典型系统的时域响应和稳定性分析
实验一系统响应及系统稳定性实验报告精修订

实验一系统响应及系统稳定性实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]一、实验目的(1)掌握求系统响应的方法(2)掌握时域离散系统的时域特性(3)分析、观察及检验系统的稳定性二、实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应。
已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。
系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
二、实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序。
程序中要有绘制信号波形的功能。
程序代码xn=[ones(1,32)];hn=[0.2 0.2 0.2 0.2 0.2];yn=conv(hn,xn);n=0:length(yn)-1;subplot(2,2,1);stem(n,yn,'.')title('(a)y(n)波形');xlabel('n');ylabel('y(n)')输出波形(2)给定一个低通滤波器的差分方程为输入信号)()(81nRnx=①分别求出系统对)()(81nRnx=和)()(2nunx=的响应序列,并画出其波形。
系统响应及系统稳定性

文电072-1班200790511115 张雪倩实验一:系统响应及系统稳定性实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入型号,可以由差分方程、单位脉冲响应或系统函数求出系统对该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。
也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变特性、因果性和稳定性。
重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应应满足绝对可和的条件。
系统的稳定性要求由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出都是有界输出,或者检查系统的单位脉冲响应应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。
系统的稳态输出是指当n时,系统的输出。
如果系统稳定,信号加人系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
注意在以下的试验中均假设系统的初始状态为零。
实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子序列,用filter函数或conv 函数求解系统输出响应的主程序。
程序中要有绘制信号波形的功能。
(2)给定一个低通滤波器的差分方程为输入信号①分别求出的系统响应,并画出其波形。
②求出系统的单位脉冲响应,画出其波形。
在MA TLAB的M文件中编写程序并得到图形:a=[1,-0.9];b=[0.05,0.05];x1n=[ones(1,8),zeros(1,50)];x2n=[ones(1,128)];y1n=filter(b,a,x1n);figure(1);stem(y1n,'.');y2n=filter(b,a,x2n);figure(12);stem(y2n,'.');hn=impz(b,a,64);figure(13);stem(hn,'.');hn=impz(b,a,64);figure(1);stem(hn,'.');(3)给定系统的的单位脉冲响应为用线性卷积法求分别对系统的输出响应,并画出波形。
自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD-ACC+教学实验系统一套。
三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。
图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中由图1-2,可以确地1-1中的参数。
T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。
图1-3(2) 模拟电路图:如图1-4所示。
图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。
典型系统的时域响应和稳定性分析

信息科学与工程学院本科生实验报告实验名称1.2 典型系统的时域响应和稳预定时间实验时间姓名学号授课教师实验台号专业班级.1.2 典型系统的时域响应和稳定性分析一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。
二、原理简述1.典型的二阶系统稳定性分析(1) 理论分析:系统开环传递函数为:G(S) = ;开环增益 K= K1/To(2) 实验内容:先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟To=1s, T1=0.2s, K1=200/R系统闭环传递函数为:W(S) ==其中自然振荡角频率: = = 10 ;阻尼比:。
2. 典型的三阶系统稳定性分析(1)理论分析系统的开环传函为:G(S)H(S) = (其中K=500/R),系统的特征方程为:1+G(S)H(S) = 0 → +12+20S+20K = 0(2)实验内容实验前由 Routh 判断得 Routh 行列式为:1 2012 20K(-5K/3)+20 020K 0(-5/3)K+20>0为了保证系统稳定,第一列各值应为正数,所以有 20K>0得: 0<K<12 → R>41.7KΩ系统稳定K=12 → R=41.7KΩ系统临界稳定K>12 → R<41.7KΩ系统不稳定三、仪器设备PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。
四、内容步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个设臵了锁零场效应管,所以运放具有锁零功能。
将开关设在“方波”档,分别电位器,使得“OUT”端输出的方波幅值为 1V,周期为 10s 左右。
2. 典型二阶系统瞬态性能指标的测试(1) 按模拟电路图接线,将 1 中的方波信号接至输入端,取R=10KΩ。
自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告典型试验系统的时域响应和稳定性分析1.目的要求1。
研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。
2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。
3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。
2.原则1简介。
典型二阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:开环增益2。
典型三阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:系统的特征方程为:三个,一台仪表电脑,TD-1.目的要求1。
研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。
2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。
3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。
2.原则1简介。
典型二阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:开环增益2。
典型三阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:系统的特征方程为:三、一台仪表微机,TD:首先计算临界阻尼、欠阻尼和过阻尼时电阻R的理论值,然后将理论值应用于模拟电路,观察二阶系统的动态性能和稳定性,这应与理论分析基本一致。
系统的闭环传递函数为:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。
由于每个运算放大器单元配备有零锁定场效应晶体管,所以运算放大器具有零锁定功能。
将开关置于“方波”位置,分别调节调幅和调频电位器,使“输出”端的方波幅度输出为1V,周期约为10s。
2.典型二阶系统瞬态性能指标测试(1)根据模拟电路图1.2-系统闭环传递函数:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。
系统函数零极点时域特性和稳定性

若 pi为k阶极点,则 pi Ki1tk1 Ki2tk2
Ki(k1)t Kik e pit
②典型情况
ⅰ) pi =0(一阶)
j
h(t)
0
0t
1 h(t) u(t) s
pi =0 (二阶)
j
h(t)
0
0t
1 s2
h(t)
tu(t)
ⅱ) pi<0(实一阶)
j
a
0
h(t)
0t
1 eatu(t) sa
自由响应 齐次解
零输入响应 齐次解的一部分
强迫响应 特解
零状态响应 齐次解的一部分+特解
2.Ki , Kk 均由 pi , pk共同作用,即 自由响应:形式只由H(s)决定,幅度相位由H(s), E(s)共同决定 强迫响应:形式只由E(s)决定,幅度相位由H(s), E(s)共同决定
3.固有频率(自由频率):系统行列式(系统特征方程)的根, 反映全部自由响应的形式
④∞处: 分母次数 > 分子次数则为零点,阶次为分母次数减分子次数 分母次数 < 分子次数则为极点,阶次为分子次数减分母次数
注意:零、极点个数相同
⑤零极点图中:×表示极点;○表示零点
[例1]: ①
H
(s)
s[(s 1)2 (s 1)2 (s2
1] 4)
解:
极点:s = -1 (二阶) s = j2 (一阶) s = -j2(一阶)
pi<0(实二阶)
j
a
0
h(t)
0t
(s
1 a)2
teatu(t)
起始增加,最终收敛
ⅲ) pi>0(实一阶)
j
h(t)
中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告实验介绍:本实验以中南大学典型系统为研究对象,通过构建数学模型和实际建模结果,分析系统的时域响应和稳定性,以及初步探讨系统的性能和优化方法。
实验步骤:1、对中南大学典型系统进行数学建模,并得到系统的传递函数。
2、通过Matlab对系统的传递函数进行分析,得到系统的时域响应。
3、分析系统特征方程的根,判断系统的稳定性。
4、探讨系统的性能指标,并初步探讨系统的优化方法。
实验结果:1、数学模型及传递函数:根据中南大学典型系统的构成,我们可以得到其传递函数为:$$G(s) = \frac{Y(s)}{X(s)}=\frac{K}{s(T_1s+1)(T_2s+1)}$$2、时域响应分析:阶跃响应脉冲响应可以看出,在系统输入为阶跃信号时,系统的响应随着时间的增加逐渐趋于稳定;在系统输入为脉冲信号时,系统的响应在一定时间范围内会有一个稳定的振荡。
3、稳定性分析:我们根据系统的特征方程$$1+G(s)=0$$得到特征方程为:$$s^3+T_1T_2s^2+(T_1+T_2)s+K=0$$我们通过Matlab计算特征方程的根,得到系统的特征根分别为:$-0.0327\pm0.6480j$和$-2.4341$。
根据根的位置,我们可以判断系统的稳定性。
由于系统的根都在左半平面,因此系统是稳定的。
4、性能指标和优化方法:本实验中,我们主要关注系统的稳定性和响应速度等性能指标。
在实际应用中,我们可以通过调整系统控制参数,如增益$K$和时间常数$T_1$和$T_2$等,来优化系统的性能。
结论:本实验通过对中南大学典型系统进行数学建模和实际响应分析,得到了系统的传递函数、阶跃响应和脉冲响应等数学模型,并根据特征方程的根判断了系统的稳定性。
在探讨系统性能指标和优化方法的基础上,我们可以进一步探究系统的优化方案,并为实际控制应用提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称典型系统的时域响应和稳定性分析
系专业班
姓名学号授课老师
预定时间实验时间实验台号
一、目的要求
1、研究二阶系统的特征量(ξ,ωn)对过渡过程的影响。
2、研究二阶系统的三种阻尼比下的响应曲线及系统的稳定性。
3、熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、原理简述
1、典型的二阶系统稳定性分析
系统开环传递函数为:,
开环增益:。
系统的闭环传递函数为:
其中自然震荡角频率:;阻尼比:。
2、典型的三阶系统稳定性分析
系统的开环传递函数为:(其中
),
系统的特征方程为:。
三、仪器设备
PC机一台,TD-ACC+(或TD-ACS)教学实验系统一套。
四、线路视图
1、典型的二阶系统稳定性分析
结构框图:
模拟电路图:
2、典型的三阶系统稳定性分析
结构框图:
模拟电路图:
五、内容步骤
1、将信号源的“ST”端插针与“S”端插针用“短路块”短接,由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。
将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10S左右。
2、典型二阶系统瞬态性能指标的测试
⑴先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合在
实验中,。
⑵按模拟电路图接线,将1中的方波信号接至输入端,取R=10K;
⑶用示波器观察系统响应C(t),测量并记录超调Mp、峰值时间tp、调节时间ts。
⑷分别按R=50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标Mp、tp、ts,及系统的稳定性。
并将测量值和计算值进行比较
3、典型三阶系统的性能
⑴实验前有Routh判断得Routh行列式为:
所以,0<K<12 => R>41.7KΩ系统稳定
K=12 => R=41.7KΩ系统临界稳定
K>12 => R<41.7KΩ系统不稳定
⑵按模拟电路图接线,将1中的方波信号接至输入端,取R=30K。
⑶观察系统的响应曲线,并记录波形。
⑷减小开环增益,观察响应曲线,并将实验结果填入表中
六、数据处理
1、典型的二阶系统
R=10K波形:
R=50K波形:
R=160K波形:
R=200K波形:
数据表格:
参 数 项 目
R
(K
Ω) K ωn ζ
C (tp )
C (∞) Mp (%) tp (s) ts (s) 响应情况
理论值
测量值
理论值
测量值
理
论值
测量值
0<ζ<1 欠阻尼
10 20
10
1/4
1.3 1
44 42
0.32 0.37 1.6 1.4 衰
减
震
荡
50
4
2√5
√5/4
1.2
1
12
11
0.83 0.86 1.6 1.6 ζ=1 临界 阻尼 160 5/4 2.5 1 无 1 无
无 1.9 2.1 单
调指数
ζ>1 过阻尼
200 1 √5 √5/2 无 1 无
无 2.9 3.5 单
调指数
2、典型三阶系统
R=30K 的波形:
R=41.7K的波形:
R=100K 的波形:
数据表格:
R(KΩ)开环增益K 稳定性
30.9 16.4 不稳定发散
40.1 11 临界稳定等幅震荡101.9 5 稳定衰减收敛
七、分析讨论
在二阶系统中系统出现衰减震荡响应,最终系统可以打造最终的稳定响应。
在临界阻尼与过阻尼的情况下,系统出现单调指数响应系统最终达不到理想的稳定情况。
在三阶系统中R<41.7k时系统不稳定发散,当R=41.7k系统临界稳定等幅振荡,R>41.7k系统稳定衰减收敛。