杂环化合物的结构与芳香性(A)

合集下载

有机化学---第17章 杂环化合物

有机化学---第17章   杂环化合物

、 内酯、环状酸酐等。
环为平面型共轭体系,环内π电子数符合4n+2规 则,具有一定芳香性的杂环化合物。
2
2、杂环化合物的分类
五元杂环, 如 单杂环 六元杂环, 如 杂环化合物 稠杂环 两个以上单杂环稠并
N N N H
O N
N H
S
苯环与单杂环稠并, 如 N H
N
N
3
3、杂环化合物的命名 (1)音译法 ——在同音汉字左边 + 口字旁
N ..
H2SO4,HgSO4 220℃
N
N
NO2
β-硝基吡啶
SO3H
β-吡啶磺酸
34
当吡啶环上连有供电子基团时,将有利于亲电取
代反应的发生;反之,就更难以进行亲电取代反应。
NO2
HNO3,H2SO4
H3 C N CH3
100℃
H3 C
N
CH3
吡啶环也象硝基苯一样,不能发生F―C烷基化和 酰基化反应。
吲哚具有芳香性,亲电取代反应发生在吡咯环上; 吲哚亲电取代反应的活性比苯高,但比吡咯低。 亲电取代反应的位置:
5 4 3 7
E+
1
苯 环
6
N H
2
吡咯环
26
进攻 C2 N H + E
+
进攻 C3
只有一个带有完 E N 2 H 整苯环的共振杂化体。 H 3 E 3 E H H + + N N H H
OH
6
S1
苯并呋喃
1
苯并吡咯 喹啉
N
9 7 8
苯并噻唑
N N
3
5 4
HO
N H
OH

杂环化合物的结构与芳香性

杂环化合物的结构与芳香性

首页—>杂环化合物—>M2杂环化合物的结构与芳香性杂环化合物的结构与芳香性化教学目标:掌握杂环合物的结构与芳香性教学重点:杂环化合物的结构教学安排:G1,G2,M1—>M2;50min一、五元单杂环化合物的结构和芳香性五元单杂环如呋喃、噻吩、吡咯,在结构上,都符合Huckel 的关于芳香性的规则,即环上原子共平面,彼此以σ 键相连接,四个碳原子各有一个电子在p 轨道上,杂原子有两个电子在p 轨道上,这些p 轨道都垂直于σ 键所在的平面,相互重叠形成大π 键——闭和的共轭体系,π 电子数目为4n+2。

结构如图所示:呋喃、噻吩和吡咯具有芳香性还可以从分子偶极矩看出。

在非芳香性杂环中只有诱导效应,而在相应的芳香杂环中除诱导效应外,还有共轭效应,并且两者的方向相反。

μ=5.77x10-30C·mμ=6.33x10-30C·mμ=5.27x10-30C·m在呋喃、噻吩、吡咯杂环中,由于杂原子不同,显示的芳香性也不完全一致。

键长的平均化程度也不一样。

实测的键长数据如下:典型的键长数据为:C-C 0.154nm C-O 0.143nm C-S 0.182nm C-N 0.147nmC=C 0.134nm C=O 0.122nm C=S 0.160nm C=N 0.128nm由此可见:1)五元杂环分子中的键长有一定的平均化,但不像苯那样完全平均化,因此芳香性较苯环差,有某种程度的不饱和化合物的性质和环的不稳定性;2)杂原子有给电子性,环上电子云密度比苯环上的高,因此比苯更容易发生亲电取代反应,取代主要发生在α 位,其活性相当于苯环上连接-OH、-SH、-NH2;3)由于杂原子的电负性为O>N>S,它们的给电子能力为S>N>O,所以环上电子云密度的大小顺序为:它们的离域能分别为117KJ·mol-1,88KJ·mol-1,67kJ·mol-1也说明了这点。

第十六章杂环化合物

第十六章杂环化合物
醇和糠酸钠(Cannizzaro反应)。
第十六章
20
呋喃在镍催化下,加氢可得四氢呋喃。四氢呋喃沸点65.5℃,
是良好的溶剂,也是有机合成的原料。从四氢呋喃可得到己二酸和
己二胺,它们是制造尼龙—66的原料。
第十六章
21
尽管呋喃在温和条件下容易发生亲电取代反应,但由于它的芳
香性较弱,呋喃及其衍生物可以容易地进行Diels—Alder反应和一般
合物。最常见的和最稳定的杂环化合物可分为五元杂环和六元杂环 两大类,在每一类中又根据杂原子种类、数目、单环或稠环等再分 类。
第十六章
4
第十六章
5
第十六章
6
杂环化合物的命名采用英文名称的音译,一般在同音汉字的左
边加一“口”旁。对于含一个杂原子的杂环也可把靠近杂原子的位
置叫做α位,其次为β位和γ位。
沸点162℃。糠醛在醋酸存在下遇苯胺呈亮红色,可用来定性检验 糠醛。糠醛可由农副产品如燕麦壳、玉米芯、棉子壳等原料来制取。 这些原料中含有戊醛糖的高聚物 (戊聚糖)。戊聚糖用盐酸处理后, 先解聚变为戊醛糖,然后再失水而成糠醛。
第十六章
19
糠醛是一个很好的溶剂,也是有机合成的原料。糠醛的化学性
质同苯甲醛类似,例如糠醛与约50%氢氧化钠水溶液作用可生成糠
第十六章
7
16.1.2 结构和芳香性
呋喃、噻吩和吡咯是含一个杂原子的五元杂环化合物,组成环
的五个原子位于同一平面上,彼此以 σ键相连接,每个碳原子还有
一个电子在p轨道上,杂原子的未共用电子对也在p轨道上,这五个 p轨道都垂直于环所在的平面。
第十六章
8
呋喃、吡咯和噻吩的离域能分别为67 kJ· mol-1、88 kJ· mol-1和

【有机化学】杂环化合物【课件PPT】

【有机化学】杂环化合物【课件PPT】

NN
O + Br2 0 OC
O Br 80%
S
95% H2SO4
25oC
S
SO3H (69~76%)
21
+ Ac2O
N
乙酸酐
H
N H
CH3 O
吡咯和呋喃遇强酸时, 杂原子能质子化, 使芳香大 键破坏, 所以不能用强酸进行硝化和磺化反应, 需选用较温和的非质子性试剂。例如吡咯硝化需 用硝酸乙酰基酯。
1N 6 5
7
N
2
N
3
4
NH9
8
嘌呤
嘌呤是由咪唑和 嘧啶两个杂环稠 合而成。
23
6
1N 5
7
N
2
8
N
3
4
NH9
9H-嘌呤
N Quinoline
6
1N 5
7
NH
2 N4 N 8
39
7H-嘌呤
N Isoquinoline
CH3O
CH3O
N
罂粟碱
OCH3
OCH3
24
水溶度: ∞ 1:1
1:1
微溶
答: 吡啶能与水形成氢键。羟基或氨基取代的 吡啶因分子间氢键的形成而降低了水溶度。
14
2. 碱性:吡啶环 N 原子的孤电子对处于sp2杂化 轨道上,而一般脂肪胺N上的孤电子对处于sp3杂化 轨道。前者碱性较弱 (pKb=8.8) 。
+ HCl N
+ Cl N H
碱性比较:脂肪胺 >>
N N Pyridazine
哒嗪
N
N Pyrimidine
嘧啶
N
N Pyrazine

杂环化合物和生物碱

杂环化合物和生物碱

13 杂环化合物和生物碱Heterocyclic Compounds and Natural Bases杂环化合物是由碳原子和非碳原子共同组成环状骨架结构的一类化合物。

这些非碳原子统称为杂原子,常见的杂原子为氮、氧、硫等。

环状有机化合物中,构成环的原子除碳原子外还含有其它原子,且这种环具有芳香结构,则这种环状化合物叫做杂环化合物。

组成杂环的原子,除碳以外的都叫做杂原子。

前面学习过的环醚、内酯、内酐和内酰胺等都含有杂原子,但它们容易开环,性质上又与开链化合物相似,所以不把它们放在杂环化合物中讨论。

本章将主要讨论的是环系比较稳定、具有一定程度芳香性的杂环化合物,即芳杂环化合物。

杂环化合物种类繁多,在自然界中分布很广。

具有生物活性的天然杂环化合物对生物体的生长、发育、遗传和衰亡过程都起着关键性的作用。

例如:在动、植物体内起着重要生理作用的血红素、叶绿素、核酸的碱基、中草药的有效成分——生物碱等都是含氮杂环化合物。

一部分维生素、抗菌素、植物色素、许多人工合成的药物及合成染料也含有杂环。

杂环化合物的应用范围极其广泛,涉及医药、农药、染料、生物膜材料、超导材料、分子器件、贮能材料等,尤其在生物界,杂环化合物随处可见。

13.1 杂环化合物Heterocyclic Compounds分子中由碳原子和氧、硫、氮等其它原子形成的比较稳定的环状结构的化合物称为杂环化合物。

杂环中除碳原子以外的其它原子称为杂原子。

最常见的杂原子有氧、硫、氮等。

例如:S NH N NNO呋喃噻吩吡咯吡啶嘧啶furan thiophene pyrrole pyridine pyrimidine前述章节中,我们遇到的内酯、交酯、内酰胺、内酐、环醚以及环状半缩醛等,虽然也有环状结构,但它们的环容易形成,也容易破裂,其性质与相应的脂肪族化合物相类似,因此不把它们列入杂环化合物之列,本章主要讨论环比较稳定且具有芳香性的杂环化合物。

杂环化合物可以含一个或多个相同的或不相同的杂原子,环的数目也可以是一个或多个。

杂环化合物

杂环化合物

第13章杂环化合物本章重点介绍杂环化合物的分类和命名;五元杂环化合物的结构特点、芳香性、亲电取代反应,六元杂环化合物的结构特点、芳香性、亲核取代反应;五元、六元杂环化合物的衍生物及其生物活性;稠杂环化合物的结构特点等。

在环状有机化合物中,构成环系的原子除碳原子外,还含有一个或多个非碳原子时,叫做杂环化合物(heterocyclic compound);环上除碳以外的原子称为杂原子,常见的杂原子有氧、硫、氮等。

大多数杂环化合物具有不同程度的芳香性,环也比较稳定。

因此,杂环化合物是有机化合物中数量最庞大的一类,约占总数的三分之二以上。

自然界中最具有强烈生物活性的天然有机化合物,绝大多数正是杂环化合物。

例如:对核酸(nucleic acid)的活性起决定作用的碱基就是嘌呤(purine)和嘧啶(pyrimidine)的衍生物。

又如叶绿素(chlorophyll)、氨基酸(amino acid)、维生素(vitamin)、血红素(haeme)、核酸(nucleic acid)、生物碱(alkaloid)等,大多数都在生命的生长、发育、遗传和衰亡过程中起着关键作用。

在现有的药物中,杂环类化合物占了相当大的比重。

它们应用于各种疾病和医疗领域,其数量之大和种类之多,是难以想象的,比如我们非常熟悉的青霉素(benzylpenicillin)、头孢菌素(先锋霉素cephalosporin)、喹喏酮(Quinolone)类以及治疗肿瘤的5–Fu(5–Fluorouracil)、喜树碱(comptothecin)、紫杉醇(Taxol)等,都是含有杂环的化合物。

内酯、交酯、环状酸酐、内酰胺性质上与相应的开链化合物相似,它们不列入杂环化合物中讨论。

本章将着重讨论五元和六元具有芳香性的化合物。

你在学完本章后,应该能回答以下问题:1.你能写出一些常见杂环化合物的结构和名称吗?2.为什么吡咯有一定的酸性而吡啶却显碱性?3.为什么吡啶可以任意比例溶于水,同时又能溶于其它有机化溶剂?4.为什么吡啶既能起亲电取代反应又可进行亲核取代反应?5.你能写出青霉素、头孢菌素、咖啡因、尼群地平、雷米封等常用药物的结构及英文名称吗?13.1 杂环化合物的分类和命名法杂环化合物的分类是以杂环的骨架为基础,按环的形状分为单杂环和稠杂环,最有意义的是五元杂环和六元杂环,详见表13–1。

第15章 杂环化合物

第15章  杂环化合物

54
6
3
7
N2
81
异喹啉
isoquinoline
[命名] 音译名
(Imidazole)
H N
( Thiophene)
O
S
S
H
H
N
NN
N
N
吡咯 呋喃
(Pyrrole)(Furan)
噻吩 噻唑 咪唑 吡唑
( Thiazole)
(Pyrazole)
N N
N
吡啶Pyridine
喹啉Quinoline
异喹啉Isoquinoline
CH3COONO2
O
- 5~30oC
O NO2
(35%)
CH3COONO2
N H
OH-,5oC,Ac2O
N NO2 + H (83%)
NO2
N H
(7%)
当呋喃或吡咯环上连有吸电子基团时,环的稳定性
增 加,可用一般方法硝化。
O2N
N H
CCH3 O
HNO3 H2SO4
O2N
N H
CCH3 + O
N H
吡啶N
P
N
SP2
N 吡咯N
P
H
SP2
C
呋喃O(噻吩S)
P
P
SP2
SP2
“多π”芳杂环———六个电子由五个原子分配,每个碳 原子的电子云密度比苯环高,故亲电取代比苯容易。
H
O
S
N
2.33 10-30C.m 1.70 10-30C.m 6.03 10-30C.m
N原子
给电子共轭>> 吸电子诱导。
吡啶N:吸电子诱导+吸电子共轭

第十章杂环化合物

第十章杂环化合物
O
O O
O
H
H
H
H
O OH2
O HO
H O
O
OO
催化加氢:
H2, Ni
O
O THF
四氢呋喃(THF),bp 67℃ ,性质与乙醚相似, 是重要的化学溶剂。
2、糠醛
糠醛的化学性质与苯甲醛相似。可以发生交叉 羟醛缩合反应、Cannizzaro反应、Perkin反应。
dil.NaOH
O
CHO CH3CHO
mp26℃,bp 243℃。难溶于水,易溶于有机溶剂。
N
喹啉
N
异喹啉
来源: 煤焦油和骨油。
制备: Skraup合成法
CH2OH CHOH CH2OH
H2SO4 2H2O
CHO CH C6H5NH2
CH2
C6H5NO2
N
H2SO4
H2O
N H
H C O CH2
CH2 NH
H HO C
CH CH2 NH
五元杂环化合物亲电取代活性顺序: 吡咯>呋喃>噻吩>苯
三、六元杂环化合物的性质
六元杂环化合物发生亲电取代反应主要在β-位。 可以从反应中间体的稳定性给予说明。
α位
E
N
β位
H NE
H E
N
H N
E
H NE
H 不稳定共H振结 构式
E
E
N
N
1、吡啶
吡啶有特殊臭味的无
色液体,bp 115℃,可与
N
水、乙醇、乙醚等混溶。
N
PCl3
NO2 N
HNO3
N
H2SO4
O
NO2
N O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首页—>杂环化合物—>M2杂环化合物的结构与芳香性
杂环化合物的结构与芳香性
化教学目标:掌握杂环合物的结构与芳香性
教学重点:杂环化合物的结构
教学安排:G1,G2,M1—>M2;50min
一、五元单杂环化合物的结构和芳香性
五元单杂环如呋喃、噻吩、吡咯,在结构上,都符合Huckel 的关于芳香性的规则,即环上原子共平面,彼此以σ 键相连接,四个碳原子各有一个电子在p 轨道上,杂原子有两个电子在p 轨道上,这些p 轨道都垂直于σ 键所在的平面,相互重叠形成大π 键——闭和的共轭体系,π 电子数目为4n+2。

结构如图所示:
呋喃、噻吩和吡咯具有芳香性还可以从分子偶极矩看出。

在非芳香性杂环中只有诱导效应,而在相应的芳香杂环中除诱导效应外,还有共轭效应,并且两者的方向相反。

μ=5.77x10-30C·mμ=6.33x10-30C·mμ=5.27x10-30C·m
在呋喃、噻吩、吡咯杂环中,由于杂原子不同,显示的芳香性也不完全一致。

键长的平均化程度也不一样。

实测的键长数据如下:
典型的键长数据为:
C-C 0.154nm C-O 0.143nm C-S 0.182nm C-N 0.147nm
C=C 0.134nm C=O 0.122nm C=S 0.160nm C=N 0.128nm
由此可见:
1)五元杂环分子中的键长有一定的平均化,但不像苯那样完全平均化,因此芳香性较苯环
差,有某种程度的不饱和化合物的性质和环的不稳定性;
2)杂原子有给电子性,环上电子云密度比苯环上的高,因此比苯更容易发生亲电取代反应,取代主要发生在α 位,其活性相当于苯环上连接-OH、-SH、-NH
2;
3)由于杂原子的电负性为O>N>S,它们的给电子能力为S>N>O,所以环上电子云密度的大小顺序为:
它们的离域能分别为117KJ·mol-1,88KJ·mol-1,67kJ·mol-1也说明了这点。

如呋喃就表现出某些共轭二烯的性质,可以进行双烯加成反应,有介于芳香族及不饱和脂肪族化合物之间的某些特征。

4)综上所述,它们的芳香性由强到弱的顺序为:
核磁共振谱的测定表明,环上氢的化学位移都出现在低场,这也是它们具有芳香性的一个标志:
呋喃α-H δ=7.42β-H δ=6.37
噻吩α-H δ=7.30β-H δ=7.10
吡咯α-H δ=6.68 β-H δ=6.22
二、六元单杂环化合物的结构和芳香性
吡啶具有六元单杂环的典型结构和苯的结构很相似,是苯中的一个碳原子被氮原子代替,氮原子以sp2杂化轨道和两个相邻碳原子的sp2杂化轨道形成两个σ 键。

环上每个原子均有一个p 轨道垂直于环的平面,组成闭合的6电子大π 轨道,因此,吡啶环也有芳香性。

吡啶的结构如图所示:
在吡啶分子中,吡啶环的键长有较大程度的平均化。

在核磁共振谱中,环上氢的δ 值位于低场(α-H δ=8.50 β-H δ =6.98 γ-H δ=7.36)也是具有芳香性的标志。

吡啶的结构可由下列共振式表示:
氮原子上过多的负电荷表现在吡啶的偶极矩上,吡啶的偶极矩比六氢吡啶的偶极矩大,因为吡啶环上的共轭同诱导效应的方向一致都指向N 原子,与咯歌不同,吡啶氮上的一对未共用电子(sp2)不参与共轭,氮原子又有吸电子作用,使环上电子云密度比苯环上的低,尤
所以吡啶的亲电取代反应其α、γ 位更甚,类似于苯环上连接-NO
2等吸电子基团的作用。

比苯难,取代基主要进入β 位;但吡啶可以发生亲核取代反应,主要进入α 及γ 位
综合五元、六元杂环化合物的结构特征,虽然它们都具有芳香性,但环上电子云密度的大小顺序为
三、关键词
呋喃的结构,吡咯的结构,噻吩的结构,吡啶的结构。

相关文档
最新文档