水泥基复合材料

合集下载

水泥基复合材料的制备及应用研究

水泥基复合材料的制备及应用研究

水泥基复合材料的制备及应用研究水泥基复合材料是一种由水泥、细骨料和一种或多种纤维增强材料组成的复合材料。

它具有较高的强度、耐久性和抗裂性能,被广泛用于建筑、道路、桥梁等工程结构中。

本文将探讨水泥基复合材料的制备方法及其在各个领域中的应用。

首先,水泥基复合材料的制备需要选择合适的原料。

水泥是主要成分,常见的有普通硅酸盐水泥和高性能水泥,细骨料可以使用砂石、河砂等,而纤维增强材料可以选择钢纤维、玻璃纤维、碳纤维等。

这些原料需要经过混合、搅拌、均匀分散等步骤,制备成均匀的复合材料糊状物。

其次,水泥基复合材料可以通过不同的加工方法得到不同形式的制品。

最常见的是浇注成型,即将复合材料糊状物倒入模具中,经过充实和振实等处理后,使其固化成所需形状。

还可以采用挤出法、喷涂法等技术制备出管材、板材等特殊形状的制品。

水泥基复合材料在建筑领域中有着广泛的应用。

首先,在高层建筑中可以使用水泥基复合材料制作轻质隔墙板,提高结构的抗震性能。

其次,它也可以用来制作防水层、隔热层等功能性材料,提高建筑的使用寿命。

此外,水泥基复合材料还可以用于修补和增强老化、破损的混凝土结构,延长其使用寿命。

在道路和桥梁领域中,水泥基复合材料也有着广泛应用。

它可以用于制作高性能混凝土路面,提高道路的耐久性和承载能力。

同时,它还可以用于制作桥梁的预应力构件、减振设备等,增强桥梁的结构强度和抗震性能。

总之,水泥基复合材料具有广泛的应用前景。

通过选择不同的原料和加工方法,可以制备出形状各异的复合材料制品。

在建筑、道路、桥梁等领域中,它能够提高结构的强度和耐久性,延长使用寿命。

随着技术的不断发展,水泥基复合材料的制备方法和应用领域也将进一步推广和完善。

复合材料-第七章水泥基复合材料

复合材料-第七章水泥基复合材料

1.3 制备高强度水泥混凝土的技术路线
优质的水泥
(低水灰比)
浇筑捣实
优质的骨料 高流动性 (高效率)
养护
(温、湿度)
硬化混凝土
超细矿粉
掺合料 高效减水剂
坍落度损 失的控制
强度 耐久性
1.4 高强混凝土配合比设计原则
(1)水灰比宜小于0.35,对于80~100MPa混凝 土宜小于0.30,对于100MPa以上混凝土宜小于 0.26,更高强度时取0.22左右。
玻璃纤维增强水泥可做雕塑、门窗、花盆等
3.聚合物水泥基复合材料的成型
(1)、聚合物浸渍混凝土的制备方法
使混凝土中空隙和裂缝被填充,是原来的多孔体系 变成较密实的整体,提高了强度和各项性能。
聚合物浸渍混凝土
聚合物浸渍混凝土由于良好的力学性能、 耐久性及抗腐蚀能力,主要用于受力的混 凝土及钢筋混凝土结构构件。
按照增强体的种类分类:
混凝土、 纤维增强水泥基复合材料、 聚合物水泥基复合材料。
1、混凝土
混凝土是以水泥为基体,加入水、粗细骨料、 钢筋,按适当比例拌和均匀,经搅拌振捣成 型,在一定条件下养护而成的复合材料;
原料丰富,价格低廉,生产工艺简单;
抗压强度高,耐久性好,强度等级范围宽;
使用范围广泛,如土木工程、造船业、机械 工业、海洋的开发、地热工程等。
(2)、聚合物混凝土的制备方法
聚合物混凝土(PC) 以聚合物(或单体)全部代 替水泥,作为胶结材料的聚合物混凝土。
常用一种或几种有机物及其固化剂、天然或人工 集料(石英粉、辉绿岩粉等)混合、成型、固化而 成。 聚合物在此种混凝土中的含量为重量的8~25%。 与水泥混凝土相比,它具有快硬、高强和显著改善 抗渗、耐蚀、耐磨、抗冻融以及粘结等性能。

水泥基复合材料

水泥基复合材料

《水泥基复合材料》总结无机非09-1班赵学伟23水泥基复合材料是以硅酸盐水泥为基体,以耐碱玻璃纤维、通用合成纤维、各种陶瓷纤维、碳和芳纶等高性能纤维、金属丝以及天然植物纤维和矿物纤维为增强体,加入填料、化学助剂和水经复合工艺构成的复合材料。

它比一般混凝土性能有所提高。

以短切的耐碱玻璃纤维约3%~10%含量的复合材料为例,其密度为1600~2500kg/m3,抗冲强度8.0~24.5N·mm/mm2,压缩强度48~83MPa,热膨胀系数为(11~16)×10-6K-1。

性能随所用原材料、配比、工艺和养护条件而异。

水泥基复合材料基本上用于制造建筑构件,如内、外墙板、天花板等。

主要分为混凝土,纤维增强水泥基复合材料及聚合物改性混凝土三大类。

今天主要介绍下纤维增强水泥基复合材料和聚合物改性混凝土材料。

一纤维增强水泥基复合材料国际上对碳纤维、聚丙烯腈纤维混凝土结构的研究日趋活跃,有关论文明显增多。

由于碳纤维是高科技纤维中发展最快的品种之一,它具有高强度、高弹模、高抗腐蚀的众多优点,因此把碳纤维应用于土木工程及建筑工程是许多科技人员长久的梦想。

决定碳纤维能否推广使用于土木工程的关键是其价格。

随着工业技术的进步,最近几年碳纤维价格逐年下降,为推广使用提供了条件。

国外将高性能纤维材料用于土木工程的领域己非常广阔,主要有以下几个途径:1)将短碳纤维、聚丙烯腈纤维加入新混凝土中,制成高性能纤维混凝土新结构,现已有一定的工程实例,目前主要用于薄壳结构、耐腐蚀结构、喷射混凝土及道路工程等。

2)将碳纤维长丝制成棒材,在新混凝土结构中替代钢筋或预应力钢筋,用于新建混凝土结构,主要用于海洋工程、大跨度桥梁及需电磁透过的工程结构,或将棒材用于结构加固,国外的工程实例已较多。

3)将碳纤维加工成束状或绳状,用于大跨度桥梁的拉素或大跨度空间结构的悬索、拉索等。

4)将碳纤维棒材与混凝土一起制成预制混凝土梁、板、屋架,或用纤维棒制作网架等,这些新结构具有质量轻、强度高和耐腐蚀等优点。

水泥基复合材料的应用与研究

水泥基复合材料的应用与研究

水泥基复合材料的应用与研究一、引言水泥基复合材料是一种新型的建筑材料,具有优良的力学性能、耐久性和耐化学腐蚀性能,因此在建筑、道路、桥梁等领域得到了广泛的应用。

本文将从材料特性、应用场景、研究进展等方面综述水泥基复合材料的应用与研究。

二、材料特性1.力学性能水泥基复合材料具有较高的抗拉、抗压、抗弯强度,可用于制作大型的预制构件,如梁、板等。

同时,该材料的抗裂性能、韧性等也得到了提升,可用于加固和修复混凝土结构。

2.耐久性水泥基复合材料具有较好的耐久性,能够抵御氯离子、硫酸盐等化学腐蚀,同时其抗渗性能也较好,可用于制作防水材料。

3.可塑性水泥基复合材料的可塑性较好,可根据需要进行加工成型,如喷涂、浇铸等,同时也能够与其他材料进行复合使用。

三、应用场景1.建筑领域水泥基复合材料能够制作各种形状的构件,如梁、板、柱等,可用于建筑的主体结构。

同时,由于该材料的耐久性较好,可用于制作防水材料、加固材料等。

2.道路领域水泥基复合材料可用于道路的路面、边坡等部位的加固和修复,能够提高道路的承载能力和使用寿命。

3.桥梁领域水泥基复合材料的力学性能和耐久性能都较好,可以用于桥梁的建造和修复,提高桥梁的承载能力和使用寿命。

四、研究进展1.配合比设计水泥基复合材料的配合比对其力学性能和耐久性能具有重要影响,因此研究者们通过实验和理论计算,探索出了一些优化的配合比设计方法。

2.增强材料的选择水泥基复合材料的增强材料一般选择纤维材料、微粒材料、网格材料等,不同的增强材料对材料的力学性能和耐久性能有不同的影响,因此研究者们对不同增强材料进行了深入研究。

3.加工工艺水泥基复合材料的加工工艺对其性能和应用有重要影响,研究者们探索出了一些优化的加工工艺和施工方法,如喷涂、浇铸等。

五、结论水泥基复合材料具有优良的力学性能、耐久性和耐化学腐蚀性能,广泛应用于建筑、道路、桥梁等领域。

未来研究应继续深入探索其配合比设计、增强材料选择和加工工艺等方面,以提高其性能和应用效果。

水泥基复合材料的力学与结构性能分析

水泥基复合材料的力学与结构性能分析

水泥基复合材料的力学与结构性能分析随着科技的不断发展,新材料的出现不断挑战着传统材料的地位。

在建筑行业中,水泥基复合材料因其优异的力学和结构性能得到不少关注。

本文将从不同角度来分析水泥基复合材料的力学和结构性能。

一、水泥基复合材料的种类和成分水泥基复合材料是一种由无机材料和有机材料,包括水泥、纤维、钢筋、高分子材料等构成的新型复合材料。

水泥基复合材料的成分和种类十分复杂,以下是一些常见的水泥基复合材料及其组成:1. 钢筋混凝土:由水泥砂浆和钢筋构成,钢筋是主要受力构件,水泥砂浆是钢筋保护层和传递荷载的介质。

2. 玻璃纤维增强水泥基复合材料:由水泥、玻璃纤维、添加剂等构成。

这种材料具有较好的抗拉强度和耐久性。

3. 碳纤维增强水泥基复合材料:由水泥、碳纤维、添加剂等组成,具有优异的抗拉性能和高温稳定性。

二、水泥基复合材料的力学性能分析在建筑行业中,材料的力学性能至关重要。

水泥基复合材料具有一些卓越的力学性能,如抗拉强度、抗压强度、弹性模量等。

1. 抗拉强度水泥基复合材料的抗拉强度一般较低,但加入纤维增强剂可以有效提高材料的抗拉性能。

碳纤维增强剂是目前较为常用的增强材料,研究表明,使用碳纤维增强剂可以有效提高水泥基复合材料的抗拉强度,提高其耐久性。

2. 抗压强度水泥基复合材料的抗压强度是其重要的力学性能之一,它主要取决于水泥的品种、浆料的掺合比和固化方式等因素。

钢筋混凝土具有很高的抗压强度,大约为50~100MPa,而纤维增强水泥基复合材料的抗压强度一般在20~40MPa之间。

3. 弹性模量弹性模量是评价材料强度和刚度的指标之一,它反映了材料受力时的变形能力。

水泥基复合材料的弹性模量一般在30~50GPa之间,而高性能纤维增强水泥基复合材料的弹性模量一般可达到100GPa。

三、水泥基复合材料的结构性能分析在建筑行业中,材料的结构性能是十分关键的。

水泥基复合材料的结构性能需考虑其耐久性、抗冻性、耐久性和防水性。

水泥基复合材料

水泥基复合材料

水泥基复合材料一:凡是细磨成粉末状,加入适量水后成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石等散粒或纤维材料牢固的交接在一起的水硬性胶凝材料,通称为水泥。

由于水泥具有高抗压强度、低廉的价格、使用方便、耐久性良好等优点,故水泥是目前地球上使用最广泛、最大宗的结构材料,但其脆性是制约水泥无限应用的致命弱点,如何通过复合改性提高水泥的韧性成为水泥基复合材料研究的重要方向之一。

二:(1)材料背景开始利用材料复合的方式来解决水泥基材料的脆性问题,钢筋混凝土就是很好的例子,钢筋混凝土已具备现代材料复合工艺的雏形。

大体看来,水泥基复合材料的增韧措施主要可以分为三大类:一是对水泥自身进行调节来增强水泥基体的韧性,这类方法主要有加入聚合物,制得聚合物水泥,调节水泥的矿物组成,减少脆性矿相含量,加入外加剂来改善界面、提高抗拉强度等;另一类是引入高抗拉强度的增强体,如引入钢筋、秸杆、纤维等,这类方法能显著改善水泥基复合材料的韧性,这也是目前研究的热点;还有一类就是通过适当工艺处理来增强水泥基复合材料的韧性,用的较多的就是预应力法;各种方法相互渗透,在实际工程中往往是多种方法同时使用以达到最佳的增韧效果。

(2)加工工艺1 喷射法是目前最常用的成型方法,将水泥、砂子、水搅拌成砂浆,与耐碱短切玻璃纤维短时间混合后形成预混料,振动模浇铸成型后养护。

[2] 喷射脱水法:砂浆和玻璃纤维同时往模具上喷射的机理与直接喷射法相同。

但它是把玻璃纤维增强水泥喷射到一个常有减压装置的开孔台上,开孔台铺有滤布。

喷射完后进行减压,通过滤纸或滤布,把玻璃纤维增强水泥的剩余水分脱掉。

这种方法是成型水灰比低的高强度板状玻璃纤维增强水泥的方法。

[3] 预混料浇铸法:水泥、砂子、水、外加剂和切成适当长度的耐碱玻璃纤维(短切纤维)在搅拌机中混合成预混料,然后不断地注入到振动着的模具里进行成型。

[4] 压力法:预混料注入到模具里后,加压除去剩余水分,即使脱模,可以提高生产率,并能获得良好的表面尺寸精度。

水泥基复合材料的性能改善与应用研究

水泥基复合材料的性能改善与应用研究

水泥基复合材料的性能改善与应用研究第一章水泥基复合材料的基本介绍水泥基复合材料是以水泥为主要基础材料,通过添加其他材料来改善其性能的一种材料。

由于水泥基材料具有较强的抗压性能和化学稳定性,因此在建筑和工程领域得到了广泛的应用。

然而,水泥基材料本身存在一些问题,如低拉伸强度、开裂等,为了进一步提高水泥基材料的性能,人们开始研究水泥基复合材料并尝试应用。

第二章水泥基复合材料的性能改善方法2.1 添加纤维增强剂纤维增强剂是一种常用的方法来改善水泥基复合材料的性能。

添加纤维可以增加材料的拉伸强度和韧性,减少开裂和断裂的风险。

常见的纤维增强剂包括玻璃纤维、碳纤维和聚丙烯纤维等。

2.2 掺加外加剂外加剂是另一种常用的改善水泥基复合材料性能的方法。

外加剂可以改变材料的物理和化学性质,提高其抗裂性、耐久性、粘结性等。

常见的外加剂包括增强剂、减水剂、粘结剂等。

2.3 混合使用不同类型水泥混合使用不同类型的水泥也是改善水泥基复合材料性能的一种方法。

不同类型的水泥具有不同的特性,可以互补优缺点,提高整体性能。

例如,混合使用硅酸盐水泥和硫铝酸盐水泥可以改善水泥基材料的抗硫酸侵蚀性能。

第三章水泥基复合材料的应用研究3.1 建筑领域应用水泥基复合材料在建筑领域有广泛的应用。

例如,用纤维增强材料混凝土可以制作出更加坚固耐用的建筑结构,如桥梁、隧道等。

此外,外加剂的应用也能提高建筑材料的抗震性能、防水性能等。

3.2 能源领域应用水泥基复合材料在能源领域也有应用研究。

例如,将太阳能电池板与水泥基材料结合,可以制作出太阳能板路面,将太阳能转化为电能,为城市提供绿色能源。

3.3 环境保护领域应用水泥基复合材料在环境保护领域也有潜在的应用。

例如,使用具有吸附性能的材料制作水泥基复合材料,可以用于清除水中的有害物质,净化水质。

第四章水泥基复合材料的未来发展趋势随着科技的不断发展,水泥基复合材料将在未来得到进一步的改进和应用。

未来的水泥基复合材料可能会更加环保、耐久和多功能。

水泥基复合材料结构及性能评估

水泥基复合材料结构及性能评估

水泥基复合材料结构及性能评估近年来,随着工程建设的不断发展和人们对建筑材料品质要求的提高,水泥基复合材料正逐渐成为建筑材料的主流。

水泥基复合材料具有密实性强、耐久性高以及使用寿命长等优点,广泛应用于建筑、道路、桥梁等领域。

因此,对水泥基复合材料进行结构及性能评估成为关键。

一、水泥基复合材料的结构水泥基复合材料是以水泥为基础材料,通过添加不同的掺合料和增强材料而形成的复合材料。

它可以分为无机水泥基复合材料和有机水泥基复合材料两类。

无机水泥基复合材料主要是指水泥、矿渣、粉煤灰等无机物质的共同粉碎,并在适当的比例下加水,通过合理的施工工艺而形成的一种复合材料。

它具有强度高、抗渗性强、热稳定性好等优点。

有机水泥基复合材料则是由水泥和有机聚合物或有机纤维增强材料组成。

这种材料具有高强度、耐久性好等特点,同时可大幅减少砌体厚度。

因此,在一些建筑用途上,有机水泥基复合材料使用范围较为广泛。

二、水泥基复合材料的性能评估水泥基复合材料的性能评估主要包括强度、抗渗性、导热系数等多个方面。

1. 强度评估水泥基复合材料的强度评估是评判其使用性能的关键之一。

强度包括抗压强度、抗拉强度等指标。

抗压强度是指材料在受到垂直荷载作用下的反抗能力。

一般来说,抗压强度越高,则耐久性越好,该材料在使用过程中能够更加稳定地承受荷载。

而抗拉强度则代表了材料在受到拉力作用下的反抗能力。

若使用环境中存在拉伸应力,则需要着重对抗拉强度进行测试。

2. 抗渗性评估对于需要长期受到水、潮湿等因素影响的建筑物来说,为了保证建筑物的稳定性,选择具有较好抗渗性的水泥基复合材料十分关键。

抗渗性一般包含埋深渗透试验、硬度测量等多个方面,用于评价材料的渗透性能。

3. 导热系数评估水泥基复合材料在使用场合中,可能会受到温度影响。

而高导热系数的材料则难以在高温环境中长期使用。

因此,在材料性能评估中,鉴定其导热系数也是必不可少的一项指标。

三、结论综上所述,水泥基复合材料的结构及性能评估是十分重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泥基复合材料
集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
水泥基复合材料
1. 混凝土概述
水泥基复合材料指以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体与其他各种无机、金属、有机材料组合而得到的具有新性能的材料。

混凝土材料发生了几次重大变革,其中三次最为突出。

1. 19世纪中叶法国首先出现了钢筋混凝土
2. 1928年法国发明了预应力钢筋混凝土
3.近30年来聚合物复合混凝土及混凝土外加剂的出现
混凝土材料按胶结材料分类:无机胶结材料混凝土,有机胶结材料混凝土,无机与有机复合胶结材料混凝土。

按容重分类:特重混凝土,重混凝土,轻混凝土,特轻混凝土。

按混凝土结构分类:普通结构混凝土,细粒混凝土,大孔混凝土,多孔混凝土。

按用途分类结构用混凝土,隔热混凝土,装饰混凝土,耐酸混凝土等。

混凝土的性质:混凝土混合料必须具有良好的和易性以保证获得良好的浇灌质量。

①流动性:指混合料在本身自重或在机械振捣的外力作用下产生流动或坍落能均匀密实地填满模板的性质。

②黏聚性:指混合料具有一定的黏聚力在运输或浇筑过程中不致出现分层离析使混凝土保持整体均匀的性能。

③保水性:指混合料在施工过程中具有保水能力保水性好的混料不易产生严重泌水现象。

2. 高性能混凝土
混凝土:由胶结材料水泥和粗细集料石子和沙按适当比例拌和均匀经搅拌振捣成型在一定条件下养护而成的复合材料。

高强混凝土(high-strength concrete,HSC)与高性能混凝土(high-performance concrete)的首要区别是后者强调耐久性。

高性能混凝土不仅要具备高的强度而且应具备高密实性和高体积稳定性。

高性能混凝土在微观结构方面的特点:由于存在大量未水化的水泥颗粒浆体所占比例降低浆料的总孔隙率小,孔径尺寸较小,仅最小的孔为水饱和浆体-集料界面与浆体本体无明显区别消除了薄弱区游离氧化钙含量低。

高性能混凝土的特性:有自密实性;体积稳定性好;强度高,其抗压强度已有超过200MPa;水灰比较低,水化反应终止得较早,水化热总量相应降低;在较长的持续期后,高性能混凝土的总收缩应变量与其强度成反比,早期收缩率随着强度的提高而增大;徐变变形显着低于普通混凝土;Cl-渗透率低于普通水泥更符合环保要求;具有较高的密实性和抗渗性抗化学腐蚀性显着优于普通强度混凝土;高温作用下会产生爆裂、剥落。

3. 纤维增强水泥基复合材料
纤维增强水泥基复合材料是由不连续的纤维均匀地分散于水泥混凝土基材中形成的复合材料. 纤维与水泥浆基材的黏结比较牢固形成了遍布结构全体的纤维网。

当基本材料受拉力过高开裂时拉力可逐步转移到横跨裂纹的纤维上增大了混凝土结构的变形能力。

纤维的拉伸强度较高
使混凝土结构的拉伸强度增大。

复合材料的抗拉、抗弯、抗裂、抗疲劳、抗振及抗冲击能力得到显着改善。

纤维增强水泥基复合材料的主要性能特点:力学性能比普通混凝土明显改善;新拌混凝土的坍落度值比未掺纤维时低;混凝土的抗渗性有明显的改善;搅拌工艺不当时易产生纤维结团现象;运输及浇注中有时会出现分层。

纤维增强混凝土的开发趋势为:钢纤维和玻璃纤维被公认为最有前途的增强纤维;耐碱玻璃纤维将来可能成为石棉的的代用品;聚丙烯和尼龙等合成纤维对增加抗拉强度完全无效,但抗冲击性能十分优良;碳纤维的抗弯强度介于纲纤维和耐碱玻璃纤维之间,在各种纤维中钢纤维对裂缝的约束能力最好对于抗弯、拉伸强度也最有效。

增强混凝土的韧性最好。

4. 聚合物水泥基复合材料
聚合物水泥混凝土是在水泥混凝土成型过程中掺入一定量的聚合物提高其使用品质使其满足工程的特殊需要。

混凝土的性能特点:刚性大、柔性小、抗压强度远大于拉伸强度。

聚合物在水泥基体中有增韧、增塑、填孔和固化作用。

与普通混凝土相比性能的改善:抗压强度、拉伸强度可提高3倍抗破裂模量可增加近3倍;弹性模量可提高1倍、抗折弹性模量增加近50%;弹性变形减少10倍硬度增加超过70%;渗水性几乎为0吸水率可降低83~95%。

混凝土特性:力学性能得到了改善,抗折强度提高,抗压强度降低;刚度降低,变形能力增大;耐久性和抗侵蚀能力提高;黏结性良好
适合于破损水泥混凝土的修补工程;完全适应现有水泥混凝土的制造工艺过程;成本相对较低。

聚合物水泥基复合材料两种主要形式:聚合物浸渍混凝土;聚合物水泥混凝土。

聚合物水泥基复合材料应用:聚合物浸渍混凝土由于良好的力学性能、耐久性及抗腐蚀能力主要用于受力的混凝土及钢筋混凝土结构构件。

因浸渍工艺复杂、成本较高混凝土构件需要预制并且尺寸受到限制因而主要在特殊情况下使用。

聚合物水泥混凝土综合性能不如聚合物浸渍混凝土但其工艺简单、使用方便、成本低,得到了越来越多的广泛应用。

如应用于地面和道路工程,应用于结构工程
5. 功能型水泥基复合材料
⑴水泥基复合吸声材料?
吸音混凝土具有连续、多孔的内部结构,具有较大的内表面积,与普通的、密实混凝土组成复合构造。

在吸音混凝土中胶结材料所起的作用很大,通过调整所用胶结材料的量可以提高吸音效果及其它性能。

近年来,水泥基复合材料在吸声降噪领域的应用研究进展迅速。

采用物理成孔技术、掺杂技术、结构堆积技术和梯度层合技术等优化水泥基复合材料的表面和内部吸声结构,形成大量开口孔、孔结构细密且相互连通的水泥基复合吸声材料。

主要有水泥基块体吸声材料和水泥基板状吸声材料两大类。

?
水泥基块体吸声材料通过砌筑直接形成声屏障,通过对其块型、结构、表面状态进行优化设计,使其吸声面具有良好的吸声性能。

水泥基
块体吸声材料背面可加工成各种装饰面(如劈离、凿毛等),提高声屏障的装饰性能。

代表性产品有吸隔声砌块、单元式吸声砌块、轻质陶粒混凝土砌块、高效吸声装饰块等。

由中国建材总院和武汉天博环保科技发展有限公司联合研制的具有种植钵的环保型吸声墙体砌块,于2003年应用于襄樊高速公路武当山段声屏障工程,降噪量大于10dB,同时具有装饰和种植功能。

?
水泥基板状吸声材料在现场直接拼装形成声屏障,其迎声面形状、构造和表面状态均可按设计要求进行优化,从而具有良好的吸声性能。

水泥基板状吸声材料质量较轻,施工方便,特别适用于各类桥梁声屏障工程。

代表性产品有水泥珍珠岩吸声板、发泡陶粒混凝土吸声板、木材泡沫水泥吸声板等。

由中国建材总院和北京泰科立高新技术有限公司联合研制的无机高效复合吸声板将应用于深圳轻轨吸声式疏散平台工程,目前正在施工。

?
(2)水泥基复合保温隔热材料
随着我国建筑节能工作的全面推进,对保温体系用保温隔热材料提出了新的需求,如热工性能好、性价比高、耐久性好、施工方便,水泥基复合保温隔热材料能满足这些要求,因此近年来研究与应用工作取得显着进展。

通过内部成孔、掺加超轻集料、优化组成与配比等措施,降低水泥基复合材料密度,赋予其良好的保温隔热性能,同时保证基本使用性能和耐久性。

主要有泡沫混凝土、保温砌筑砂浆、水泥-EPS复合保温材料等。

?
(3)高性能轻集料混凝土?
轻质高强多功能和高工艺操作性研究永远是混凝土材料科学始终追求的目标。

优质的高性能轻集料混凝土与传统混凝土相比,强度高,质量轻20%以上,而且更耐久(无碱-集料反应),在建造大跨度桥梁和超高层建筑时,结构自重会大幅度减轻,相应地材料用量会减少,基础荷载也会降低,建筑总造价降低5%-20%.从建筑节能方面看,在我国北方采用高性能轻集料混凝土作外墙,冬季较实心黏混合料不均匀拌合同样可以产生良好的装饰效果。

日本的装饰混凝土砖和砌块研发工作处于世界领先地位,并广泛应用。

近年来,通过引进和消化吸收也取得进展,多功能装饰混凝土砌块已用于新农村建设。

(4)透水性混凝土
透水性混凝土是一类非封闭型多孔混凝土,采用特殊级配的集料、水泥、增强剂和化学外加剂等经特殊工艺制成。

由于集料级配特殊,在混凝土中含有大量的孔隙,并且这些孔隙是连通的。

降雨时,雨水将沿这些贯通的“路线”进入路基,渗入地下。

与普通混凝土相比,透水性混凝土的基本特征是高透水性。

透水性混凝土在道路工程中的应用有两种方式,即现浇透水性混凝土路面和制成透水性混凝土路面砖进行铺装。

?
在道路和地面工程中,德国、美国、日本等早已广泛使用透水性混凝土及制品,尤其是日本。

上世纪90年代,中国建材总院率先研制透水性混凝土及制品,透水性混凝土在北京御京花园试用,透水性混凝土路面砖在北京月坛地区使用。

研究成果《透水混凝土制品的研究与应用》于1998年通过原国家建材局组织的部级鉴定,技术先后在北京、江苏、内蒙古、山东等省市区推广应用。

近年来,随着综合国力的增强和认识的
提高,透水性混凝土及制品在我国得到广泛应用,正处于大发展阶段,研究工作更加深入。

(5)导电混凝土
用导电材料部分或者全部取代混凝土中的普通骨料凝结组成的特种混凝土,具有规定的电性能和一定的力学性能。

应用:屏蔽无线电干扰、防御电磁波、避雷设备等。

水泥基磁性复合材料:采用特殊工艺将可磁化的粒子混入水泥基材中制成的磁性体。

一类是铁氧体,另一类是稀土类磁性材料。

水泥基屏蔽电磁波复合材料:基本技术路线是在水泥中掺入导电粉末、纤维和絮片。

(6)水泥基复合智能材料
具有仿生命功能的材料融合于基体材料中使制成构件具有人们期望的智能功能。

如感知、辨识、寻优和控制驱动等。

如感知内部应力、应变和损伤程度;温度自测、仿生自愈合。

相关文档
最新文档