运筹学 运输问题
运筹学运输问题个人总结(一)

运筹学运输问题个人总结(一)运筹学运输问题个人总结前言运筹学是一门应用数学学科,旨在通过数学模型和优化算法解决现实生活中的决策问题。
其中,运筹学运输问题是运筹学的基础领域之一,涉及到在给定条件下最佳化资源利用、降低成本、提高效率等方面的问题。
正文在个人学习运筹学运输问题的过程中,我总结了以下几个重要要点:1.运输网络规划:运输问题的首要任务是确定运输网络的结构和连接方式。
这包括确定供应商、仓库、需求点之间的连接关系,以及各个节点的运输容量和成本等。
通过合理规划运输网络,可以实现资源的合理分配和供需的良好匹配。
2.运输成本优化:在确定了运输网络之后,需要通过优化算法求解最佳的运输方案。
这涉及到在满足各种限制条件下,如最小化运输成本、最大化资源利用率等指标的优化问题。
常用的算法包括线性规划、整数规划、动态规划等。
3.路线优化和物流调度:针对具体的运输任务,需要进行路线优化和物流调度。
通过合理的路径规划和物流调度,可以降低运输时间和成本,提高物流效率。
常用的算法包括最短路径算法、最优传送门问题等。
4.风险管理和决策支持:在运输过程中,会存在各种不确定性和风险因素。
因此,需要通过风险管理和决策支持技术来应对不确定情况。
常见的方法包括风险评估、灵敏度分析、决策树等。
结尾通过学习和研究运筹学运输问题,我深刻认识到其在现代物流和供应链管理中的重要性。
合理的运输规划和优化能够帮助企业降低成本、提高效率,实现可持续发展。
通过不断学习和实践,我将不断提升自己在这一领域的能力,并在实践中探索更多有创新性和实用性的解决方案。
运筹学运输问题个人总结(续)路线优化和物流调度在路线优化和物流调度方面,我学到了以下几个重要的观点:•路线优化:通过使用最短路径算法、最优传送门问题等优化算法,可以找到最佳路径来减少运输时间和成本。
另外,还可以考虑交通拥堵等因素,选择避开高峰期的最佳路径。
•物流调度:对于大规模的运输网络,物流调度成为一个重要的挑战。
运筹学 04 运输问题

x23
2,12 2 a2’’=0 b3’=10 第2行
x13
16,10 10 a1’=6 b3’’=0 第3列
产量 16 10 22
新产量 新销量 划去
14
销量
8
14
12
14
西北角法步骤 运价表中找出西北角(左上角)运价cij 在该处确定运量xij=min(ai,bj) 计算剩余产量ai’=ai-xij和剩余销量bj’=bj-xij,则出现 (1)ai’=0,bj’≠0——划去第i行运价; (2)ai’≠0,bj’=0——划去第j列运价; (3)ai’=0,bj’=0——划去第i行或第j列运价 重复上述,直到获得(m+n-1)个运输数量
例2:某部门三个工厂生产同一产品的产量、四个销售点的 销量及单位运价如下表。求最低运输费的运输方案。
产地 A1 A2 A3 销量
B1 4 2 8 4
B2 12 10 5 3
B3 4 3 11 5
B4 11 9 6 6
产量 8 5 9
解答
由于总产量=8+5+9=22,总销量=4+3+5+6=18,总产量>总销 量,属于产大于销的产销不平衡运输问题。增加一个销地, 销量b5=22-18=4;运价为0。得到产销平衡表如左表。表上作 业法结果见右表。 产地 B1 B2 B3 A1 4 12 4 A2 2 10 3 A3 8 5 11 销量 4 3 5 B4 11 9 6 6 B5 产量 0 8 0 5 0 9 4 产地 B1 A1 1 A2 4 A3 10 销量 4 B2 3 3 B3 4 1 9 5 B4 0 6 6 B5 产量 4 8 1 5 5 9 4
设xij为从Ai运输到Bj的产品数量,若Σai=Σbj,则称为产销平衡 的运输规划问题,数学模型为 min f=c11x11+…+c1nx1n+c21x21+…+cmnxmn xi1+xi2+…+xin=ai (i=1,2,…,m) x1j+x2j+…+xmj=bj (j=1,2,…,n) xij≥0 (i=1,2,…,m;j=1,2,…,n)
运筹学 运输问题

运筹学运输问题
运筹学是一门研究如何最优地规划和管理资源以实现预定目标的学科。
在运筹学中,运输问题是其中一个重要的应用领域。
运输问题主要关注如何有效地分配有限的资源到不同的需求点,以最小化总体运输成本或最大化资源利用效率。
这些资源可以是货物、人员或其他物资。
运输问题通常涉及到多个供应地点和多个需求地点之间的物流调度。
运输问题的目标是找到一种最佳的调度方案,使得满足所有需求的同时,总运输成本达到最小。
为了解决运输问题,可以采用线性规划、网络流和启发式算法等方法。
在运输问题中,需要确定以下要素:
1. 供应地点:确定从哪些地点提供资源,例如仓库或生产基地。
2. 需求地点:确定资源需要分配到哪些地点,例如客户或销售点。
3. 运输量:确定每个供应地点与需求地点之间的运输量。
4. 运输成本:确定不同供应地点与需求地点之间运输的成本,可以
包括距离、时间、燃料消耗等因素。
通过数学建模和优化技术,可以对这些要素进行量化和分析,以求得最佳的资源分配方案。
这样可以降低运输成本、提高物流效率,并且满足不同地点的需求。
总而言之,运输问题是运筹学中的一个重要领域,涉及到如何有效地规划和管理资源的物流调度。
通过数学建模和优化方法,可以找到最优的资源分配方案,从而实现成本最小化和效率最大化。
运筹学运输问题案例

运筹学运输问题案例
以下是一个简单的运筹学运输问题的案例:
假设有一个公司需要将产品从三个工厂运输到四个销售点。
工厂和销售点的位置以及它们之间的运输成本如下:
工厂A到销售点1:10元
工厂A到销售点2:20元
工厂A到销售点3:30元
工厂A到销售点4:40元
工厂B到销售点1:20元
工厂B到销售点2:30元
工厂B到销售点3:10元
工厂B到销售点4:40元
工厂C到销售点1:30元
工厂C到销售点2:10元
工厂C到销售点3:20元
工厂C到销售点4:20元
公司希望找到一种运输策略,使得总运输成本最低。
可以使用运筹学中的运输模型来解决这个问题。
首先,我们需要确定每个工厂向每个销售点运输的货物数量。
为了最小化总成本,可以使用线性规划来求解这个问题。
在Excel或其他电子表格软件中,可以使用“Solver”插件来找到最优解。
根据最优解,我们可以计算出最低总运输成本。
例如,如果最优解是工厂A 向销售点1运输3个单位,向销售点2运输2个单位,向销售点3运输1
个单位,向销售点4运输0个单位;工厂B向销售点1运输2个单位,向
销售点2运输3个单位,向销售点3运输0个单位,向销售点4运输1个
单位;工厂C向销售点1运输1个单位,向销售点2运输0个单位,向销
售点3运输3个单位,向销售点4运输2个单位,那么最低总运输成本为150元。
运筹学运输问题-图文

销地 B1
B2
...
Bn
产量
产地
A1
X11 X12
...
X1n
a1
A2
X21 X22
...
X2n
a2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Am
Xm1 Xm2
...
Xmn
am
销量
b1
b2
...
bn
则运输问题的数学模型如下:
产销平衡表
销地 B1
B2
...
Bn
产量
产地
A1
a1
A2
a2
.
.
.
.
.
.
Am
am
销量
b1
b2
...
bn
单位运价表
销地
B1
B2
...
Bn
产地
A1
c11
c12
...
c1n
A2
c21
c22
...
c2n
.
.
.
.
.
.
.
.
.
.
.
.
Am
cm1
cm2
...
cmn
❖ 若总产量等于总销量(产销平衡),试确定总运费最省 的调运方案。
Table14 检验数表
销地
B1
B2
B3
B4
产地
A1
(典型例题)《运筹学》运输问题

xj0,yij0,zij0,(i=1,┈,4;j=1,┈,5)
2008/11
--22--
--《Ⅵ 产量
新购 1 第一天 M 第二天 M 第三天 M
第四天 M
1 1 1 1 0 5200
0.2 0.1 0.1 0.1 0 1000
2008/11
--21--
建立模型:
--《运筹学》 运输问题--
设 xj—第j天使用新毛巾的数量;yij—第i天送第j天使用快洗 餐巾的数量;zij—第i天送第j天使用慢洗餐巾的数量;
Min z=∑xj+∑∑0.2yij+∑∑0.1zij
第一天:x1=1000
需 第二天:x2+y12=700
求 约
m1
xij b j (j 1,2,...,n)
i1
x 0 (i 1,...,m,m 1; j 1,...,n) ij
2008/11
--16--
--《运筹学》 运输问题--
销>产问题单位运价表
产地销地 B1 B2 ┈
A1
C11 C12 ┈
A2
C21 C22 ┈
┊ ┆┊┈
Am Cm1 Cm2 ┈
2008/11
--8--
产销平衡表
--《运筹学》 运输问题--
单位运价表
B1 B2 B3 B4 产量
A1 (1) (2) 4 3 7 A2 3 (1) 1 (-1) 4 A3 (10) 6 (12) 3 9 销量 3 6 5 6
B1 B2 B3 B4 A1 3 11 3 10 A2 1 9 2 8 A3 7 4 10 5
Ⅰ Ⅱ
示。又如果生产出来的柴
Ⅲ
运筹学运输问题.

b K bK aL ,划掉运价表的第L行;反之,
'
若 x LK bK ,则令a L
的第k列。
'
aL bK ,划掉运价表
(2)在运价表剩余元素中重复(1),直
至运价表元素全部被划掉。
例:某糖果公司下设三个工厂,每日产量分别为:A1 — 7吨、A2 —4吨、A3 —9吨。该公司将这些产品运往四个 门市部,各门市部每日销量为:B1 —3吨、B2 —6吨、 B3 —5吨、B4 —6吨。各工厂到各门市部的单位运价如 下表,试确定最优的运输方案。
运输问题求解思路图
下面通过例子介绍它的计算步骤。
一、初始方案的给定
1、最小元素法★ 2、Vogel法★
1、最小元素法
基本思路是:就近供应,即从运价表中 最小运价开始确定调运量,然后次小,一直 到给出初始调运方案为止。
(1)找出运价表中最小元素 CLK ,确 定 xLK minaL , bK ,若 x LK a L,则令
x11 x21 xm1 b1 x x x b 12 22 m2 2 x1n x2n xmn bn xij 0(i 1,2,m; j 1,2,n)
min
Z cij xij
若总产量等于总销量(产销平衡),试确定总运费最省
的调运方案。
建 模 : 设 xij 为 从 产 地 Ai 运 往 销 地 Bj 的 物 资 数 量 (i=1,…m;j=1,…n。 销地 产地 A1 A2
. . .
B1 X11 X21
. . .
B2 X12 X22
. . .
... ... ...
. . .
《管理运筹学》02-7运输问题

通过将问题分解为多个子问题,并应用分支定 界法等算法,可以找到满足所有约束条件的整 数解,实现运输资源的合理配置。
04运Leabharlann 问题的实际案例物资调拨案例
总结词
物资调拨案例是运输问题中常见的一种,主要涉及如何优化物资从供应地到需 求地的调配。
02
动态运输问题需要考虑运输过 程中的不确定性,如交通拥堵 、天气变化等,需要建立动态 优化模型来应对这些变化。
03
解决动态运输问题需要采用实 时优化算法,根据实际情况不 断调整运输计划,以实现最优 的运输效果。
多式联运问题
1
多式联运是指将不同运输方式组合起来完成一个 完整的运输任务,需要考虑不同运输方式之间的 衔接和配合。
生产计划案例
总结词
生产计划案例主要关注如何根据市场需求和生产能力制定合理的生产计划。
详细描述
生产计划案例需要考虑市场需求、产品特性、生产成本、生产周期等因素。通过 优化生产计划,可以提高生产效率、降低生产成本,并确保产品按时交付给客户 。
05
运输问题的扩展研究
动态运输问题
01
动态运输问题是指运输需求随 时间变化而变化的运输问题, 需要考虑时间因素对运输计划 的影响。
2
多式联运问题需要考虑不同运输方式的成本、时 间、能力等因素,需要建立多目标优化模型来平 衡这些因素。
3
解决多式联运问题需要采用混合整数规划或遗传 算法等算法,以实现多目标优化的效果。
逆向物流问题
1
逆向物流是指对废旧物品进行回收、处 理和再利用的物流活动,需要考虑废旧 物品的回收、分类、处理和再利用等环 节。
的情况。如果存在这些问题,就需要进行调整,直到找到最优解为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检验数的求法,即用公式 ijciju,i vj
如 1 1 c 1 1 u 1 v 1 3 0 2 1 。
2020/7/12
24
位势法计算检验数:
检验数: ijcijCBB1Pij
cijYiP jcij(u1,..u.m , ,v1,.v.n.)Pij
把B1列划去。在剩下的3×3矩阵中再找最小运价,同
理可运费得单价其销他地 的基B本1 可行解B产地
A1
3
11
3
10
7
A2
1
9
2
8
4
A3
7
4
10
5
9
销量(吨)
3
6
5
6
2020/7/12
13
销地 产地
A1 A2 A3
销量
B1
3
31
7
3 0
B2
11 9
64
6 0
B3
43 12
10
ijcijuivj 0
非基变量 x的ij 检验数就可以用公式
求出。
ijcijui vj
2020/7/12
22
销地 产地
A1 A2 A3
销量
销地 产地
A1 A2 A3
vj
B1
B2
3
11
3
1
9
76
4
3
6
B3
B4
4
33
10
1
2
8
10 3
5
5
6
产量 7 4 9
B1
13 31 10 7
2
B2
2 11 19 64
2020/7/12
8
§2 运输问题的表上作业法
从第一节的运输问题的数学模型可知,运输问题实际上 也属于线性规划,但由于运输问题的特殊性(变量个数较多, 系数矩阵的特点),如果用单纯形表格方法迭代,计算量很 大。今天介绍的 “表上作业法”,是针对运输问题的特殊求解 方法,实质还是单纯形法,但减少了计算量。
销地 运费单价
B1
产地
A1
3 x11
A2
1 x21
A3
7 x31
销量(吨)
3
B2
11 x12 9 x22 4 x32
6
B3
3 x13 2 x23 10 x33
5
B4
10 x14 8 x24 5 x34
6
产量 (吨)
7 4 9
于是可建立如下的数学模型:
2020/7/12
4
目标函数: MinZ3x1111x123x1310x14
时,称其为产销平衡的运输问题,
否则产销不平衡。
2020/7/12
7
说明:从上述模型可以看出:
(1)这是一个线性规划的模型; (2)变量有m×n个; (3)约束条件有 m+n 个; (4)系数矩阵非常稀疏;系数矩阵的秩一般为(m+n-1),
而非m+n 。
若直接用单纯形法求解,显然单纯形表比较庞大,于是在 单纯形法的基础上创建了表上作业法求解运输问题这一特 殊的线性规划问题
4、重复第二、第三步,直至得到最优解。
2020/7/12
10
一、确定初始基本可行解:
对于有m个产地n个销地的产销平衡问题,有m个关于产量 的约束方程和n个关于销量的约束方程。表面上,共有m+n个 约束方程。
但由于产销平衡,其模型最多只有m+n-1个独立的约束方 程,所以运输问题实际上有m+n-1个基变量。在m×n的产销 平衡表上给出m+n-1个数字格,其相对应的调运量的值即为 基变量的值。
2020/7/12
11
销地 运费单价
B1
B2
B3
B4
产量 (吨)
产地
A1
3
11
3
10
7
A2
1
9
2
8
4
A3
7
4
10
5
9
销量(吨)
3
6
5
6
那么在该例中,应有 3+4-1=6个基变量。
2020/7/12
12
1.最小元素法
最小元素法的思想是就近供应,即对单位运价最小 的变量分配运输量。
在表上找到单位运价最小的x21,并使x21取尽可能大 的并值,即x21=3,把A1的产量改为1,B1的销量改为0,
销地 运费单价
B1
B2
B3
B4
产量 (吨)
产地
A1
3
11
3
10
7
A2
1
9
2
8
4
A3
7
4
10
5
9
销量(吨)
3
6
5
6
2020/7/12
16
销地 产地
A1
A2
A3
2 2 2
B1
3
31 76
5
B2
B3
B4
11
9
4
1 1 1 1
53
21
10
3 3 2 2
2 10 0 0 0 7
8 1 116
3 5 12
20
,运x23费增1 加2元; ,运费x减21 少11元
调整后,总运费增加:3-3+2-1=1元。
说明如果让 x11为基变量,运费就会增加,其增加值1作为
检验数,
的x11
2020/7/12
20
闭回路法计算检验数:就是对于代表非基变量的空格
(其调运量为零),把它的调运量调整为1,由于产销平衡的 要求,必须对这个空格的闭回路中的各顶点的调运量加上或减 少1。最后计算出由这些变化给整个运输方案的总运输费带来 的变化。以这个变化的数值,作为各空格(非基变量)的检验 数。
3、 从所有负检验数中选择最小者对应空格作为进基变量,
从此点出发作闭回路,确定调整量 ,奇点处增加 ,偶
点处减少 。
2020/7/12
30
例:用表上作业法,求解下面的 运输问题 :
销地 产地
1 2 3 销量
甲
3 2 4 3
乙
7 4 3 3
丙
6 3 8 2
丁
4 2 5 2
产量
5 2 3
解:用最小元素法确定初始基可行解,如下表所示:
其中 P ij(0 ,.1 .,0 ....1 .,0 ..,.0 ) .T
第i个分量
第m+j个分 量
又因为基变量的检验数为0,于是由(m+n-1)个基
变 量的检验数 cijui vj 0
可解出 (u1,..u.,m,v1,,.进.v.n而)计算其他非基变量的检
验数。
2020/7/12
25
三、改进运输方案的办法——闭回路调整法
5 4 0
B4
产量
3
7
10
30
4 10
8
3
9
5
30
6
20
3
0
20
表中填有数字的格对应于基变量(取值即为格中数字),而空格对应 的是非基变量(取值为零).
在求初始基本可行解时要注意的一个问题: 当我们取定xij的值之后,会出现Ai的产量与Bj的销量都改为零的情 况,这时只能划去Ai行或Bj列,但不能同时划去Ai行与Bj列。
2020/7/12
31
销地
甲
乙
丙
丁
产量
产地
1
3
7
6
4 5 (0)
3
0
2
0
2
2
4
3
2 2 (-2)
2
3
4
3
8
5 3 (-4)
3
销量 3 (3) 3 (7) 2 (6) 2 (4)
地的运费单价如表所示。应如何调运可使运费最小?
销地 运费单价
B1
B2
B3
B4
产量 (吨)
产地
A1
3
11
3
10
7
A2
1
9
2
8
4
A3
7
销量(吨)
3
4
10
5
9
6
5
6
2020/7/12
3
解:从表中可知:总产量 = 总销量。这是一个产销平衡的
运输问题。假设 表x i示j 从产地 运往i销地 的产j
品数量, i1 ,2 ,3 ; 建j 立1 ,2 如,3 下,4 表. 格:
因为任意非基向量均可表示为基向量的唯一线性组 合,因此对于任意空格都能够找到、并且只能找到 唯一的一条闭回路。
2020/7/12
18
销地 产地
A1 A2 A3
销量
B1
B2
3
11
3
1
9
76
4
3
6
B3
B4
4
33
10
1
2
8
10 3
5
5
6
产量 7 4 9
销地
产地
B1
A1
(+)1 3
A2
(-) 3 1
A3
76
销量
3
B2
11 9 4
6
B3
B4
4 (-)3 3
10
1 (+)2
8
10 3
5
5
6
产量 7 4 9
销地
产地
B1