聚丙烯酰胺凝胶电泳

合集下载

聚丙烯酰胺凝胶电泳简称PAGE

聚丙烯酰胺凝胶电泳简称PAGE

� � � �
凝胶浓度的选择与被分离物质分子量密切相关
二、电泳的原理
1. 聚丙烯酰胺凝胶电泳( native-PAGE)

生物大分子在聚丙烯酰胺凝胶中泳动时,有电荷效应与分 子筛效应。不同的核酸或蛋白质,它们的分子量大小及构 型不同,所带净电荷的多少不同。电泳时的泳动率就不 同,从而分出不同的区带。在电泳分离后能保持蛋白质和 酶等生物大分子的生物活性。
三、电泳操作流程 (SDS-PAGE)
1.制备PAGE胶
固定玻璃板 灌注分离胶,水封, 静置待凝固 吸干水,灌注浓缩胶,插入梳子, 静置待凝固
注意: a.催化剂TEMED要在注胶前加入,否则胶凝结而无法灌注. b.空气中的氧气的存在影响凝胶的聚合,因此,水封的 目的是隔绝空气中的氧气,并且使分离胶顶部平整。
相对迁移率 mR =
蛋白质样品区带中心迁移距离(cm) 溴酚蓝区带中心迁移距离(cm)
四、电泳的应用
常规的聚丙烯酰胺凝胶电泳适合于核苷酸多态性和蛋 白质的分析、分离。 SDS-PAGE则常用于测定蛋白质的分子量和蛋白质的 亚基数。目前已发现有些蛋白质不能用 SDS-PAGE测定分 子量。如电荷异常或构象异常的蛋白质,带有较大辅基的 蛋白质(某些糖蛋白)以及一些结构蛋白,如胶原蛋白等。
c.Acr和Bis具有神经毒,操作时应戴手套。Acr/Bis储液于棕色 瓶4℃保存。
2.加样
电泳槽内注入电极缓冲液, 使其完全淹没浓缩胶顶部, 小心拔出梳子
经SDS处理的样品, 于沸水中加热3 min, 以除去亚稳态聚合。
用微量移液器于距 槽底三分之一处进样
3.电泳
加样后的凝胶,应立即电泳。 样品进浓缩胶,电流控制在20-30 mA; 样品进分离胶,电流控制在40-50 mA。 待溴酚蓝条带泳动到距离胶板前沿约1-2cm处, 停止电泳。

电泳技术-聚丙烯酰胺凝胶电泳

电泳技术-聚丙烯酰胺凝胶电泳

.电泳技术.第一节第二节电泳技术概述常见电泳技术.常见电泳技术第二节纸电泳和醋酸纤维薄膜电泳聚丙烯酰胺凝胶电泳SDS-聚丙烯酰胺凝胶电泳琼脂糖凝胶电泳梯度凝胶电泳等电聚焦电泳二维聚丙烯酰胺凝胶电泳印迹电泳毛细管电泳二、聚丙烯酰胺凝胶电泳(PAGE)聚丙烯酰胺凝胶是由单体丙烯酰胺(acrylamide,简称Acr) 和交联剂N,N-甲叉双丙烯酰胺(m ethylene-bisacrylamide,简称Bis)在加速剂和催化剂的作用下聚合并联成三维网状结构的凝胶,以此凝胶为支持物的电泳称为聚丙烯酰胺凝胶电泳。

polyacrylamide gel electrophoresis,简称PAGE.PAGE应用围广,可用于蛋白质、酶、核酸等的分离、定性、定量及少量的制备,测定相对分子质量、等电点等。

.1、聚丙烯酰胺凝胶的特点①可用于分离不同分子量的生物大分子聚丙烯酰胺凝胶的特点②更高的灵敏度:10-9~10-12 mol/L③化学惰性好,电泳时不会产生“电渗”④电泳分离的重复性好⑤透明度好,便于照相和复印⑥机械强度好,有弹性,便于操作和保存.⑦无紫外吸收⑧可用作固定化酶的惰性载体2、凝胶聚合的原理及有关特性(1)聚合反应凝胶单体丙烯酰胺加速剂四甲基乙二胺AcrTEMED交联剂N,N-甲叉双丙烯酰胺Bis催化剂过硫酸铵(AP) 或核黄素.(2)凝胶孔径的可调性及其有关性质①凝胶性能与总浓度及交联度的关系T(Acr和Bis总浓度)(%)= C(交联剂百分比)(%)= abmbab100100其中a=Acr克数,b=Bis克数,m=缓冲液体积(mL)a/b(W/W)与凝胶的机械性能密切相关a/b>100 a/b=30 凝胶脆易碎,坚硬呈乳白色凝胶呈糊状,易于断裂完全透明而又有弹性C=6.5−0.3T不同浓度的单体对凝胶性能影响很大,Davis的实验发现Acr<2%,Bis<0.5%,凝胶就不能聚合。

当增加Acr浓度时要适当降低Bis的浓度。

SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳
7、Tris-甘氨酸电泳缓冲液:30.3gTris,188g甘氨酸,10gSDS,用蒸馏水溶解至1000ml,得0.25mol/L Tris-1.92mol/L甘氨酸电极缓冲液。临用前稀释10倍。
8、转移缓冲液:配制1L转移缓冲液,需称取2.9g甘氨酸、5.8gTris碱、0.37g SDS,并加入200ml甲醇,加水至总量1L。
ß
把膜置于第二抗体中,温和振荡2小时
ß
在TBST中洗膜1小时,中间更换4次
ß
显影,定影这一步骤为最重要的步骤之一,非常容易出现问题,必须小心仔细,我们在实验中采用的是上海康成公司生产的第二代化学超敏发光试剂盒,说明书另附PDF。在实验中发现有时发光很快减弱;肉眼可以看到发光,但是底片显不出来等问题。联系了康成公司的技术员,改动如下:膜与发光显色剂接触时间改为2分钟(不是说明书中的5min),底片压片时间2分钟。显影时有一些基本的原则,如严格的避光,压片前注意排除气泡,压片过程中底片不能接触液体等,按照一定的规则放置膜。将底片压片曝光结束后,将其中一角折起以助定位。定影后将膜贴于显出的条带,条带旁表明marker条带。底片注明实验日期、名称。
(2)分类
western显色的方法主要有以下几种:
i.放射自显影
ii.底物化学发光ECL
iii.底物荧光ECF
iv.底物DAB呈色
现常用的有底物化学发光ECL和底物DAB呈色,体同水平和实验条件的是用第一种方法,目前发表文章通常是用底物化学发光ECL。只要买现成的试剂盒就行,操作也比较简单,原理如下(二抗用HRP标记):反应底物为过氧化物+鲁米诺,如遇到HRP,即发光,可使胶片曝光,就可洗出条带。
2.针对样品的常见问题
B.做线粒体膜UCP2蛋白的Western Blot(以下简写成Western Blot),提取线粒体后冻存(未加蛋白酶抑制剂),用的博士德的一抗,开始还有点痕迹,现在越来越差,上样量已加到120μg,换了个santa cruz的一抗仍不行。是什么原因?蛋白酶抑制剂单加PMSF行吗?

聚丙烯酰胺凝胶电泳

聚丙烯酰胺凝胶电泳

聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳法1.仪器装置通常由稳流电泳仪和圆盘或平板电泳槽组成。

其电泳室有上、下两槽,每个槽中都有固定的铂电极,铂电极经隔离电线接于电泳仪稳流挡上。

2.试剂(1)溶液A 取三羟甲基氨基甲烷36.6g,四甲基乙二胺0.23ml,加0.1mol/L盐酸溶液48ml,再加水溶解并稀释至100ml,置棕色瓶内,在冰箱中保存。

(2)溶液B 取丙烯酰胺30.0g、次甲基双丙烯酰胺0.74g,加水溶解并稀释至100ml,滤过,置棕色瓶内,在冰箱中保存。

(3)电极缓冲液(pH8.3) 取三羟甲基氨基甲烷6g、甘氨酸28.8g,加水溶解并稀释至1000ml,置冰箱中保存,用前稀释10倍。

(4)溴酚蓝指示液取溴酚蓝0.1g,加0.05mol/L氢氧化钠溶液3.0ml 与90%乙醇5ml,微热使溶解,加20%乙醇制成250ml。

(5)染色液取0.25%(W/V)考马斯亮蓝G<[250]>溶液2.5ml,加12.5%(W/V)三氯醋酸溶液至10ml。

(6)稀染色液取上述染色液2ml,加12.5%(W/V)三氯醋酸溶液至10ml。

(7)脱色液 7%醋酸溶液。

3.操作(1)制胶取溶液A2ml,溶液B5.4ml,加尿素2.9g使溶解,再加水4ml,混匀,抽气赶去溶液中气泡,加0.56%过硫酸铵溶液2ml,混匀制成胶液,立即用装有长针头的注射器或细滴管将胶液沿管壁加至底端有橡皮塞的小玻璃管(10×0.5cm)中,使胶层高度达6~7cm, 然后徐徐滴加水少量,使覆盖胶面,管底气泡必须赶走,静置约30分钟,待出现明显界面时即聚合完毕,吸去水层。

(2)标准品溶液及供试品溶液的制备(3)电泳将已制好的凝胶玻璃管装入圆盘电泳槽内,每管加供试品或标准品溶液50~100μl,为防止扩散可加甘油或40%蔗糖溶液1~2滴及0.04%溴酚蓝指示液1滴,也可直接在上槽缓冲液中加0.04%溴酚蓝指示液数滴,玻璃管的上部用电极缓冲液充满,上端接负极、下端接正极。

聚丙烯酰胺凝胶电泳步骤

聚丙烯酰胺凝胶电泳步骤

聚丙烯酰胺凝胶电泳步骤
聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis,简称PAGE)是一种常用的分离和分析蛋白质的方法。

以下是一般
的聚丙烯酰胺凝胶电泳步骤:
1. 制备凝胶:将聚丙烯酰胺和交联剂(通常是二甲基亚砜)在缓冲液中混合,加热溶解,然后迅速倒入电泳槽或制备模具中,留下一端可以装入电极。

2. 固化凝胶:将凝胶慢慢冷却至室温,使其固化。

这通常需要约30分钟至1小时。

3. 准备样品:将待测样品与一定体积的加载缓冲液混合均匀(可以包含甲基绿或其他荧光染料),并加热处理。

这样做是为了使样品蛋白质裂解、去除二硫键、破坏二级和三级结构,以使所有蛋白质都呈线性链状。

4. 加载样品:用微量移液器向凝胶中的小孔加入已经处理好的样品。

5. 进行电泳:将电泳槽连接至电源并设定合适的电压和电流。

根据待测蛋白质的大小和分子量,可以选择不同的电泳条件(如电压、电流和时间)。

6. 着色和显影:电泳结束后,用染料染色或其他方法可视化蛋白质。

通常使用染料如明胶蓝或银染法来增强蛋白质的显色。

7. 分析和解读:根据电泳图像,分析和解读样品中的蛋白质分离情况,如判断蛋白质的相对分子量、纯度等。

请注意,以上步骤仅为一般的聚丙烯酰胺凝胶电泳步骤,具体操作可能会根据实验目的和需求有所变化。

同时,操作和设备使用时应遵守实验室安全规定。

sds聚丙烯酰胺凝胶电泳

sds聚丙烯酰胺凝胶电泳

SDS聚丙烯酰胺凝胶电泳1. 引言SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)是一种常用的蛋白质分离和分析方法。

通过SDS(十二烷基硫酸钠,Sodium Dodecyl Sulfate)将蛋白质变性并赋予负电荷,在凝胶电泳中,根据蛋白质的分子量大小,使蛋白质在电场中向阳极方向运动,从而实现蛋白质的分离。

SDS-PAGE广泛应用于蛋白质的分子量测定、复杂蛋白质混合物的分离、蛋白质组学研究等领域。

它具有简单易行、高分辨率、高灵敏度以及可以与其他技术(如质谱、Western blot 等)结合等优点。

本文将介绍SDS-PAGE的原理、实验步骤和关键注意事项,并提供相关的Markdown文本格式输出,以便读者在实验中参考。

2. 原理SDS-PAGE的原理基于SDS的作用。

SDS是一种带有负电荷的表面活性剂,能够使蛋白质在水溶液中均匀地带上负电荷,同时使蛋白质变性并展开成线性构象。

在电泳过程中,SDS包裹在蛋白质中,使蛋白质的电荷密度保持均一,从而使蛋白质的迁移速率仅与蛋白质的分子量有关,而与蛋白质的电荷无关。

SDS-PAGE通常在聚丙烯酰胺凝胶上进行。

聚丙烯酰胺是一种化学稳定性强的凝胶材料,通过聚合物的交联形成网状结构。

在凝胶电泳过程中,根据蛋白质分子量的不同,蛋白质能够在凝胶孔隙中以不同程度的速率迁移。

3. 实验步骤3.1. 制备凝胶1.准备1.5 M的Tris缓冲液,pH 8.8。

2.准备汀凝胶的原液,将30%丙烯酰胺溶液、1.5 MTris缓冲液和10%过硫酸铵按照体积比例(29:1:10)混合均匀。

3.快速加入TEMED(N,N,N’,N’-四甲基乙二胺)溶液至原液中,并迅速倒入凝胶模具中。

4.在凝胶模具上方加入异丙醇以防止凝胶表面生成凝胶。

3.2. 样品处理1.取适量的蛋白质样品。

2.加入相应的样品加载缓冲液(含有SDS和还原剂,以及测量样品体积比例的溶液)。

3.在冰上煮沸5分钟,使蛋白质样品变性并带上负电荷。

聚丙烯酰胺凝胶电泳

聚丙烯酰胺凝胶电泳
聚丙烯酰胺凝胶电泳(PAGE)技术是一种常用的生物分子电泳分
离技术,它可以用来分离、鉴定、分析不同分子量的碱基链,以及抗
原和抗体。

PAGE是通过聚丙烯酰胺凝胶作为分离层来分离和分析物质
的一种电泳技术,具有灵活性好、精密度高等优点,一直被应用于生
物学研究中。

聚丙烯酰胺凝胶电泳(PAGE)作为生物分子电泳的基础技术,用
于分离纯化各种类型的微缩生物,包括蛋白质,核酸和糖苷。

由于这
种技术具有灵活性强、精密度高,一直广泛应用于多学科领域。

分离Pakage包括多个步骤,包括以下几种步骤:样品制备、电泳、高压灌注、凝胶固定等。

PAGE技术的工作原理是利用水相中分子在凝胶中受到质子交换效应、静电力场和电迁移矢量力的影响,使不同分子类型在空间上形成
不同分布,进而可以检测出不同分子类型的特征。

聚丙烯酰胺凝胶的
特点是可以用来分离和分析多种组分,而且可以快速、灵活、有效地
分离出不同的分子,可以用来分析多种环境和生物样本中的物质。

PAGE技术在生物研究中具有重要现实价值,使用PAGE可以快速、精准地检测出各种生物体中不同类型的碱基链和抗原抗体。

另外,PAGE的质量控制指标相当严格,可以保证对检测结果的精准度。

由此
可见,这种PAGE技术在分离物质方面有无可比拟的优势,受到了生物
学研究的广泛应用。

SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳(PAGE)实验报告一、实验目的1.学习SDS-PAGE分离蛋白质的原理;2.掌握垂直板电泳的操作方法。

二、实验原理1、电泳:(1)定义:是指带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。

(2)影响电泳效果的因素:①带电颗粒的大小和形状:颗粒越大,电泳速度越慢,反之越快;②颗粒的电荷数:电荷越少,电泳速度越慢,反之越快;③溶液的粘度:粘度越大,电泳速度越慢,反之越快;④溶液的pH值:影响被分离物质的解离度,离等电点越近,电泳速度越慢,反之越快;⑤电场强度:电场强度越小,电泳速度越慢,反之越快;⑥离子强度:离子强度越大,电泳速度越慢,反之越快;⑦电渗现象:电场中,液体相对于固体支持物的相对移动;⑧支持物筛孔大小:孔径小,电泳速度慢,反之则快。

2、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)(1)定义聚丙烯酰胺凝胶电泳(PAGE):是以聚丙烯胺凝胶作为载体的一种区带电泳。

SDS-PAGE:是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠)(2)SDS的作用SDS是一种阴离子去垢剂,可与蛋白质结合,形成SDS-蛋白质复合物。

由于SDS带有大量负电荷,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖,即消除了蛋白质分子之间电荷差异。

因此在电泳时,蛋白质分子的迁移速度则主要取决于蛋白质分子大小(3) SDS-PAGE分类:¾SDS-PAGE按照缓冲液pH值和凝胶孔径差异分为连续系统和不连续系统两大类:连续系统:电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。

不连续系统:缓冲液离子成分,pH,凝胶浓度及电位梯度均不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳(4)聚丙烯胺凝胶的生成:聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。

《中国药典》(2020版)SDS-聚丙烯酰胺凝胶电泳

第五法SDS-聚丙烯酰胺凝胶电泳法(SDS-PAGE法)SDS-PAGE法是一种变性的聚丙烯酰胺凝胶电泳方法。

本法分离蛋白质的原理是根据大多数蛋白质都能与阴离子表面活性剂十二烷基硫酸钠(SDS)按重量比结合成复合物,使蛋白质分子所带的负电荷远远超过天然蛋白质分子的净电荷,消除了不同蛋白质分子的电荷效应,使蛋白质按分子大小分离。

本法用于蛋白质的定性鉴别、纯度和杂质控制以及定量测定。

1.仪器装置恒压或恒流电源、垂直板电泳槽和制胶模具。

2.试剂(1)水。

(2)分离胶缓冲液(4×,A液) 1.5moL/L三羟甲基氨基甲烷-盐酸缓冲液称取三羟甲基氨基甲烷18.15g,加适量水溶解,用盐酸调节pH值至8.8,加水稀释至100mL。

(3)30%丙烯酰胺溶液(B液)称取丙烯酰胺58.0g、N,N-亚甲基双丙烯酰胺2.0g,加温水溶解并稀释至200mL,滤纸过滤(避光保存)。

(4)10%SDS溶液(C液)称取十二烷基硫酸钠10g,加水溶解并稀释至100mL。

(5)四甲基乙二胺溶液(TEMED,D液)商品化试剂。

(6)10%过硫酸铵溶液(E液)称取过硫酸铵10g,加水溶解并稀释至100mL。

建议临用前配制,或分装于-20℃可贮存2周。

(7)浓缩胶缓冲液(4×,F液)0.5moL/L三羟甲基氨基甲烷-盐酸缓冲液称取三羟甲基氨基甲烷6.05g,加适量水使溶解,用盐酸调pH值至6.8,加水稀释至100mL。

(8)电极缓冲液(10×)称取三羟甲基氨基甲烷30g、甘氨酸144g、十二烷基硫酸钠10g,加水溶解并稀释至约800mL,用盐酸调节pH值至8.1~8.8之间,加水稀释至1000mL。

(9)非还原型供试品缓冲液(4×)称取三羟甲基氨基甲烷3.03g、溴酚蓝20mg、十二烷基硫酸钠8.0g,量取甘油40m1,加水溶解并稀释至约80mL,用盐酸调节pH值至6.8,加水稀释至100mL。

聚丙烯酰胺凝胶电泳)

聚丙烯酰胺凝胶电泳作用:用于分离蛋白质和寡糖核苷酸。

作用原理聚丙烯酰胺凝胶电泳是网状结构,具有分子筛效应。

它有两种形式:非变性聚丙烯酰胺凝胶,在电泳的过程中,蛋白质能够保持完整状态,并依据蛋白质的分子量大小、蛋白质的形状及其所附带的电荷量而逐渐呈梯度分开。

而SDS-PAGE仅根据蛋白质亚基分子量的不同就可以分开蛋白质。

该技术最初由shapiro于1967年建立,他们发现在样品介质和丙烯酰胺凝胶中加入离子去污剂和强还原剂后,蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小(可以忽略电荷因素)。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。

而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。

在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS 结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。

SDS-PAGE一般采用的是不连续缓冲系统,于连续缓冲系统相比,能够有较高的分辨率。

浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。

当样品液和浓缩胶选TRIS/HCL缓冲液,电极液选TRIS/甘氨酸。

电泳开始后,HCL 解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。

蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。

电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成以稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。

此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。

聚丙烯酰胺凝胶电泳简称为PAGE(Polyacrylamide gel electrophoresis)聚丙烯酰氨凝胶电泳,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

琼脂糖凝胶电泳
琼脂糖凝胶电泳原理: 琼脂糖是从琼脂中提纯出来的,主要是由D-半乳糖和3,6脱水L-半乳 糖连接而成的一种线性多糖。 在 pH 值为 8.0~8.3 时,核酸分子碱基几乎不解离,磷酸全部解离,核 酸分子带负电,在电泳时向正极移动。采用适当浓度的凝胶介质作为电泳 支持物,在分子筛的作用下,使分子大小和构象不同的核酸分子泳动率出 现较大的差异,从而达到分离核酸片段检测其大小的目的。核酸分子中嵌 入荧光染料(如 EB )后,在紫外灯下可观察到核酸片段所在的位置。 琼脂糖凝胶的制作是将干的琼脂糖悬浮于缓冲液中,通常使用的浓度 是1%-3%,加热煮沸至溶液变为澄清,注入模板后室温下冷却凝聚即成 琼脂糖凝胶。琼脂糖主要在DNA制备电泳中作为一种固体支持基质。
3.0
4.0 6.0
0.05~1
0.5~1
0.1~0.5 0.01~0.1
琼脂糖凝胶电泳的注意事项
DNA分子带负电,从琼脂糖凝胶的负极向正极泳动,速度依赖于其分子质量。 小的紧密的DNA分子的较大伸展片断容易穿过琼脂糖介质。依据所要分离的 DNA分子的大小来选择琼脂糖的浓度。
注意: 1、 每孔点样的体积一般少于25ul。 2、 加一定量的蔗糖来增加样品的浓度,以使样品停留在点样孔中。 3、 加入水溶性的阴离子追踪染料(如溴酚蓝)。 4、 加入标准分子质量样品,根据已知分子质量的带相应位置做出标准曲线。 5、 电泳一般是在追踪染料泳动到胶的80%部位时停止。注意电泳期间,电 泳槽盖要安全盖好,以防止液体蒸发。 6、 将胶浸没在1mg/L的溴化乙锭(EB)中,5min后即可看到DNA带。 7、 在紫外灯下可以看到DNA带,这种方法检测的界限是每条带约10ng 。 8、 要对某一条带(如质粒)进一步分析,可将含该带的凝胶切割下来,回 收DNA
强度与DAN含量成正比
琼酯糖凝胶电泳的浓度及分辨率
琼脂糖浓度(W/V) 0.6% 0.8% 1.0% 1.2% 大小范围(bp) 1000-23000 800-10000 400-8000 300-7000
1.5%2%Fra bibliotek200-4000
100-3000
不同类型琼脂糖的性质
琼脂糖类型 标准琼脂糖 高强度琼脂糖 修饰的低熔点/ 凝点琼 脂糖 超低熔点 低黏性低熔点琼脂糖 凝结温度/℃ 35~38 40~42 34~43 25~35 35 8~15 25~30 38 30 熔化温度/ ℃ 90~95 85~90 85~95 63~65 65 40~45 70 85 75 不同厂家生产 的不同商品其 凝结温度和熔 化温度有一定 差异
电泳技术应用
电泳技术主要用于分离各种有机物(如氨基酸、多肽、 蛋白质、脂类、核苷酸、核酸等)和无机盐;也可用于 分析某种物质纯度,还可用于分子量的测定。 电泳技术与其他分离技术结合 电泳法与层析法结合 用免疫原理测试电泳结果 电泳与酶学技术结合 用于蛋白质结构的分析 提高对蛋白质的鉴别能力 发现同工酶,对于酶的 催化和调节功能有了深 入的了解
琼脂糖凝胶孔径较大适用于分离同工酶及其亚型、大分子 核酸等,应用较广。琼脂糖可以制成各种形状、大小和孔隙度。 琼脂糖凝胶分离DNA度大小范围较广,不同浓度琼脂糖凝胶可 分离长度从200bp至近50kb的DNA段。琼脂糖通常用水平装置 在强度和方向恒定的电场下电泳。目前,一般实验室多用琼脂 糖水平平板凝胶电泳装置进行DNA电泳。
由于琼脂糖凝胶的弹性较差,难以从小管中取出,所以一般琼脂糖凝 胶不适合于管状电泳,管状电泳通常采用聚丙烯酰胺凝胶。琼脂糖凝 胶通常是形成水平式板状凝胶,用于等电聚焦、免疫电泳等蛋白质电 泳,以及DNA、RNA的分析。垂直式电泳应用得相对较少。
目前多用琼脂糖为电泳支持物进行平板电泳,其优点如下: 1) 琼脂糖凝胶电泳操作简单,电泳速度快,样品不需事先处理就可 以进行电泳。 2) 琼脂糖凝胶结构均匀,含水量大(约占98%~99%),近似自由电 泳,样品扩散较自由电流,对样品吸附极微,因此电泳图谱清晰,分 辨率高,重复性好。 3) 琼脂糖透明无紫外吸收,电泳过程和结果可直接用紫外光灯检测 及定量测定。
不同类型琼脂糖分离DNA片段的范围
浓度 ( %) 标 准 (kb) 高强度 (kb) 低熔点 (kb) 低黏度低溶 点(kb)
0.3
0.5 0.8 1.0 1.2 1.5 2.0
1~50
0.7~25 0.5~15 0.25~12 0.15~6 0.08~4 0.8~10 0.4~8 0.3~7 0.2~4 0.1~3 0.8~10 0.4~8 0.3~7 0.2~4 0.1~3
4) 电泳后区带易染色,样品极易洗脱,便于定量测定。制成干膜可 长期保存。
操作
凝胶的EB染色
EB使用时的配制、贮存及使用 EB常用水配制成10 mg/ml的贮存液,于室温保存在棕色瓶或用 铝箔包裹的瓶中,使用终浓度为0.5 μg/ml 。
Goodview可与DNA分子形成复合物,发射的荧光 强度较游离的Goodview强度大10倍以上,且荧光
试验三
用于大分子分离的电泳技术
孔忠新 2009.11.06
电泳技术原理
电泳技术,是指在电场作用下,带电颗粒在由于所 带的电荷不同以及分子大小差异而有不同的迁移行为从 而彼此分离开来的一种实验技术。 许多生物分子都带有电荷,其电荷的多少取决于分 子结构及所在介质的pH值和组成。由于混合物中各种组 分所带电荷性质、电荷数量以及相对分子质量的不同, 在同一电场的作用下,各组分泳动的方向和速率也各异。 因此,在一定时间内各组分移动的距离也不同,从而达 到分离鉴定各组分的目的。
琼脂糖凝胶可以用于蛋白质和核酸的电泳支持介质,尤其适合于 核酸的提纯、分析。如浓度为1%的琼脂糖凝胶的孔径对于蛋白质来说 是比较大的,对蛋白质的阻碍作用较小,这时蛋白质分子大小对电泳 迁移率的影响相对较小,所以适用于一些忽略蛋白质大小而只根据蛋 白质天然电荷来进行分离的电泳技术,如免疫电泳、平板等电聚焦电 泳等。 琼脂糖适合于DNA、RNA分子的分离、分析,由于DNA、RNA分 子通常较大,所以在分离过程中会存在一定的摩擦阻碍作用,这时分 子的大小会对电泳迁移率产生明显影响。例如对于双链DNA,电泳迁 移率的大小主要与DNA分子大小有关,而与碱基排列及组成无关。 另外,一些低熔点的琼脂糖(62 ℃时熔化,因此其中的样品如 DNA可以重新溶解到溶液中而回收。
相关文档
最新文档