分治法实现快速排序
分治法-合并排序和快速排序

分治法-合并排序和快速排序分治法是按照以下⽅案⼯作的:将问题的实例划分为同⼀个问题的⼏个较⼩的实例,最好拥有同样的规模对这些较⼩的实例求解(⼀般使⽤递归⽅法,但在问题规模⾜够⼩的时候,有时会利⽤另⼀种算法以提⾼效率)如果必要的话,合并较⼩问题的解,以得到原始问题的解分治法的流程:4.1 合并排序合并排序是成功应⽤分治技术的⼀个完美例⼦(书上说的)。
对于⼀个需要排序的数组,合并排序把它⼀分为⼆,并对每个⼦数组递归排序,然后把这两个排好序的⼦数组合并为⼀个有序数组。
代码实现:/*** 合并排序* @author xiaofeig* @since 2015.9.16* @param array 要排序的数组* @return返回排好序的数组* */public static int[] mergeSort(int[] array){if(array.length>1){int[] subArray1=subArray(array,0,array.length/2);int[] subArray2=subArray(array,array.length/2,array.length);subArray1=mergeSort(subArray1);subArray2=mergeSort(subArray2);return merge(subArray1,subArray2);}return array;}/*** 返回指定数组的⼦数组* @author xiaofeig* @since 2015.9.16* @param array 指定的数组* @param beginIndex ⼦数组的开始下标* @param endIndex ⼦数组的结束位置(不包括该元素)* @return返回⼦数组* */public static int[] subArray(int[] array,int beginIndex,int endIndex){int[] result=new int[endIndex-beginIndex];for(int i=beginIndex;i<endIndex;i++){result[i-beginIndex]=array[i];}return result;}/*** 根据数值⼤⼩合并两个数组* @author xiaofeig* @since 2015.9.16* @param subArray1 待合并的数组* @param subArray2 待合并的数组* @return返回合并好的数组* */public static int[] merge(int[] subArray1,int[] subArray2){int[] result=new int[subArray1.length+subArray2.length];int i=0,j=0;while(i<subArray1.length&&j<subArray2.length){if(subArray1[i]>subArray2[j]){result[i+j]=subArray2[j];j++;}else{result[i+j]=subArray1[i];i++;}}if(i==subArray1.length){while(j<subArray2.length){result[i+j]=subArray2[j];}}else{while(i<subArray1.length){result[i+j]=subArray1[i];i++;}}return result;}算法分析:当n>1时,C(n)=2C(n-2)+C merge(n),C(1)=0C merge(n)表⽰合并阶段进⾏键值⽐较的次数。
java arrays.sort 原理

java arrays.sort 原理Java中的Arrays.sort()方法用于对数组进行排序。
该方法使用了一种称为快速排序的算法,其基本原理是分治法。
快速排序的基本步骤如下:1. 选择一个基准元素。
通常选择数组的第一个元素作为基准元素。
2. 将数组分为两个子数组:小于基准元素的子数组和大于基准元素的子数组。
3. 对这两个子数组分别进行快速排序。
4. 将排好序的子数组进行合并,得到最终的排序结果。
在具体实现上,Java中的Arrays.sort()方法使用了双指针技术。
首先,将数组分为左右两个部分,左边的部分都小于基准元素,右边的部分都大于基准元素。
然后,递归地对左右两个部分进行快速排序,直到整个数组都被排好序。
具体来说,以下是Java中Arrays.sort()方法的伪代码实现:'''javapublic static void sort(int[] arr) {quicksort(arr, 0, arr.length - 1);}private static void quicksort(int[] arr, int low, int high) {if low < high {int pivot = partition(arr, low, high);quicksort(arr, low, pivot - 1);quicksort(arr, pivot + 1, high);}}private static int partition(int[] arr, int low, int high) {int pivot = arr[high]; // 选择基准元素为数组的最后一个元素int i = low - 1; // 左指针指向第一个元素的前一个位置for (int j = low; j < high; j++) {if (arr[j] < pivot) {i++; // 左指针右移swap(arr, i, j); // 交换元素}}swap(arr, i + 1, high); // 将基准元素放到正确的位置上return i + 1; // 返回基准元素的索引}private static void swap(int[] arr, int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}'''在上述伪代码中,'quicksort()'方法实现了快速排序的基本逻辑,'partition()'方法用于将数组分为左右两个部分,'swap()'方法用于交换两个元素的值。
5. 5排序算法--快速与归并 课件-2021-2022学年浙教版(2019)高中信息技术选修1

快速排序算法
·快速排序算法(用栈实现)
代码:
def quick_sort(array, l, r): if l >= r: return stack = [] stack.append(l) stack.append(r) while stack: low = stack.pop(0) hight = stack.pop(0) if hight - low <= 0: continue k = array[hight] i = low - 1 for j in range(low, hight):
选修1《数据与数据结构》
第五章 数据结构与算法
5.5 排序算法 --快速与归并
学习目标
快速排序算法 归并排序算法
排序算法
快速排序算法
排序算法
·快速排序的基本思路
快速排序使用分治法策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1、 在数组中选一个基准数(通常为数组第一个)。 2、将数组中小于基准数的数据移到基准数左边,大于基准数的移到右边。 3、对于基准数左、右两边的数组,不断重复以上两个过程,直到每个子集只 有一个元素,即为全部有序。
排序算法
k = l #归并子数组的索引 while i < n1 and j < n2:
if L[i] <= R[ j]: arr[k] = L[i] i += 1
else: arr[k] = R[ j] j += 1
k += 1 while i < n1:
arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[ j] j += 1 k += 1
快速排序ppt课件

在实际项目中的应用
数据库索引
数据库索引的建立和维护可以采用快速排序的思想。通 过快速排序的分区操作,可以将索引分成有序的多个部 分,便于快速查找和定位数据。
搜索引擎
搜索引擎中的网页排名算法可以采用快速排序的思想。 通过对网页进行快速排序,可以将最相关的网页排在前 面,提高搜索结果的准确性和用户体验。
提高效率。
02
快速排序算法原理
分治策略
分治策略是快速排序的核心思想,即将一个复杂的问题分解为若干个较小的、更易 于解决的子问题。
在快速排序中,原数组被选定的基准元素划分为两个子数组,使得一个子数组的所 有元素都比基准元素小,另一个子数组的所有元素都比基准元素大。
通过递归地对这两个子数组进行快速排序,最终得到有序的数组。
05
快速排序的变种
快速三向切分排序
总结词
基于快速排序的变种,将数组分为三个部分进行排序。
详细描述
快速三向切分排序是在快速排序的基础上进行的一种改进。它将待排序的数组分为三个部分,左边的已排序部分、 中间的未排序部分和右边的已排序部分。然后对中间的未排序部分进行快速排序,并将结果与左右两边的已排序 部分进行合并,从而实现整个数组的排序。
pivot = arr[len(arr) // 2]
代码实现
middle = [x for x in arr
01 if x == pivot]
right = [x for x in arr if
03 x > pivot]
return quicksort(left) +
02
middle +
quicksort(right)
VS
详细描述
快速基数排序是一种非比较型整数排序算 法,它将整数按位数切割成不同的数字, 然后按每个位数分别比较。具体实现中, 从最低位开始,对每一位使用稳定的排序 算法(如计数排序)进行排序,直到最高 位。由于只针对整数有效,因此对于浮点 数需要做一些额外处理。
快速排序的实现方法

快速排序的实现方法快速排序(Quick Sort)是一种常用的排序算法,其核心思想是通过分治的策略将一个大问题分解为多个小问题,然后通过递归的方式解决这些小问题,最终将它们合并成一个有序的整体。
本文将介绍快速排序的具体实现方法。
一、算法思想快速排序算法的主要思想是选择一个基准元素,将待排序序列分成两部分,使得其中一部分的所有元素都小于等于基准元素,而另一部分的所有元素都大于基准元素。
然后对这两部分分别进行递归排序,最终将整个序列排序完成。
二、实现步骤1. 选择基准元素:从待排序序列中选择一个基准元素,通常选择第一个或最后一个元素作为基准元素。
2. 分割操作:对待排序序列进行分割操作,将小于等于基准元素的元素放在左边,将大于基准元素的元素放在右边。
3. 递归排序:对左右两个分割后的子序列进行递归排序。
4. 合并结果:将左边部分排序结果、基准元素和右边部分排序结果合并成最终的有序序列。
三、伪代码实现```function quickSort(arr, low, high):if low < high:pivot_index = partition(arr, low, high)quickSort(arr, low, pivot_index - 1)quickSort(arr, pivot_index + 1, high)function partition(arr, low, high):pivot = arr[high]i = low - 1for j = low to high - 1:if arr[j] <= pivot:i = i + 1swap arr[i] and arr[j]swap arr[i + 1] and arr[high]return i + 1```四、实例演示以待排序序列[8, 5, 2, 9, 7]为例,展示快速排序的实现过程。
1. 第一次分割操作:选择最后一个元素7作为基准元素,进行分割操作。
快速排序实验总结

快速排序实验总结快速排序是一种常用的排序算法,其基本思想是通过分治的方法将待排序的序列分成两部分,其中一部分的所有元素均小于另一部分的元素,然后对这两部分分别进行递归排序,直到整个序列有序。
下面是我在实验中对于快速排序算法的一些总结和思考。
一、算法步骤快速排序的基本步骤如下:1.选择一个基准元素(pivot),将序列分成两部分,一部分的所有元素均小于基准元素,另一部分的所有元素均大于等于基准元素。
2.对于小于基准元素的部分和大于等于基准元素的部分,分别递归地进行快速排序,直到两部分都有序。
3.合并两部分,得到完整的排序序列。
二、算法优缺点优点:1.快速排序的平均时间复杂度为O(nlogn),在排序大数据集时表现优秀。
2.快速排序是一种原地排序算法,不需要额外的空间,因此空间复杂度为O(logn)。
3.快速排序具有较好的可读性和可维护性,易于实现和理解。
缺点:1.快速排序在最坏情况下的时间复杂度为O(n^2),此时需要选择一个不好的基准元素,例如重复元素较多的序列。
2.快速排序在处理重复元素较多的序列时,会出现不平衡的分割,导致性能下降。
3.快速排序在递归过程中需要保存大量的递归栈,可能导致栈溢出问题。
三、算法实现细节在实现快速排序时,以下是一些需要注意的细节:1.选择基准元素的方法:通常采用随机选择基准元素的方法,可以避免最坏情况的出现。
另外,也可以选择第一个元素、最后一个元素、中间元素等作为基准元素。
2.分割方法:可以采用多种方法进行分割,例如通过双指针法、快速选择算法等。
其中双指针法是一种常用的方法,通过两个指针分别从序列的两端开始扫描,交换元素直到两个指针相遇。
3.递归深度的控制:为了避免递归过深导致栈溢出问题,可以设置一个递归深度的阈值,当递归深度超过该阈值时,转而使用迭代的方式进行排序。
4.优化技巧:在实现快速排序时,可以使用一些优化技巧来提高性能。
例如使用三数取中法来选择基准元素,可以减少最坏情况的出现概率;在递归过程中使用尾递归优化技术,可以减少递归栈的使用等。
《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。
通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。
二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。
三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。
分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。
设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。
●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始节点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的或节点,并成为当前扩展结点。
快速排序的思想

快速排序的思想
1、快速排序的基本思想:
快速排序所采用的思想是分治的思想。
所谓分治,就是指以一个数为基准,将序列中的其他数往它两边“扔”。
以从小到大排序为例,比它小的都“扔”到它的左边,比它大的都“扔”到它的右边,然后左右两边再分别重复这个操作,不停地分,直至分到每一个分区的基准数的左边或者右边都只剩一个数为止。
这时排序也就完成了。
2、快速排序的三个步骤:
(1)选择基准:在待排序列中,按照某种方式挑出一个元素,作为"基准"(pivot)
(2)分割操作:以该基准在序列中的实际位置,把序列分成两个子序列。
此时,在基准左边的元素都比该基准小,在基准右边的元素都比基准大
(3)递归地对两个序列进行快速排序,直到序列为空或者只有一个元素。
案例:
方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。
先从右往左找一个小于6的数,再从左往右找一个大于6的数,然后交换他们。
这里可以用两个变量i和j,分别指向序列最左边和最右边。
我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。
刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。
让哨兵j指向序列的最右边(即=10),指向数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一
实验名称:利用分治法实现快速排序
实验时
2012 年12月成绩:
间:
一、实验目的
分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。
本实验的目的是利用分治策略实现快速排序算法。
二、实验内容
快速排序算法是基于分治策略的排序算法。
其基本思想是,对于输入的子数组a[p:r],按以下三个步骤进行排序。
(1)分解:以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q] 和a[q+1:r],
使a[p:q-1]中任何一个元素小于等于a[q],而a[q+1:r]中任何一个元素大于等于
a[q]。
下标q在划分过程中确定。
(2)递归求解:通过递归调用快速排序算法分别对a[p:q-1]和a[q+1:r]进行排序。
(3)合并:由于对a[p:q-1]和a[q+1:r]的排序是就地进行的,所以在a[p:q-1] 和a[q+1:r]都已排好的序后,不需要执行任何计算,a[p:r]就已排好序。
基于这个思想,可实现的快速排序算法如下:
void QuickSort(i nt a[],i nt p,i nt r) if(p<r)
{
int q=Partition(a,p,r);
QuickSort(a,p,q-1);
QuickSort(a,q+1,r);
}
}
对含有n 个元素的数组a[0;n-1] 进行快速排序只要调用QuickSort(a,0,n-1) 即可。
上述算法中的函数Partition ,以确定的一个基准元素a[p] 对子数组a[p:r] 进行划分,它是快速排序算法的关键。
int Partition(int a[],int p,int r)
{
int i=p,j=r+1;
int x=a[p];
while(true)
{
while(a[++i]<x&&i<r);
while(a[--j]>x); if(i>=j) break;
Swap(a[i],a[j]);
}
a[p]=a[j];
a[j]=x;
return j;
}
Partition 对a[p:r] 进行划分时,以元素x=a[p] 作为划分的基准,分别从左、右两端开始,扩展两个区域a[p:i] 和a[j:r], 使a[p:i] 中元素小于或等于x ,而a[j:r] 中元素大于或等于X。
初始时,i=p,且j二叶1。
在while 循环体中,下标j 逐渐减小,i 逐渐增大,,直到a[i]>=x>=a[j] 。
此时若i<j ,就应该交换a[i] 与a[j] 的位置,扩展左右两个区域。
while 循环重复至i>=j 时结束。
这时a[p:r] 已被划分成a[p:q-1],a[q] 和
a[q+1:r], 且满足a[p:q-1] 中元素不大于a[q+1 :r] 中元素。
在Partition 结束时返
回划分点q=j 。
三、实验过程
#include<iostream> using namespace std;
inline void Swap(int &X,int &y) // 交换X,y
int temp=X;
x=y;
y=temp;
}
int Partition(int a[],int p,int r)
//Partition 以确定一个基准元素a[q] 对子数组a[p:r] 进行划分{ int i=p,j=r+1;
int x=a[p];
//将<x的元素交换到左边区域
//将>x得元素交换到右边区域
while(true)
{ while(a[++i]<x&&i<r);
while(a[--j]>x);
if(i>=j) break;
Swap(a[i],a[j]); // 交换a[i],a[j]
}
a[p]=a[j];
a[j]=x;
return j;
//
返回划分点
void QuickSort(int a[],int p,int r)
// 利用递归进行快速排序
{
if(p<r)
{
int q=Partition(a,p,r);
//Partition 返回划分点j ,此处使q=j
QuickSort(a,p,q-1); QuickSort(a,q+1,r);
}
}
int main()
{
int len;
cout<<" 请输入数组长度: "; cin>>len;
int *a=new int[len];
// 动态生成一个长度为len 的数组
cout<<" 请输入一个数组: "
for(int i=0;i<len;i++) // 输入数组cin>>a[i];
QuickSort(a,0,len-1); // 对数组进行快排
cout<<" 排序后的数组是:";
for(int j=0;j<len;j++)
cout<<a[j]<<" "; // 输出数组cout<<endl;
delete[] a;
return 0;
}
四、实验结果(总结/ 方案) 运行程序,任意输入一个乱序数组,例如:
5 4 18 9 5
6 11 23
7 46 14 运行得到排序后的结果如下图:
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。