侧,图象与y 轴负半轴相交D. 开口向下,对称轴在y 轴右侧,图象与y 轴负半轴相交16.已知二次函数y =-2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2 时的函数值与 ( ) A .x =1 时的函数值相等 B . x =0时的函数值相等 C .x =41时的函数值相等 D . x =-49时的函数值相等 17.已知二次函数2y ax bx c =++且0a <,0a b c -+>,则一定有( ) (A )240b ac ->. (B )240b ac -=. (C )240b ac -<. (D )240b ac -≤. 18.下列函数关系中,是二次函数的是( )A 弹簧的长度y 与所挂物体质量x 之间的关系B 当距离一定时,火车行驶的时间t 与速度v 之间的关系C 等边三角形的周长c 与边长a 之间的关系D 圆心角为120°的扇形面积s 与半径r 之间的关系(D)19.竖直上抛物体的高度h 和时间t 符合关系式h =v 0t -21gt 2,其中重力加速g 以10米/秒2计算.爆竹点燃后以初速度v 0=20米/秒上升,问经过多少时间爆竹离地15米( ) A.1秒 B.2秒 C.3秒 D. 1或3秒.20.已知如下表, a 、b 、c 满足表格中的条件,那么抛物线y =ax 2+bx +c 的解析式为( ) A y =x 2-3x +4 B y =x 2-4x +4 C y =x 2-3x +5 D y =x 2-4x +521.已知抛物线y =x 2-(m-2)x +9的顶点在坐标轴上,则m 的值为( ) A m=-4 B m=2 C m=-8 D m=2, m=-4或m=8 22.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )三.解答题:23.已知抛物线y=x2-4x+c的顶点P在直线y=-4x-1上,(1)求c的值(2))求抛物线与x轴两交点M、N的坐标并求△PMN的面积。
沪教新版 九年级数学上 第26章 二次函数 单元测试卷 (含解析)

沪教新版 九年级上 第26章 二次函数 单元测试卷一.选择题(共6小题)1.将二次函数22(2)y x =-的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为( )A .22(2)4y x =--B .22(1)3y x =-+C .22(1)3y x =--D .223y x =-2.抛物线224y x x =-+-一定经过点( ) A .(2,4)-B .(1,2)C .(4,0)-D .(3,2)3.在同一坐标系中,作2y x =,212y x =-,213y x =的图象,它们的共同特点是( ) A .抛物线的开口方向向上B .都是关于x 轴对称的抛物线,且y 随x 的增大而增大C .都是关于y 轴对称的抛物线,且y 随x 的增大而减小D .都是关于y 轴对称的抛物线,有公共的顶点4.下列二次函数中,如果图象能与y 轴交于点(0,1)A ,那么这个函数是( ) A .23y x =B .231y x =+C .23(1)y x =+D .23y x x =- 5.已知抛物线2(0)y ax bx c a =++≠如图所示,那么a 、b 、c 的取值范围是( )A .0a <、0b >、0c >B .0a <、0b <、0c >C .0a <、0b >、0c <D .0a <、0b <、0c <6.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =-,有以下结论: ①0abc <;②20a b -=;③248ac b a -<;④30a c +<;⑤()a b m am b -<+ 其中正确的结论的个数是( )A .1B .2C .3D .4二.填空题(共12小题)7.如果抛物线221y x x m =++-经过原点,那么m 的值等于 . 8.函数||1(1)55m y m x x +=++-是二次函数,则m = .9.如果点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,那么1y 2y .(填“>”、“ =”或“<” )10.如果抛物线22y x bx c =-++的对称轴在y 轴的左侧,那么b 0(填入“<”或“>” ). 11.若点(1,7)A -、(5,7)B 、(2,3)C --、(,3)D k -在同一条抛物线上,则k 的值等于 . 12.如果点(1,)A m -、1(,)2B n 是抛物线2(1)3y x =--+上的两个点,那么m 和n 的大小关系是m n (填“>”或“<”或“=”).13.若二次函数22(1)3y x =++的图象上有三个不同的点1(A x ,4)、12(B x x +,)n 、2(C x ,4),则n 的值为 .14.已知抛物线2()3y x m =-+,当1x >时,y 随x 的增大而增大,则m 的取值范围是 .15.二次函数2()1y x m =--,当2x …时,y 随x 的增大而增大,则m 取值范围是 . 16.如图,将函数21(2)12y x =-+的图象沿y 轴向上平移得到一条新函数的图象,其中点(1,)A m ,(4,)B n 平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为12(图中的阴影部分),则新图象的函数表达式是 .17.如图,抛物线2(0)y ax bx c a =++≠过点(1,0)-,(0,2),且顶点在第一象限,设42M a b c =++,则M 的取值范围是 .18.二次函数2y ax bx c =++的图象如图所示,对称轴为1x =,给出下列结论:①0abc <;②24b ac >;③420a b c ++<;④20a b +=.其中正确的结论有 .三.解答题(共7小题)19.已知抛物线23y ax =+经过点(2,13)A --. (1)求a 的值.(2)若点(,22)P m -在此抛物线上,求点P 的坐标.20.将二次函数21y ax bx =++的图象向左平移1个单位长度后,经过点(0,3)、(2,5)-,求a 、b 的值.21.已知函数22(2)1y m m x mx m =++++, (1)当m 为何值时,此函数是一次函数? (2)当m 为何值时,此函数是二次函数? 22.将抛物线212y x =先向上平移2个单位,再向左平移(0)m m >个单位,所得新抛物线经过点(1,4)-,求新抛物线的表达式及新抛物线与y 轴交点的坐标. 23.抛物线22y x x c =-+经过点(2,1). (1)求抛物线的顶点坐标;(2)将抛物线22y x x c =-+沿y 轴向下平移后,所得新抛物线与x 轴交于A 、B 两点,如果2AB =,求新抛物线的表达式.24.在平面直角坐标系xOy 中,抛物线23y ax bx a =++过点(1,0)A -. (1)求抛物线的对称轴;(2)直线4y x =+与y 轴交于点B ,与该抛物线对称轴交于点C .如果该抛物线与线段BC 有交点,结合函数的图象,求a 的取值范围.25.已知,如图所示,直线l 经过点(4,0)A 和(0,4)B ,它与抛物线2y ax =在第一象限内交于点P ,又AOP ∆的面积为92,求a 的值.沪教新版 九年级上 第26章 二次函数 单元测试卷参考答案与试题解析一.选择题(共6小题)1.将二次函数22(2)y x =-的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为( )A .22(2)4y x =--B .22(1)3y x =-+C .22(1)3y x =--D .223y x =-【解答】解:由“上加下减,左加右减”的原则可知,将二次函数22(2)y x =-的图象向左平移1个单位,再向下平移3个单位后,得以新的抛物线的表达式是,22(21)3y x =-+-,即22(1)3y x =--, 故选:C .2.抛物线224y x x =-+-一定经过点( ) A .(2,4)-B .(1,2)C .(4,0)-D .(3,2)【解答】解:A 、将(2,4)-代入224y x x =-+-得,4444-=-+-,等式成立,故本选项正确;B 、将(1,2)代入224y x x =-+-得,2124≠-+-,等式不成立,故本选项错误;C 、将(4,0)-代入224y x x =-+-得,01684≠---,等式不成立,故本选项错误;D 、将(3,2)代入224y x x =-+-得,2964≠-+-,等式不成立,故本选项错误.故选:A .3.在同一坐标系中,作2y x =,212y x =-,213y x =的图象,它们的共同特点是( ) A .抛物线的开口方向向上B .都是关于x 轴对称的抛物线,且y 随x 的增大而增大C .都是关于y 轴对称的抛物线,且y 随x 的增大而减小D .都是关于y 轴对称的抛物线,有公共的顶点【解答】解: 因为2y ax =形式的二次函数对称轴都是y 轴, 且顶点都在原点, 所以它们的共同特点是: 关于y 轴对称的抛物线, 有公共的顶点 .故选:D .4.下列二次函数中,如果图象能与y 轴交于点(0,1)A ,那么这个函数是( ) A .23y x =B .231y x =+C .23(1)y x =+D .23y x x =-【解答】解:当0x =时,230y x ==;当0x =时,2311y x =+=;当0x =时,23(1)9y x =+=;当0x =时,230y x x =-=,所以抛物线231y x =+与y 轴交于点(0,1). 故选:B .5.已知抛物线2(0)y ax bx c a =++≠如图所示,那么a 、b 、c 的取值范围是( )A .0a <、0b >、0c >B .0a <、0b <、0c >C .0a <、0b >、0c <D .0a <、0b <、0c <【解答】解:由图象开口可知:0a <, 由图象与y 轴交点可知:0c <, 由对称轴可知:02ba-<, 0a ∴<,0b <,0c <,故选:D .6.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =-,有以下结论: ①0abc <;②20a b -=;③248ac b a -<;④30a c +<;⑤()a b m am b -<+ 其中正确的结论的个数是( )A .1B .2C .3D .4【解答】解:①根据抛物线可知: 0a <,0b <,0c >,0abc ∴>,所以①错误;②因为对称轴1x =-,即12ba-=-, 2b a ∴=,20a b ∴-=.所以②正确;③因为抛物线与x 轴有两个交点, 所以240b ac ->, 所以248b ac a ->. 所以③正确; ④当1x =时,0y <, 即0a b c ++<, 所以20a a c ++<, 所以30a c +<. 所以④正确;⑤当1x =-时,y 有最大值, 所以当1x =-时,a b c -+的值最大, 当x m =时,2y am bm c =++, 所以2a b c am bm c -+>++, 即()a b m am b ->+. 所以⑤错误.所以有②③④正确. 故选:C .二.填空题(共12小题)7.如果抛物线221y x x m =++-经过原点,那么m 的值等于 1 . 【解答】解:把(0,0)代入221y x x m =++-得10m -=,解得1m =, 故答案为1.8.函数||1(1)55m y m x x +=++-是二次函数,则m = 1 .【解答】解:由二次函数的定义可知,当10||12m m +≠⎧⎨+=⎩时,该函数是二次函数∴11m m ≠-⎧⎨=±⎩ 1m ∴=故答案为:1.9.如果点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,那么1y < 2y .(填“>”、“ =”或“<” )【解答】解:二次函数221y x x =-+的图象的对称轴是1x =, 在对称轴的右面y 随x 的增大而增大,点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点, 23<,12y y ∴<.故答案为:<.10.如果抛物线22y x bx c =-++的对称轴在y 轴的左侧,那么b < 0(填入“<”或“>” ).【解答】解:由对称轴可知:04bx =<, 0b ∴<,故答案为:<11.若点(1,7)A -、(5,7)B 、(2,3)C --、(,3)D k -在同一条抛物线上,则k 的值等于 6 . 【解答】解:抛物线经过(1,7)A -、(5,7)B , ∴点A 、B 为抛物线上的对称点, ∴抛物线解析式为直线2x =,(2,3)C --、(,3)D k -为抛物线上的对称点,即(2,3)C --与(,3)D k -关于直线2x =对称, 22(2)k ∴-=--, 6k ∴=.故答案为6.12.如果点(1,)A m -、1(,)2B n 是抛物线2(1)3y x =--+上的两个点,那么m 和n 的大小关系是m < n (填“>”或“<”或“=” ). 【解答】解:抛物线的对称轴为直线1x =, 而抛物线开口向下,所以当1x <时,y 随x 的增大而增大, 所以m n <. 故答案为<.13.若二次函数22(1)3y x =++的图象上有三个不同的点1(A x ,4)、12(B x x +,)n 、2(C x ,4),则n 的值为 5 .【解答】解:1(A x ,4)、2(C x ,4)在二次函数22(1)3y x =++的图象上,22(1)34x ∴++=,22410x x ∴++=,根据根与系数的关系得,122x x +=-,12(B x x +,)n 在二次函数22(1)3y x =++的图象上,22(21)35n ∴=-++=,故答案为5.14.已知抛物线2()3y x m =-+,当1x >时,y 随x 的增大而增大,则m 的取值范围是1m … .【解答】解:2()3y x m =-+,∴对称轴为x m =,10a =>, ∴抛物线开口向上,∴在对称轴右侧y 随x 的增大而增大,当1x >时,y 随x 的增大而增大,1m ∴…,故答案为:1m ….15.二次函数2()1y x m =--,当2x …时,y 随x 的增大而增大,则m 取值范围是 2m … .【解答】解:函数的对称轴为x m =, 又二次函数开口向上,∴在对称轴的右侧y 随x 的增大而增大,2x …时,y 随x 的增大而增大, 2m ∴….故答案为:2m ….16.如图,将函数21(2)12y x =-+的图象沿y 轴向上平移得到一条新函数的图象,其中点(1,)A m ,(4,)B n 平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为12(图中的阴影部分),则新图象的函数表达式是 21(2)52y x =-+ .【解答】解:曲线段AB 扫过的面积()312B A x x AA AA =-⨯'='=, 则4AA '=,故抛物线向上平移4个单位,则21(2)52y x =-+, 故答案为21(2)52y x =-+. 17.如图,抛物线2(0)y ax bx c a =++≠过点(1,0)-,(0,2),且顶点在第一象限,设42M a b c =++,则M 的取值范围是 66M -<< .【解答】解:将(1,0)-与(0,2)代入2y ax bx c =++,0a b c ∴=-+,2c =,2b a ∴=+,02b a->,0a <, 0b ∴>,2a ∴>-,20a ∴-<<,42(2)2M a a ∴=+++66a =+6(1)a =+66M ∴-<<,故答案为:66M -<<;18.二次函数2y ax bx c =++的图象如图所示,对称轴为1x =,给出下列结论:①0abc <;②24b ac >;③420a b c ++<;④20a b +=.其中正确的结论有 ①②④ .【解答】解:抛物线开口向下,0a ∴<,12b a-=, 0b ∴>,20a b +=,故④正确,抛物线交y 轴于正半轴,0c ∴>,0abc ∴<,故①正确,抛物线与x 轴有交点,240b ac ∴->,即24b ac >,故②正确,2x =时,0y >,420a b c ∴++>,故③错误,故正确的结论是①②④.三.解答题(共7小题)19.已知抛物线23y ax =+经过点(2,13)A --.(1)求a 的值.(2)若点(,22)P m -在此抛物线上,求点P 的坐标.【解答】解:(1)将点(2,13)A --.代入23y ax =+,得1343a -=+, 解得4a =-,∴抛物线的函数解析式为243y x =-+,(2)点(,22)P m -在此抛物线上,22243m ∴-=-+,解得52m =±,∴点P 的坐标为5(2,22)-或5(2-,22)-. 20.将二次函数21y ax bx =++的图象向左平移1个单位长度后,经过点(0,3)、(2,5)-,求a 、b 的值.【解答】解:二次函数图象向左平移1个单位长度后,经过点(0,3)、(2,5)-,可得原二次函数图象经过点(1,3)、(3,5)-,得139315a b a b ++=⎧⎨++=-⎩, 解得2a =-,4b =.21.已知函数22(2)1y m m x mx m =++++,(1)当m 为何值时,此函数是一次函数?(2)当m 为何值时,此函数是二次函数?【解答】解:(1)函数22(2)1y m m x mx m =++++,是一次函数, 220m m ∴+=,0m ≠,解得:2m =-;(2))函数22(2)1y m m x mx m =++++,是二次函数,220m m ∴+≠,解得:2m ≠-且0m ≠.22.将抛物线212y x =先向上平移2个单位,再向左平移(0)m m >个单位,所得新抛物线经过点(1,4)-,求新抛物线的表达式及新抛物线与y 轴交点的坐标.【解答】解:由题意可得:21()22y x m =++,代入(1,4)-, 解得:13m =,21m =-(舍去), 故新抛物线的解析式为:21(3)22y x =++, 当0x =时,132y =,即与y 轴交点坐标为:13(0,)2. 23.抛物线22y x x c =-+经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线22y x x c =-+沿y 轴向下平移后,所得新抛物线与x 轴交于A 、B 两点,如果2AB =,求新抛物线的表达式.【解答】解:(1)把(2,1)代入22y x x c =-+得441c -+=,解得1c =, 所以抛物线解析式为221y x x =-+,2(1)y x =-,所以抛物线顶点坐标为(1,0);(2)2221(1)y x x x =-+=-,抛物线的对称轴为直线1x =, 而新抛物线与x 轴交于A 、B 两点,2AB =, 所以(0,0)A ,(2,0)B ,所以新抛物线的解析式为(2)y x x =-,即22y x x =-.24.在平面直角坐标系xOy 中,抛物线23y ax bx a =++过点(1,0)A -.(1)求抛物线的对称轴;(2)直线4y x =+与y 轴交于点B ,与该抛物线对称轴交于点C .如果该抛物线与线段BC 有交点,结合函数的图象,求a 的取值范围.【解答】解:(1)抛物线23y ax bx a =++过点(1,0)A -, 30a b a ∴-+=,4b a ∴=,∴抛物线的解析式为243y ax ax a =++,∴抛物线的对称轴为422a x a=-=-; (2)直线4y x =+与y 轴交于点B ,与该抛物线对称轴交于点C , (0,4)B ∴,(2,2)C -,抛物线23y ax bx a =++经过点(1,0)A -且对称轴2x =-, 由抛物线的对称性可知抛物线也一定过A 的对称点(3,0)-, ①0a >时,如图1,将0x =代入抛物线得3y a =,抛物线与线段BC 恰有一个公共点,34a ∴…, 解得43a …, ②0a <时,如图2,将2x =-代入抛物线得y a =-, 抛物线与线段BC 恰有一个公共点, 2a ∴-…,解得2a -…; 综上所述,43a …或2a -….25.已知,如图所示,直线l 经过点(4,0)A 和(0,4)B ,它与抛物线2y ax =在第一象限内交于点P ,又AOP ∆的面积为92,求a 的值.【解答】解:设点(,)P x y,直线AB的解析式为y kx b=+,将(4,0)A、(0,4)B分别代入y kx b=+,得1k=-,4b=,故4y x=-+,AOP∆的面积为92,∴19422Py⨯⨯=,94Py∴=,再把94Py=代入4y x=-+,得74x=,所以7(4P,9)4.把7(4P,9)4代入到2y ax=中得:3649a=.故a的值为36 49.。
沪科版九年级数学上册《二次函数与反比例函数》单元检测试卷专项练习及答案解析

沪科版九年级数学上册《二次函数与反比例函数》单元检测试卷专项练习及答案解析一、选择题1、下列函数中,属于二次函数的是()A.y=x﹣3 B.y=x2﹣(x+1)2C.y=x(x﹣1)﹣1 D.2、国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,两次降价后的价格为y元,则y与x的函数关系式为( )A.y=36(1-x) B.y=36(1+x)C.y=18(1-x)2D.y=18(1+x2)3、下列函数:①y=-3x2;②y=-3(x+3)2;③y=-3x2-1;④y=-2x2+5;⑤y=-(x-1)2,其中函数图象形状、开口方向相同的是()A.①②③B.①③④C.③④D.②⑤4、如图,已知二次函数的部分图象与坐标轴交于A(3,0)和C(0,2)两点,对称轴为直线,当函数值>0时,自变量的取值范围是( )A.<3 B.0≤<3 C.-2<<3 D.-1<<3(第4题图)(第7题图)(第11题图)5、反比例函数的图象经过点(-2,3),则k的值为().A.-3 B.3 C.-6 D.66、二次函数y=3(x﹣2)2﹣5与y轴交点坐标为()A.(0,2)B.(0,﹣5)C.(0,7)D.(0,3)7、在平面直角坐标系xOy中,二次函数y=x2+x+1的图象如图所示,则方程x2+x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断8、将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x元时,获得的利润为y元,则下列关系式正确的是()A.y=(x﹣35)(400﹣5x)B.y=(x﹣35)(600﹣10x)C.y=(x+5)(200﹣5x)D.y=(x+5)(200﹣10x)二、填空题9、已知点在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为______。
沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

第21章《二次函数与反比例函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.反比例函数y=k−2x过点(1,2),则关于一次函数y=kx+k−5说法正确的是( )A.不过第一象限 B.y随x的增大而增大C.一次函数过点(2,9) D.一次函数与坐标轴围成的三角形的面积是4 2.一次函数y=cx−b与二次函数y=a x2+bx+c在同一平面直角坐标系中的图象可能是( )A.B.C.D.3.已知抛物线y=x2+(m+1)x−14m2−1(m为整数)与x轴交于点A,与y轴交于点B,且OA=OB,则m等于( )A.2+5B.2−5C.2D.−24.已知点A(a,y1),B(a+2,y2),在反比例函数y=|k|+1x的图像上,若y1−y2>0,则a的取值范围为()A.a<0B.a<−2C.−2<a<0D.a<−2或a>05.已知二次函数y=m x2−2mx+2(m≠0)在−2≤x<2时有最小值−2,则m=( )A.−4或−12B.4或−12C.−4或12D.4或126.已知二次函数y=−(x+m−1)(x−m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是( )A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>−1,则y1>y2D.若x1+x2<−1,则y1<y27.如图,点A是反比例函数y=4x图像上的一动点,连接AO并延长交图像的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足()A.mn=−2B.mn=−4C.n=−2m D.n=−4m8.已知抛物线y=a x2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,−3),若该抛物线的顶点在第三象限,记m=2a−b+c,则m的取值范围是( )A.0<m<3B.−6<m<3C.−3<m<6D.−3<m<09.如图是抛物线y=a x2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c−a=n;③抛物线另一个交点(m,0)在−2到−1之间;④当x<0时,a x2+(b+2)x≥0;⑤一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根;其中正确的是()A.①②③B.①④⑤C.②④⑤D.②③⑤10.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C、D,若点C的横坐标为6,BE=2DE,则k的值为( )A .372B .725C .965D .18二.填空题(共6小题,满分18分,每小题3分)11.如图,抛物线y =a x 2+bx +c 与直线y =kx +ℎ交于A 、B 两点,则关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为 .12.将二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,则该二次函数图像的顶点的纵坐标为 .13.抛物线y =−12x 2+x +4与x 轴交于A ,B 两点(点A 在点B 的左侧),点C(2,y)在在这条抛物线上.(1)则点C 的坐标为 ;(2)若点P 为y 轴的正半轴上的一点,且△BCP 为等腰三角形,则点P 的坐标为 .14.如图,抛物线y =x 2−2x −3与x 轴交于A 、B 两点,与y 轴交于C 点.点D 是抛物线上的一个点,作DE ∥AB 交抛物线于D 、E 两点,以线段DE 为对角线作菱形DPEQ ,点P 在x 轴上,若PQ =12DE 时,则菱形对角线DE 的长为 .15.如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1O A 1=∠B 2B 1A 2=∠B 3B 2A 3=⋅⋅⋅⋅⋅⋅,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是 .16.如图,在平面直角坐标系中,O 为坐标原点,△OAB 是等边三角形,且点B 的坐标为(4,0),点A 在反比例函数y =kx (k >0)的图象上.(1)反比例函数y =kx的表达式为 ;(2)把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1.①若此时另一个反比例函数y =k 1x的图象经过点A 1,则k 和k 1的大小关系是:k k 1(填“<”、“>”或“=”);②当函数y =kx的图象经△O 1A 1B 1一边的中点时,则a = .三.解答题(共7小题,满分52分)17.(6分)如图,一次函数y=x−2与反比例函数y=k(k>0)相交于点A(3,n),与x轴交于x点B,(1)求反比例函数解析式(2)点P是y轴上一动点,连接PA,PB,当PA+PB的值最小时,求P点坐标;(3)在(2)的条件下,C为直线y=x−2的动点,连接PC,将点C绕点P逆时针旋转90°得到点D,在C运动过程中,求PD的最小值.18.(6分)在平面直角坐标系中,已知二次函数y=−x2+bx+c(b,c是常数).(1)当b=−2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,−3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.19.(8分)如图,抛物线y=a x2+bx−5经过A(−1,0),B(5,0)两点.2(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(8分)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(−3,−10).运2动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,),正常情况下,运动员在距水面高度5米以前,必须运动员在空中最高处A点的坐标为(1,54完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x−ℎ)2+k,且顶点C距水面4米,若该运动员出水点D在MN 之间(包括M,N两点),请直接写出a的取值范围.21.(8分)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=kx(x<0)的图象相交于点B(−3,1).(1)求这两个函数的表达式;(2)当y 1随x 的增大而增大,且y 1<y 2时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数y 1的图象相交于点C 、D (点C 在点D 的右边),与函数y 2的图象相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.22.(8分)如图,在平面直角坐标系中,二次函数y =a x 2+bx −4(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC =4OB .(1)求直线CA 的表达式;(2)求该二次函数的解析式,并写出函数值y 随x 的增大而减小时x 的取值范围;(3)点P是抛物线上的一个动点,设点P的横坐标为n(0<n<4).当△PCA的面积取最大值时,求点P的坐标;(4)当−1≤x≤m时,二次函数的最大值与最小值的差是一个定值,请直接写出m的取值范围.23.(8分)如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于点C(4,m),D(−2,−4).(1)求一次函数和反比例函数表达式;(2)点E为y轴正半轴上一点,当△CDE的面积为9时,求点E的坐标;(3)在(2)的条件下,将直线AB向上平移,平移后的直线交反比例函数图象于点F(2,n),交y 轴于点G,点H为平面直角坐标系内一点,若以点E、F、G、H为顶点的四边形是平行四边形,写出所有符合条件的点H的坐标;并写出求解点H的坐标的其中一种情况的过程.答案解析一.选择题1.B【分析】把点(1,2)代入反比例函数y=k−2x,求出k的值,再把k的值代入一次函数y=kx+k−5,再根据一次函数的性质即可解答.【详解】解:∵反比例函数y=k−2x过点(1,2),∴2=k−2,解得k=4,∴一次函数y=kx+k−5的解析式为y=4x−1,∴函数图像过一三四象限,不过第二象限,故A错误,不符合题意;∵4>0,∴y随x的增大而增大,故B正确,符合题意;∵当x=2时,y=4×2−1=7,∴一次函数不过点(2,9),故C错误,不符合题意;∵y=4x−1与坐标轴的交点为(0,−1),(14,0),∴一次函数与坐标轴围成的三角形的面积为12×1×14=18,故D错误,不符合题意.故选:B.2.D【分析】先假设c<0,根据二次函数y=a x2+bx+c图象与y轴交点的位置可判断A,C是否成立;再假设c>0,b<0,判断一次函数y=cx−b的图象位置及增减性,再根据二次函数y=a x2 +bx+c的开口方向及对称轴位置确定B,D是否成立.【详解】解:若c<0,则一次函数y=cx−b图象y随x的增大而减小,此时二次函数y=a x2 +bx+c的图象与y轴的交点在y轴负半轴,故A,C错;若c>0,b<0,则一次函数y=cx−b图象y随x的增大而增大,且图象与y的交点在y轴正半轴上,此时二次函数y=a x2+bx+c的图象与y轴的交点也在y轴正半轴,若a>0,则对称轴x=−b2a >0,故B错;若a<0,则对称轴x=−b2a<0,则D可能成立.故选:D.3.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.4.D【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a,y1)、(a+2,y2)在图象的同一分支上时;②当点(a,y1)、(a+2,y2)在图象的两支上时,分别求解即可.【详解】解:∵|k|+1>0,∴图像在一、三象限,在反比例函数图像的每一支上,y随x的增大而减小,∵y1−y2>0,∴ y1>y2,①当点(a,y1)、(a+2,y2)在同一象限时,∵y1>y2,i.当在第一象限时,∴0<a<a+2,解得a>0;ii.当在第三象限时,∴a<a+2<0,解得a<−2;综上所述:a<−2或a>0;②当点(a,y1)、(a+2,y2)不在同一象限时,∵y1>y2,∴a>0,a+2<0,此不等式组无解,因此,本题a的取值范围为a<−2或a>0,故选:D.5.B【分析】先求出二次函数对称轴为直线x=1,再分m>0和m<0两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数y=m x2−2mx+2=m(x−1)2−m+2,∴对称轴为直线x=1,①当m>0,抛物线开口向上,x=1时,有最小值y=−m+2=−2,解得:m=4;②当m<0,抛物线开口向下,∵对称轴为直线x=1,在−2≤x<2时有最小值−2,∴x=−2时,有最小值y=9m−m+2=−2,解得:m=−12.故选:B.6.A【分析】将函数化为二次函数的一般形式,可以求得对称轴为x=12,然后根据函数图像上点的坐标与对称轴的关系即可得到答案;【详解】解:∵y=−(x+m−1)(x−m)+1=−x2+x+m2−m+1∴函数图像开口向下,对称轴为x=12当x1+x2=1时,A、B两点关于对称轴对称,此时y1=y2;当x1+x2>1时,A、B在对称轴右侧或分别在对称轴两侧且A到对称轴的距离小于B到对称轴的距离,此时y1>y2;当x1+x2<1时,A、B在对称轴左侧或分别在对称轴两侧,且A到对称轴的距离大于B到对称轴的距离,此时y1<y2;由此可判断选项,只有A选项符合,故选A;7.B【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,根据等腰直角三角形的性质得出OC=OA,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出ΔAOE≅ΔCOF,根据全等三角形的性质,可得出A(−m,n),进而得到−mn=4,进一步得到mn=−4.【详解】解:连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,如图所示:∵由直线AB与反比例函数y=4x的对称性可知A、B点关于O点对称,∴AO=BO,又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=12AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴ΔAOE≅ΔCOF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=−m,OF=n,∴AE=−m,OE=n,∴A(n,−m),图像上,∵点A是反比例函数y=4x∴−mn=4,即mn=−4,故选:B.8.B【分析】由顶点在第三象限,经过点A(1,0)和点B(0,−3),可得出:a>0,−b<0,即可2a得出0<a<3,又由于m=2a−b+c=2a−(3−a)+(−3)=3a−6,求出3a−6的范围即可.【详解】∵抛物线y=a x2+bx+c过点(1,0)和点(0,−3),∴c=−3,a+b+c=0,即b=3−a,∵顶点在第三象限,经过点A(1,0)和点B(0,−3),∴a>0,−b<0,2a∴b>0,∴b=3−a>0,∴a<3,∴0<a<3∵m=2a−b+c=2a−(3−a)+(−3)=3a−6,∵0<a<3,∴0<3a<9∴−6<3a−6<3,∴−6<m<3.故选:B.9.D【分析】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【详解】解:①因为抛物线的顶点坐标为(1,n),则其对称轴为x=1,即−b2a=1,所以b=−2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=−2a,所以c−a=n,所以②正确;③因为抛物线的对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在−2到−1之间;所以③正确;④因为a x2+(b+2)x≥0,即a x2+bx≥−2x,根据图象可知:把抛物线y=a x2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=a x2+bx(a≠0)的图象,所以当x<0时,a x2+bx<−2x,即a x2+(b+2)x<0.所以④错误;⑤一元二次方程a x2+(b−12)x+c=0,Δ=(b−12)2−4ac,因为根据图象可知:a<0,c>0,所以−4ac>0,所以Δ=(b−12)2−4ac>0,所以一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根.所以⑤正确.综上,正确的有②③⑤,故选:D.10.C【分析】过点D作DF⊥BC于点F,由勾股定理构造方程求出DE=125,BE=DF=245,再根据反比例函数图像同时经过顶点C、D,即可解答.【详解】解:过点D作DF⊥BC于点F,∵点C的横坐标为6,,∴BC=6.∵四边形ABCD是菱形,∴CD=BC=6.C∵BE=2DE,∴设DE=x,则BE=2x.∴DF=BE=2x,BF=DE=x,FC=BC−BF=6−x.在Rt△DCF中,∵D F2+C F2=C D2,∴(2x)2+(6−x)2=62.解得:x1=0(不合题意,舍去),x2=125,∴DE=125,BE=DF=245.设OB=a,则D(125,a+245),C(6,a)∵反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C,D,∴k=125×(a+245)=6a.解得:a=165.∴k=6a=965.故选C.二.填空题11.x <2或x >4【分析】根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,进而结合函数图象得出x 的取值范围.【详解】解:根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,由图象可得:关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为:x <2或x >4,故答案为:x <2或x >4.12.−8【分析】设设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n 4,再进行变形得出(x 1+x 2)2−4x 1x 2=8,再代入可得m 2−1616=8,进而可得出该二次函数图像的顶点的纵坐标【详解】∵二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,∴翻折前两交点间的距离不变,设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n4,∴|x 1−x 2|=22,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴(−m4)2−4×n 4=8,∴m 2−1616=8,又∵y =4x 2+mx +n 的纵坐标为4×4n −m 24×4=16n −m 216,∴16−m 216=−8,即该二次函数图像顶点纵坐标为−8故答案为:−813.(2,4)(0,2),(0,1)2【分析】(1)将点C(2,y)代入函数解析式即可得出结论;(2)令y=0,求得点B的坐标,依据分类讨论的思想方法,利用△BCP为等腰三角形和等腰三角形的解答即可得出结论.【详解】解:(1)∵点C(2,y)在抛物线y=−1x2+x+4上,2∴y=4,∴C(2,4),故答案为:(2,4);(2)令y=0,则−1x2+x+4=0,2解得:x=4或x=−2.∵抛物线y=−1x2+x+4与x轴交于A,B两点,点A在点B的左侧,2∴B(4,0).∵点P为y轴的正半轴上的一点,①当BP=BC时,如图,过点C作CD⊥OB于点D,∵C(2,4),B(4,0),∴CD=4,OB=4,OD=2,∴CD=OB.在Rt△BPO和Rt△BCD中,{BP=BCOB=DC,∴Rt△BPO≌Rt△BCD(HL),∴OP=BD.∵OB=4,OD=2,∴BD=OB−OD=2,∴OP=BD=2,∴P(0,2);②当BP=PC时,如图,过点C作CE⊥y轴于点E,∵C(2,4),B(4,0),∴CE=2,OE=4,OB=4,设点P(0,a),∵点P为y轴的正半轴上的一点,∴OP=a,EP=4−a,∵BP=PC,∴B P2=P C2,∴E P2+C E2=O P2+O B2,∴(4−a)2+22=a2+42,,解得:a=12).∴P(0,12综上,当△BCP为等腰三角形,则点P的坐标为(0,2)或(0,1).2故答案为:(0,2)或(0,1).214.1+652或−1+652【分析】设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM= 12PQ ,设点D 的横坐标为t ,由此表示出DE 的长,PM 的长,进而可得PQ 的长,根据PQ = 12DE 建立方程,求解即可.【详解】解:如图,由抛物线的解析式可知,抛物线y =x 2−2x −3的对称轴为直线x =1,设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM = 12PQ ,∵点D 是抛物线上的一个点,且DE ∥AB ,设点D 的横坐标为t ,∴D (t ,t 2−2t −3),∵DE ∥AB ,∴点D ,点E 关于对称轴对称,∴点P 和点Q 在对称轴上,∴E(2−t ,t 2−2t −3),∴DE =(2−2t),PM=|t 2−2t −3|,∴PQ =2PM =2|t 2−2t −3|,∵PQ =12DE ,∴2|t 2−2t −3|=12(2−2t ),解得t 1= 5−654,t 2= 5+654(舍去),t 3= 3−654,t 4= 3+654(舍去),∴DE =2−2t = 1+652或−1+652.故答案为:1+652或−1+652.15.(0,2n )【分析】如图,过A1作A1H⊥y轴于H,求解A1(1,1),结合题意,△O A1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出O B1,O B2,O B3,O B4,…,探究规律,利用规律解决问题即可得出结论.【详解】解:如图,过A1作A1H⊥y轴于H,∵{y=1x y=x,其中x>0,解得:{x=1y=1,即A1(1,1),∴OH=A1H=1,∴∠A1OH=45°,∵B1A1⊥O A1,∴△O A1B1是等腰直角三角形,∴O B1=2;同理可得:△B1A2B2,△B2A3B3,…,都是等腰直角三角形,同理设A2(m,m+2),∴m(2+m)=1,解得m=2−1,(负根舍去)∴O B2=2+22−2=22,同理可得:O B3=23,⋅⋅⋅⋅⋅⋅∴O Bn=2n,∴Bn(0,2n).故答案为:(0,2n).16.y=43x<1或3【分析】(1)如图所示,过点A作AC⊥OB于C,利用等边三角形的性质和勾股定理求出A (2,23),再利用待定系数法求解即可;(2)求出A1(2+a,23),由a>0,得到2+a>2,则k1>43=k;(3)分当函数y=kx 的图象经过O1A1的中点时,当函数y=kx的图象经过A1B1的中点时,两种情况利用两点中点坐标公式和待定系数法求解即可.【详解】解:(1)如图所示,过点A作AC⊥OB于C,∵(4,0),∴OB=4,∵△AOB是等边三角形,∴OC=BC=12OB=2,OA=OB=4,∴AC=O A2−O C2=23,∴A(2,23),∵点A在反比例函数y=kx(k>0)的图象上,∴23=k2,∴k=43,∴反比例函数y=kx 的表达式为y=43x,故答案为:y=43x;(2)①∵把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1,∴A 1(2+a ,23),∵反比例函数y =k 1x的图象经过点A 1,∴23=k 12+a,∴k 1=23(2+a ),∵a >0,∴2+a >2,∴k 1>43=k ,故答案为:<;(3)当函数y =kx 的图象经过O 1A 1的中点时,∵O 1(a ,0),A 1(a +2,23),∴函数y =kx 的图象经过点(a +a +22,232),∴3=43a +1,∴a =3;当函数y =kx 的图象经过A 1B 1的中点时,∵B 1(a +4,0),A 1(a +2,23),∴函数y =k x 的图象经过点(a +4+a +22,232),∴3=43a +3,∴a =1,故答案为:1或3.三.解答题17.(1)解:∵点A (3,n )在一次函数y =x −2的图象上,∴n =3−2=1,∴点A (3,1),∵点A (3,1)在反比例函数y =kx (k >0)的图象上,∴k =3×1=3,∴反比例函数解析式为y =3x ;(2)解:作点B 关于y 轴的对称点B ',连接A B '交y 轴于点P ,此时PA +PB 的值最小,令y =0,则0=x −2,解得x =2,∴点B (2,0),点B '(−2,0),设直线A B '的解析式为y =kx +b ,∴{3k +b =1−2k +b =0,解得{k =15b =25,∴直线A B '的解析式为y =15x +25,令x =0,则y =25,∴P 点坐标为(0,25);(3)解:由旋转的性质知PC =PD ,当PC ⊥AB 时,PC 有最小值,此时PD的值最小,设直线AB交y轴于点E,令x=0,则y=0−2=−2,,点E(0,−2),∴OE=2,OB=2,∴BE=22+22=22,∵S△PBE =12PE×OB=12BE×PC,∴PC=(25+2)×222=625,∴PD的最小值为625.18.(1)解:当b=−2,c=3时,y=−x2−2x+3=−(x+1)2+4,∴此时该函数图象的顶点坐标为(−1,4);(2)解:∵该函数图象经过点(1,−3),∴−1+b+c=−3,则c=−2−b,∵该二次函数图象的顶点坐标是(m,n),∴m=−b2×(−1)=b2,n=4×(−1)×c−b24×(−1)=4c+b24=c+b24,∴b=2m,c=−2−2m,∴n=−2−2m+4m24,即n=m2−2m−2;(3)解:当b=2c+1时,二次函数y=−x2+(2c+1)x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c +12≤2即−12≤c ≤32时,该函数的最大值为4×(−1)×c −(2c +1)24×(−1)=c +(2c +1)24=8,即4c 2+8c −31=0,解得c 1=−1+352(不合题意,舍去),c 2=−1−352(不合题意,舍去);当c +12<0即c <−12时,0≤x ≤2时,y 随x 的增大而减小,∴当x =0时,y 有最大值为c =8,不合题意,舍去;当c +12>2即c >32时,0≤x ≤2时,y 随x 的增大而增大,∴当x =2时,y 有最大值为−22+2(2c +1)+c =8,解得c =2,符合题意,综上,满足条件的c 的值为2.19.(1)解:∵抛物线y =a x 2+bx −52经过A (−1,0),B (5,0)两点,∴{a −b −52=025a +5b −52=0,解得:a =12,b =−2,∴此拋物线的解析式为y =12x 2−2x −52;(2)如图,连接BC ,交对称轴于点P ,∵拋物线的解析式为y =12x 2−2x −52,∴其对称轴为直线x =−b2a =−−22×12=2,当x =0时,y =−52,∴C (0,−52),又∵B (5,0),∴设BC 的解析式为y =kx +b (k ≠0),∴{5k +b =0b =−52,解得:k =12,b =−52,∴ BC 的解析式为y =12x −52,当x =2时,y =2×12−52=−32,∴P (2,−32),∴PA +PC =(−1−2)2+(32+0)2+(0−2)2+(−52+32)2=552;(3)存在,如图所示:①当点N 在x 轴下方时,∵抛物线的对称轴为x =2,C (0,−52),∴N 1(4,−52),②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△A N 2D 和△M 2CO 中,{∠N 2AD =∠C M 2OA N 2=C M 2∠N 2DA =∠CO M 2,∴△A N 2D ≌△M 2CO (ASA ), ∴N 2D =OC =52,即N 2点的纵坐标为52∴12x 2−2x −52=52,解得:x =2+14或x =2−14,∴N 2(2+14,52),N 3(2−14,52),综上所述符合条件的N 的坐标有(4,−52),(2+14,52),(2−14,52).20.(1)解:设抛物线的解析式为y =a 0(x −1)2+54将(0,0)代入解析式得:a 0=−54∴抛物线的解析式为y =−54(x −1)2+54令y =−10,则−10=−54(x −1)2+54解得:x 1=−2(舍去),x 2=4∴入水处B 点的坐标(4,−10)(2)解:距点E 的水平距离为5米,对应的横坐标为:x =5−32=72将x =72代入解析式得:y =−54×(72−1)2+54=−10516∵−10516−(−10)=5516<5∴该运动员此次跳水失误了(3)解:∵EM=212,EN =272,点E 的坐标为(−32,−10)∴点M 、N 的坐标分别为:(9,−10),(12,−10)∵该运动员入水后运动路线对应的抛物线解析式为y =a (x −ℎ)2+k ,顶点C 距水面4米y =a (x −132)2−14,∴当抛物线经过点M时,把点M(9,−10)代入得:a=1625同理,当抛物线经过点N(12,−10)时,a=14由点D在MN之间可得:14≤a≤162521.(1)解:∵二次函数y1=x2+mx+1的图像与反比例函数y2=kx(x>0)的图像相交于点B(−3,1),∴(−3)2−3m+1=1,k−3=1,解得m=3,k=−3,∴二次函数的解析式为y1=x2+3x+1,反比例函数的解析式为y2=−3x(x>0).(2)∵二次函数的解析式为y1=x2+3x+1,∴对称轴为直线x=−32,由图象知,当y1随x的增大而增大,且y1<y2时,−32≤x<0(3)由题意作图如下:∵当x=0时,y1=1,∴A(0,1),∵B(−3,1),∴△ACE的CE边上的高与△BDE的DE边上的高相等,∵△ACE与△BDE的面积相等,∴CE=DE,即E点是二次函数的对称轴与反比例函数的交点,当x=−32时,y2=2,∴E(−32,2).22.(1)解:令x=0,则y=−4,∴C(0,−4),∴OC=4,∵OA=OC,∴AO=4,∴A(4,0),设直线AC的解析式为y=kx+b,∴{4k+b=0b=−4,解得{k=1b=−4,∴y=x−4;(2)解:∵OC=4OB,∴OB=1,∴B(−1,0),将A(4,0),B(−1,0)代入y=a x2+bx−4,∴{16a+4b−4=0a−b−4=0,解得{a=1b=−3,∴y=x2−3x−4,∵y=x2−3x−4=(x−32)2−254,a=1>0,∴抛物线开口向上,对称轴为直线x=32,∴函数值y随x的增大而减小时x的取值范围为x<32;(3)解:过点P作PQ∥y轴交AC于点Q,∵点P 的横坐标为n ,∴ P (n ,n 2−3n −4),则Q (n ,n −4),∴ PQ =n −4−(n 2−3n −4)=−n 2+4n ,由(1)得A (4,0),C (0,−4),∴ S △PCA =S △PCQ +S △PAQ=12QP (x P −x C )+12QP (x A −x P )=12QP (x P −x C +x A −x P )=12QP (x A −x C )=12×4×(−n 2+4n )=−2(n −2)2+8,∵ 0<n <4,∴当n =2时,△PCA 的面积有最大值,此时P (2,−6);(4)解:当32≤m ≤4时,二次函数的最大值与最小值的差是一个定值,∵ y =x 2−3x −4=(x −32)2−254,∴抛物线的对称轴为直线x =32,①当−1<m <32时,x =−1,y 有最大值0,x =m ,y 有最小值m 2−3m −4,∴ 0−(m 2−3m −4)=−m 2+3m+4,此时二次函数的最大值与最小值的差随m 的变化而变化;②当32≤m ≤4时,x =32,y 有最小值−254,x =−1,y 有最大值0,∴0−(−254)=254,此时二次函数的最大值与最小值的差是一个定值;③当m>4时,x=32,y有最小值−254,x=m,y有最大值m2−3m−4,∴m2−4m−4+254=m2−3m+94,此时二次函数的最大值与最小值的差随m的变化而变化;综上所述:32≤m≤4时,二次函数的最大值与最小值的差是一个定值.23.(1)∵点C(4,m),D(−2,−4)在反比例函数图象上,∴4m=(−2)×(−4),解得m=2,∴C(4,2),∴反比例函数的解析式为y=8x;设一次函数的解析式为y=kx+b,∴{−2k+b=−44k+b=2,解得{k=1b=−2,∴一次函数的解析式为y=x−2;(2)直线y=x−2与y轴的交点B(0,−2),设E(0,t),t>0,∴EB=t+2,∴SΔCDE =12×BE×(4+2)=9,∴3(t+2)=9,解得t=1,∴E(0,1);(3)设直线AB向上平移后的函数解析式为y=x−2+ℎ,∵F(2,n)在反比例函数图象上,∴n=4,∴F(2,4),将F点代入y=x−2+ℎ,则ℎ=4,∴平移后的直线解析式为y=x+2,∴G(0,2),设H(x,y),①当HE为平行四边形的对角线时,x=2,y+1=6,∴H(2,5);②当HF为平行四边形的对角线时,x+2=0,y+4=3,∴H(−2,−1);③当HG为平行四边形的对角线时,x=2,y+2=5,∴H(2,3);综上所述:H点坐标为(2,5)或(−2,−1)或(2,3).。
九年级数学上册试题 第21章《二次函数与反比例函数》单元测试卷 -沪科版(含答案)

第21章《二次函数与反比例函数》单元测试卷一、选择题(本大题共10小题,每小题3分,共30分).1.已知函数y=(m+3)x2+4是二次函数,则m的取值范围为()A.m>﹣3B.m<﹣3C.m≠﹣3D.任意实数2.将抛物线()先向下平移1个单位长度,再向左平移2个单位长度后所得到的抛物线为y=﹣2(x﹣3)2+1.A.y=﹣2(x﹣5)2+2B.y=﹣2(x﹣1)2C.y=﹣2(x﹣2)2﹣1D.y=﹣2(x﹣4)2+33.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.04.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.5.若点A(﹣2,y1),B(﹣1,y2),C(3,y3)在反比例函数y=2+3的图象上,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 3<y 1<y 2C.y 2<y 1<y 3D.y 3<y 2<y 16.函数=−6图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1y 2=﹣3,则x 2y 1值为()A.12B.6C.﹣12D.﹣67.如图,Rt 三角形ABC 位于第一象限,AB =4,AC =2,直角顶点A 在直线y =x 上,其中点A 的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若函数=(≠0)的图象与△ABC 有交点,则k 的最大值是()A.5B.498C.12124D.48.如右图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,函数图象经过点(2,0),x =﹣1是对称轴,有下列结论:①2a ﹣b =0;②9a ﹣3b +c <0;③若(﹣2,y 1),(12,y 2)是抛物线上两点,则y 1<y 2,④a ﹣b +c =﹣9a ;其中正确结论的个数是()A.1个B.2个C.3个D.4个9.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°10.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2,0),则下列说法正确的是()①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:65<m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1,x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:214<m<11.A.①②③④B.①②④C.①③④D.②③④二、填空题(本大题共8小题,每小题3分,共24分)11.如图,P是反比例函数y=图象上一点,矩形OAPB的面积是6,则k=.12.在平面直角坐标系中,一次函数y=2x与反比例函数y=(k≠0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.13.汽车在高速公路刹车后滑行的距离y(米)与行驶的时间x(秒)的函数关系式是y=﹣3x2+36x,汽车刹车后,会继续向前滑行直至静止,那么汽车静止前2秒内滑行的距离是米.14.为了在校运会中取得更好的成绩,小丁积极训练,在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是1.68米,当铅球运行的水平距离为2米时,达到最大高度2米的B处,则小丁此次投掷的成绩是米.15.反比例函数y=3和y=1在第一象限的图象如图所示.点A,B分别在y=3和y=1的图象上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为.16.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)17.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0;②4a+c<2b;③m(am+b)+b>a(m≠﹣1);④方程ax2+bx+c﹣3=0的两根为x1,x2(x1<x2),则x2<1,x1>﹣3,其中正确结论的是.18.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是元.三、解答题(本大题共8小题,共66分.)19.如图,在平面直角坐标系中,直线y1=x+b与双曲线y2=(k>0)相交于点A,B两点,已知点A坐标(1,2).(1)求反比例函数与一次函数的表达式;(2)求点B的坐标,并观察图象,写出当y1<y2时,x的取值范围.20.我们已经学习过反比例函数y=1对函数y=1|U的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是.(2)关于此函数,下列说法正确的是.(填写序号)①在各个象限内,y随着x增大而减小;②图象为轴对称图形;③函数值始终大于0;④函数图象是中心对称图形.(3)写出不等式1|U−3>0的解集.21.已知抛物线y=ax2+bx+1(其中a,b是常数,且a≠0),其自变量x与函数值y的部分对应值如下表所示:x…﹣3﹣2﹣101…y…﹣2m﹣21n…(1)求这个抛物线的解析式及m、n的值;(2)在给出的平面直角坐标系中画出这个抛物线的图象;(3)如果直线y=k与该抛物线有交点,那么k的取值范围是.22.若已知二次函数y=ax2+bx+c(a≠0)的图象经过原点但不关于y轴对称,(1)求证:二次函数始终与x轴有2个交点;(2)若a>0且b=2a﹣2,①当x≥﹣3时,y≥﹣a恒成立,求a的取值范围;②当a,n都为正整数时,若在﹣n﹣2≤x≤﹣n﹣1范围内,函数的值有且只有13个整数,求a的值.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.商场出售一批进价为2元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量y(张)之间有如下关系:x/元3456y/张20151210(1)根据表中的数据在平面直角坐标系中描出实数对(x,y)的对应点;(2)猜想并确定y关于x的函数解析式,并画出函数图象;(3)设经营此贺卡的日销售利润为W(元),试求出W关于x的函数解析式,若物价局规定此贺卡的日销售单价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?25.在平面直角坐标系xOy中,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点A,将点A向右平移1个单位长度,得到点B.直线y=34x﹣3与x轴,y轴分别交于点C,D.(1)求抛物线的对称轴;(2)若点A与点D关于x轴对称,①求点B的坐标;②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.26.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求三角形ACE面积的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.答案一、选择题C.A.D.C.C.C.B.B.C.B.二、填空题11.612.0.13.12.14.7.15.1.16.①③④.17.①②③.18.1800.三、解答题19.(1)直线y 1=x +b 与双曲线y 2=(k >0)相交于点A (1,2),∴2=1+b ,2=1,∴b =1,k =2,∴反比例函数与一次函数的表达式分别为y =2,y =x +1;(2)解方程组=+1=2得=1=2或=−2=−1,则B (﹣2,﹣1),由图象可知,当x <﹣2或0<x <1时,y 1<y 2.20.(1)∵在函数y =1|U 中,|x |>0,∴y >0,当x >0时,y 随着x 的增大而减小;当x <0时,y 随着x 的增大而增大,∴函数图象在第一、二象限;故答案为:D ;(2)由函数y =1|U 的图象可知此图象具有以下性质:函数的图象在一、二象限,当x >0时,y 随x 增大而减小;当x <0时,y 随x 增大而增大;函数的图象关于y 对称;故说法正确的是②③,故答案为②③:(3)y =3时,即:1|U =3,解得:x =±13,根据函数的图象和性质得,不等式1|U −3>0,即1|U >3的解集为:−13<<0或0<<13,因此:不等式1|U −3>0的解集为:−13<<0或0<<13.21.(1)把(﹣3,﹣2),(﹣1,﹣2),(0,1)代入y =ax 2+bx +c ,得:9−3+=−2−+=−2=1,解得:=1=4=1,∴抛物线解析式为y =x 2+4x +1,把x =﹣2代入得y =﹣3,把x =1代入得y =6,∴m =﹣3,n =6;(2)描点、连线画出抛物线图象如图:(3)由图象可知,如果直线y =k 与该抛物线有交点,那么k 的取值范围是k ≥﹣3.故答案为k ≥﹣3.22.(1)∵二次函数y =ax 2+bx +c (a ≠0)的图象经过原点但不关于y 轴对称,∴b ≠0,把(0,0)代入y =ax 2+bx +c ,得c =0,∵Δ=b 2﹣4ac >0,∴二次函数y =ax 2+bx +c 的图象与x 轴始终有2个交点;(2)函数对称轴为x =﹣1+1>−1,抛物线的顶点为:[﹣1+1,−(K1)2],①当x≥﹣3时,y≥﹣a恒成立,而函数对称轴为x=﹣1+1>−1,则−(K1)2≥−a,∴(2a﹣2)2≤4a2,解得:a≥12;函数不关于y轴对称,则b=2a﹣2≠0,故a≠1,综上,a≥12且a≠1;②当x=﹣n﹣2时,y1=a(n+2)2﹣b(n+2),当x=﹣n﹣1时,y2=a(n+1)2﹣b(n+1)△y=y1﹣y2=a(2n+1)+2;则△y有13个整数,即a(2n+1)+2=12,解得:a=2.23.(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:100=60+80=70+,解得:=−2=220,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为w元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.(1)对应点如图所示:(2)根据图象猜测y关于x的函数解析式为=(≠0),∵x=3时,y=20,∴3=20,解得k=60,∴=60,∵把实数对(4,15),(5,12),(6,10)代入=60都符合,∴y关于x的解析式为=60(>0),其图象是第一象限内的双曲线的一支,如图2所示.(3)=(−2)⋅60=60−120,∵x≤10,∴当x=10时,W有最大值,最大日销售利润为60﹣12=48(元)∴当日销售单价定为10元时,才能获得最大日销售利润.25.(1)抛物线的对称轴为:x=−2=−−22=1;(2)①∵直线y=34x﹣3与x轴,y轴分别交于点C,D.∴点C的坐标为(4,0),点D的坐标为(0,﹣3).∵抛物线与y轴的交点A与点D关于x轴对称,∴点A的坐标为(0,3).∵将点A向右平移1个单位长度,得到点B,∴点B的坐标为(1,3);②抛物线顶点为P(1,3﹣a).(ⅰ)当a>0时,如图1.令x=4,得y=16a﹣8a+3=8a+3>0,即点C(4,0)总在抛物线上的点E(4,8a+3)的下方.∵yP <yB,∴点B(1,3)总在抛物线顶点P的上方,结合函数图象,可知当a>0时,抛物线与线段CB恰有一个公共点.(ⅱ)当a<0时,如图2.当抛物线过点C (4,0)时,16a ﹣8a +3=0,解得a =−38.结合函数图象,可得a ≤−38.综上所述,a 的取值范围是:a ≤−38或a >026.(1)令y =0,解得x 1=﹣1或x 2=3,∴A (﹣1,0)B (3,0),将C 点的横坐标x =2代入y =x 2﹣2x ﹣3得y =﹣3,∴C (2,﹣3),∴直线AC 的函数解析式是y =﹣x ﹣1;(2)设P 点的横坐标为x (﹣1≤x ≤2),则P 、E 的坐标分别为:P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵P 点在E 点的上方,PE =(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x +2=﹣(x −12)2+94,∴当x =12时,PE 的最大值=94,则△ACE 的面积的最大值是:12×【2﹣(﹣1)】×94=278;(3)存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(4+7,0),F 4(4−7,0),①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+7,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣x+4+7,因此直线GF与x轴的交点F的坐标为(4+7,0);④如图,同③可求出F的坐标为(4−7,0).总之,符合条件的F点共有4个.。
沪科版九年级上册数学第二十二章 二次函数复习练习(含答案)

二次函数测试卷一、选择题(共12题,每题4分)1.抛物线y=﹣2x2开口方向是()A. 向上B. 向下C. 向左D. 向右2.抛物线y=x2+4的顶点坐标是()A. (4,0)B. (-4,0)C. (0,-4)D. (0,4)3.抛物线y=x2+2x-3的对称轴是()A. 直线x=1B. 直线x=-1C. 直线D. 直线x=-34.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A. y=(x﹣4)2+7B. y=(x﹣4)2﹣25C. y=(x+4)2+7D. y=(x+4)2﹣255.二次函数y=x2+5x+4,下列说法正确的是()A. 抛物线的开口向下B. 当x>﹣3时,y随x的增大而增大C. 二次函数的最小值是﹣2D. 抛物线的对称轴是x=﹣6.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=3 +3B. y=3 +3C. y=3 -3D. y=3 -37.抛物线y=-3(x+1)2-2经过平移得到抛物线y=-3x2,平移方法是()A. 向左平移1个单位,再向下平移2个单位B. 向右平移1个单位,再向下平移2个单位C. 向左平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向上平移2个单位8.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为( )第8题第9题第10题A. (2,3)B. (3,2)C. (3,3)D. (4,3)9.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A. ﹣2<m<B. ﹣3<m<﹣C. ﹣3<m<﹣2D. ﹣3<m<﹣10.如图,抛物线y= x2+ x与直线y=kx的交点A的纵坐标是5,则不等式x2+ x﹣kx>0的解集是()A. x>0B. ﹣2<x<0C. ﹣5<x<2D. x<0或x>211.二次函数y=﹣x2+6x﹣7,当x取值为t≤x≤t+2时,y最大值=﹣(t﹣3)2+2,则t的取值范围是()A. t=0B. 0≤t≤3C. t≥3D. 以上都不对12.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x= ,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A. ①②④B. ③④C. ①③④D. ①②二、填空题(共10小题,每题4分)13.若函数y=(m+2)是二次函数,则m=________ .14.二次函数y=2(x﹣)2+3,当x________ 时,y随x的增大而增大.15.函数y=2(x﹣1)2图象的顶点坐标为________.16.将抛物线y=﹣x2向右平移3个单位后所得抛物线解析式的一般式为________.17.如图,抛物线与直线的两个交点坐标分别为,,则方程的解是________.第12题第17题第20题第21题18.已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线的对称轴上确定一点D,使得|AD﹣CD|的值最大,则D点的坐标为________19.写出一个开口向上,顶点是坐标原点的二次函数的解析式:________.20.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为________21.如图,抛物线与轴交于点C,点D(0,1),点P是抛物线上在第一象限的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为________.22.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有________.三、解答题23(8分).已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.24(8分).求二次函数y=2x2﹣12x+13的图象与直线y=﹣5的交点的横坐标25(10分).把二次函数y=x2﹣2x+3配方成y=a(x﹣k)2+h的形式,并求出它的图象的顶点坐标、对称轴方程,y<0时x的取值范围,并画出图象.26(14分).某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.27(10分).已知二次函数y=﹣2x2+8x﹣6,完成下列各题:(1)说出它的开口方向,写出它的顶点坐标、对称轴;(2)写出它的图象与x轴的交点A,B的坐标,与y轴的交点C的坐标.28(12分).在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+1的对称轴是直线x=1.(1)求抛物线的表达式;(2)点D(n,y1),E(3,y2)在抛物线上,若y1<y2,请直接写出n的取值范围;(3)设点M(p,q)为抛物线上的一个动点,当﹣1<p<2时,点M关于y轴的对称点都在直线y=kx﹣4的上方,求k的取值范围.参考答案一、选择题1.B2. D3.B4.B5. D6. A7. D8.D9.D 10.D 11. C 12.D二、填空题13.4 14.> 15. (1,0) 16. y=﹣(x﹣3)2 17.,18.(2,﹣6) 19. y=2x2 20.0 21. 22. ①三、解答题23.解:设此二次函数的解析式为y=a(x﹣1)2+4(a≠0).∵其图象经过点(﹣2,﹣5),∴a(﹣2﹣1)2+4=﹣5,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+324.解:联立函数解析式,得,消去y得2x2﹣12x+13=﹣5,解得x1=x2=3,所以交点横坐标为3.25.解:y=x2﹣2x+3=(x﹣1)2+2,则抛物线的顶点坐标为(1,2),对称轴为直线x=1;x无论取何值,y >0.如图:26.(1)解:由题意得,销售量= ,则;(2)解:方案A:由题可得,因为,对称轴为x=35,抛物线开口向下,在对称轴左侧,随的增大而增大,所以,当x=30时,w取最大值为2000元,方案B:由题意得解得:,在对称轴右侧,w随x的增大而减小,所以,当x=45时,w取最大值为1250元因为2000元>1250元,所以选择方案A .27.(1)解:y=﹣2x 2+8x ﹣6=﹣2(x 2﹣4x+4)+2=﹣2(x ﹣2)2+2; 故它的开口向下,顶点坐标为(2,2)、对称轴为:x=2(2)解:图象与x 轴相交是y=0,则: 0=﹣2(x ﹣2)2+2,解得x 1=3,x 2=1,∴这个二次函数的图象与x 轴的交点坐标为A (3,0),B (1,0);当x=0时,y=﹣6,∴与y 轴的交点C 坐标为(0,﹣6)28.(1)解:∵抛物线的对称轴为x=1,∴x=﹣=﹣=1.解得:m=1.∴抛物线的解析式为y=﹣x 2+2x(2)解:将x=3代入抛物线的解析式得y=﹣32+2×3=﹣3.将y=﹣3代入得:﹣x 2+2x=﹣3.解得:x 1=﹣1,x 2=3.∵a=﹣1<0,∴当n <﹣1或n >3时,y 1<y 2 (3)解:设点M 关于y 轴对称点为M ′,则点M ′运动的轨迹如图所示:∵当P=﹣1时,q=﹣(﹣1)2+2×(﹣1)=﹣3.∴点M 1为(-1,-3)∴点M 1关于y 轴的对称点M 1′的坐标为(1,﹣3).∵当P=2时,q=﹣22+2×2=0,∴点M 2关于y 轴的对称点M 2′的坐标为(﹣2,0).①当k <0时,∵点M 关于y 轴的对称点都在直线y=kx ﹣4的上方,∴﹣2k ﹣4<0.解得:k >﹣2.②当k >0时,∵点M 关于y 轴的对称点都在直线y=kx ﹣4的上方,∴k ﹣4<﹣3.解得;k <1.∴k 的取值范围是﹣2<k <1。
2023-2024学年沪科版九年级数学上册第21章《二次函数与反比例函数》检测题附答案

2023-2024学年九年级数学上册第21章《二次函数与反比例函数》检测题(满分120分)一、单选题(本大题共12小题,每小题3分,共36分)1.抛物线()221y x c =-+过()12,y -,()20,y ,35,2y ⎛⎫ ⎪⎝⎭三点,则y1,y2,y3的大小关系是()A .231y y y >>B .132y y y =>C .132y y y >>D .312y y y >>2.抛物线22y x =-经过平移得到22(1)5y x =-+-,平移方法是()A .向左平移1个单位,再向下平移5个单位B .向左平移1个单位,再向上平移5个单位C .向右平移1个单位,再向下平移5个单位D .向右平移1个单位,再向上平移5个单位3.用配方法将二次函数286y x x =--化为()2y a x h k =-+的形式为()A .()2410y x =-+B .()2422y x =--C .()2422y x =+-D .()2410y x =++4.在平面直角坐标系xOy 中,点(,)(0,0)A a b a b >>在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为()A .1-B .0C .1D .25.已知()()()1233,2,,1,y y y --,是抛物线2312y x x m =++上的点,则123,,y y y 的大小关系为()A .231y y y <<B .123y y y <=C .213y y y <<D .321y y y <<6.在经历了一次函数的学习后,同学们掌握了利用图象来分析函数性质的方法.某位同学打算探究函数2y x -=的性质,他先通过列表、描点、连线得到该函数的图象(如图),然后通过观察图象得到“在x 的取值范围内,无论x 取何值,函数值恒大于0,”的结论.其中所蕴含的数学思想是()A .演绎思想B .分类讨论思想C .公理化思想D .数形结合思想7.已知抛物线的顶点坐标是(-1,-3),则m 和n 的值分别是()A .2,4B .-2,-4C .2,-4D .-2,08.若函数22y x x b =-+的图象与坐标轴有三个交点,则b 的取值范围是()A .1b <且0b ≠B .1b >C .01b <<D .1b <9.已知二次函数y =ax2+bx+c (a≠0)的图像如图所示,且关于x 的一元二次方程ax2+bx+c ﹣m =0没有实数根,则下列结论:①b2﹣4ac >0;②ac <0;③m >2,其中正确结论的个数是()A .0B .1C .2D .310.已知点P 为抛物线y=x2+2x ﹣3在第一象限内的一个动点,且P 关于原点的对称点P′恰好也落在该抛物线上,则点P′的坐标为()A .(﹣1,﹣1)B .(﹣2C ﹣1)D 11.已知抛物线y =ax2﹣2ax+3不经过第四象限.当﹣1≤x≤2时,y 的最大值与最小值的差是12,则a 的值是()A .﹣3B .3C .4D .1212.用60m 长的篱笆围成矩形场地,矩形的面积S 随着矩形的一边长L 的变化而变化,要使矩形的面积最大,L 的长度应为().A .B .15mC .20mD .二、填空题(本大题共8小题,每小题3分,共24分)13.如图用一段长为16m 的篱笆围成一个一边靠墙的矩形围栏(墙长9m ),则这个围栏的最大面积为2m .14.把二次函数()()y 412x x 3=-+-化为一般形式为:.15.把抛物线2y x =向左平移2个单位,则平移后所得抛物线的解析式为.16.如图,在平面直角坐标系中,抛物线214y x mx=-+与x 轴正半轴交于点A ,点B 是y 轴负半轴上一点,点A 关于点B 的对称点C 恰好落在抛物线上,过点C 作//CD x 轴,交抛物线于点D ,连结OC 、AD .若点C 的横坐标为4-,则四边形OCDA 的面积为.17.如图,正方形ABCD 的边长为5,点A 的坐标为(4,0),点B 在y 轴上,若反比例函数(0)ky k x =≠的图象过点C ,则k 的值为.18.如图所示,已知双曲线y=5x (x <0)和y=k x (x >0),直线OA 与双曲线y=5x 交于点A ,将直线OA 向下平移与双曲线y=5x 交于点B ,与y 轴交于点P ,与双曲线y=k x 交于点C ,S △ABC=6,12BP CP =,则k=.19.如图,矩形OABC 的两边OA 、OC 分别在x 轴和y 轴上,以AC 为边作平行四边形ACDE ,E 点在CB 的延长线上,反比例函数()0ky x x =>过B 点且与CD 交于F 点,3CFDF =,6ABF S = ,则k 的值为.20.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式2(6)y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .若球能越过球网,又不出边界,则h 的取值范围为.三、解答题(本大题共5小题,每小题8分,共40分)21.如图是反比例函数y=kx的图象的一个分支.(1)k的值是;(2)当x在什么范围取值时,y是小于3的正数?(3)如果自变量x取值范围为2≤x≤3,求y的取值范围.22.中国小将杨倩在2021东京奥运会射击比赛中,拿下中国第一枚金牌.某网店顺势推出纪念T恤衫,成本为30元/件,经市场调查发现每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)直接写出y与x之间的函数关系式.(2)当销售单价为多少时,每天获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出160元给希望工程,为了保证捐款后每天利润不低于3800元,求该纪念T恤衫的销售单价x的取值范围.23.[阅读理解]对于任意正实数a、b.20,0a b≥∴+-a b∴+≥只有当a=b时,等号成立.[数学认识]在a b+≥a、b均为正实数)中,若ab为定值k,则a b+≥只有当a=b时,a+b有最小值[解决问题](1)若0x >,149x x +有最小值为___,此时x=.(2)如图,已知直线1l :112y x =+与x 轴交于点A ,过点A 的另一直线2l 与双曲线8y x =-(x>0)相交于B (2,m ),若点C 为双曲线上任意一点,作CD//y 轴交直线1l 于式求当线段CD 最短时,△ACD面积.24.某蛋糕店出售网红“奶昔包”,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,当以40元每件出售时,每天可以卖300件,当以55元每件出售时,每天可以卖150件.(1)求y 与x 之间的函数关系式;(2)如果规定每天“奶昔包”的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该蛋糕店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试直接写出该“奶昔包”销售单价的范围.25.如图,抛物线y =12-x2+mx+m (m >0)的顶点为A ,交y 轴于点C .(1)求出点A 的坐标(用含m 的式子表示);(2)若直线y =﹣x +n 经过点A ,与抛物线交于另一点B ,证明:AB 的长是定值;(3)连接AC ,延长AC 交x 轴于点D ,作直线AD 关于x 轴对称的直线,与抛物线分别交于E 、F 两点.若∠ECF =90°,求m 的值.参考答案:1.C2.A3.B4.B5.C6.D7.B8.A9.D10.D11.B12.B 13.3214.2y 8x 20x 12=-++15.()22y x =+或244y x x =++;16.6417.3-18.﹣419.2820.83h ≥21.(1)12;(2)x >4;(3)4≤y≤622.(1)10700y x =-+;(2)当销售单价为50元时,每天获得的利润最大,最大值为4000元;(3)4852x ≤≤23.(1)43,16.(2)S △ACD=15.24.(1)y=-10x+700;(2)当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)当45≤x≤55时,捐款后每天剩余利润不低于3600元.25.(1)2,2m A m m ⎛⎫+ ⎪⎝⎭;(2)22;(3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学二次函数单元测试题及答案
一、选择题(每题3分,共30分)
1.下列关系式中,属于二次函数的是(x为自变量)()
A. B. C. D.
2. 函数y=x2-2x+3的图象的顶点坐标是()
A. (1,-4)
B.(-1,2)
C. (1,2)
D.(0,3)
3. 抛物线y=2(x-3)2的顶点在()
A. 第一象限
B. 第二象限
C. x轴上
D. y轴上
4. 抛物线的对称轴是()
A. x=-2
B.x=2
C. x=-4
D. x=4
5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()
A. ab>0,c>0
B. ab>0,c<0
C. ab<0,c>0
D. ab<0,c<0
6. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限()
A. 一
B. 二
C. 三
D. 四
7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象
交x轴于点A(m,0)和点B,且m>4,那么AB的长是()
A. 4+m
B. m
C. 2m-8
D. 8-2m
8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只
可能是()
9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线
x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,
且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是()
A. y1<y2<y3
B. y2<y3<y1
C. y3<y1<y2
D. y2<y1<y3
10.把抛物线的图象向左平移2个单位,再向上平
移3个单位,所得的抛物线的函数关系式是()A.
B.
C. D.
二、填空题(每题4分,共32分)
11. 二次函数y=x2-2x+1的对称轴方程是______________.
12. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.
13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.
14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.
15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________.
16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的
情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).
若v0=10m/s,则该物体在运动过程中最高点距地面_________m.
17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.
18. 已知抛物线y=x2+x+b2经过点,则y1的值是_________.
三、解答下列各题(19、20每题9分,21、22每题10分,共38分)
19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)
(1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;
(2)求此二次函数的解析式;
20.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.
(1)求二次函数解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.
21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.
22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.
答案与解析:
一、选择题1..选A.2. 答案选C.
解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2), 3. 解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.
4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.
解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.
5.解析:由图象,抛物线开口方向向下,
抛物线对称轴在y轴右侧,
抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.
6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.
解析:由图象,抛物线开口方向向下,
抛物线对称轴在y轴右侧,抛物线与y轴交点坐标
为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选D.
7. 解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.
8.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,
所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.
9. 解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x 的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.
10.:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.
二、填空题11.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.
12. 解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.
13. 解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.
14.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,
答案为y=x2-2x-3.
15.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.
16.解析:直接代入公式,答案:7.17.解析:如:y=x2-4x+3.
18.答案:
三、解答题
19.考点:二次函数的概念、性质、图象,求解析式.
解析:(1)A′(3,-4)
(2)由题设知:∴y=x2-3x-4为所求
(3)
20. 解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根
又∵(x1+1)(x2+1)=-8 ∴x1x2+(x1+x2)+9=0
∴-(k+4)-(k-5)+9=0∴k=5∴y=x2-9为所求
(2)由已知平移后的函数解析式为:y=(x-2)2-9 且x=0时y=-5
∴C(0,-5),P(2,-9) .
21. 解:(1)依题意:
(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1∴B(5,0)
由,得M(2,9)
作ME⊥y轴于点E,
则可得S△MCB=15.
22.总利润=单个商品的利润×销售量.
要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.
单个的商品的利润是(13.5-x-2.5)这时商品的销售量是(500+200x)总利润可设为y元.
利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.
顶点坐标为(4.25,9112.5).
即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元。