聚丙烯酰胺凝胶电泳原理及方法
非变性聚丙烯酰胺凝胶电泳实验原理,步骤和结果分析

非变性聚丙烯酰胺凝胶电泳实验原理,步骤
和结果分析
一、实验原理
非变性聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离和纯化技术,其原理基于蛋白质在凝胶电泳过程中受到凝胶孔隙大小及电场力的影响而发生迁移分离。
在非变性条件下,蛋白质保持其原有的构象,通过电泳进行分离。
二、实验步骤
1. 制备凝胶:首先准备非变性聚丙烯酰胺凝胶,通常是通过聚丙烯酰胺单体聚合成凝胶板。
2. 样品加载:将待分离的蛋白样品混合添加载体缓冲液,并加热变性处理,然后加载到凝胶槽中。
3. 电泳分离:将已加载样品的凝胶槽浸入电泳缓冲液中,施加电场进行电泳分离,蛋白质根据其分子大小及电荷迁移至不同的位置,最终形成条带。
4. 凝胶染色:分离完成后,应用染色方法将蛋白质条带可视化。
5. 结果分析:根据蛋白质条带的迁移位置以及染色效果,分析样品中含有的蛋白种类及相对含量。
三、实验结果分析
通过非变性聚丙烯酰胺凝胶电泳实验,我们可以获得样品中蛋白质的分子量信息,并进一步分析样品中可能存在的杂质及纯度。
在电泳过程中,蛋白质根据其分子大小在凝胶中迁移的速度不同,从而实现了蛋白质的分离。
根据蛋白质在凝胶上的位置,我们可以对样品进行定性和定量分析,从而获得关于样品组成和含量的重要信息。
综上所述,非变性聚丙烯酰胺凝胶电泳是一种简单有效的蛋白质分离技术,广泛应用于生物学和生物化学研究中。
通过实验结果的分析和解读,可以更好地了解样品中蛋白质的组成及结构,为进一步的实验研究提供重要参考。
聚丙烯酰胺凝胶电泳dna

聚丙烯酰胺凝胶电泳dna聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis,简称PAGE)是一种常用的生物分析技术,尤其在DNA分析中得到广泛应用。
本文将从原理、步骤和应用等方面介绍聚丙烯酰胺凝胶电泳DNA技术。
一、原理聚丙烯酰胺凝胶电泳DNA是基于DNA分子的电荷和大小差异来进行分离的技术。
聚丙烯酰胺凝胶是一种由聚丙烯酰胺单体构成的高分子网状结构,具有较小的孔隙大小。
DNA分子在电场作用下,根据其电荷大小和分子大小,通过凝胶孔隙的阻碍作用而分离出不同长度的DNA片段。
二、步骤1. 制备凝胶:将聚丙烯酰胺单体与交联剂TEMED和过硫酸铵混合,形成聚丙烯酰胺凝胶混合液。
将混合液倒入凝胶模具中,插入梳子,在混合液固化后去除梳子,得到凝胶板。
2. 样品处理:将待分析的DNA样品与加载缓冲液混合,加热至变性,使DNA分子解开双链,然后冷却至室温。
3. 载样:将处理好的DNA样品加入凝胶孔隙中。
4. 电泳:将凝胶板浸泡在缓冲液中,连接正负电极,通电进行电泳。
电场作用下,DNA分子向阳极(正电极)迁移。
5. 可视化:电泳结束后,将凝胶板进行染色或用荧光探针标记DNA分子,然后使用紫外光或激光扫描仪进行成像。
三、应用1. DNA测序:聚丙烯酰胺凝胶电泳是传统的DNA测序方法之一。
通过根据DNA分子长度的差异进行分离,可以得到DNA的序列信息。
2. DNA片段分析:聚丙烯酰胺凝胶电泳可以用于分析DNA样品中的片段大小和相对含量,用于DNA指纹图谱的构建、基因突变的检测等。
3. 蛋白质分析:类似于DNA分析,聚丙烯酰胺凝胶电泳也可以用于分离和分析蛋白质样品。
通过改变凝胶孔隙的浓度和pH值等条件,可以实现对蛋白质的分离。
4. RNA分析:聚丙烯酰胺凝胶电泳也可以用于RNA的分析,如分析RNA的大小和纯度等。
聚丙烯酰胺凝胶电泳DNA技术是一种重要的生物分析技术,广泛应用于DNA测序、DNA片段分析、蛋白质分析和RNA分析等领域。
聚丙烯酰胺凝胶电泳分离原理

聚丙烯酰胺凝胶电泳分离原理
聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离和分析方法。
该方法利用聚丙烯酰胺凝胶中孔隙大小不同的特性,将不同大小、不同电荷的蛋白质分离开来。
聚丙烯酰胺凝胶是由丙烯酰胺单体和交联剂组成的,经过聚合反应形成的一种高分子材料。
在聚合过程中,交联剂的加入使得聚合物形成了三维结构,从而形成了具有孔隙的凝胶。
孔隙大小取决于交联剂的量和种类。
在凝胶电泳中,蛋白质样品被加载到聚丙烯酰胺凝胶中,然后通过电泳进行分离。
电场会使得带电的蛋白质向着相反电极运动,而孔隙大小不同的凝胶会使得不同大小的蛋白质在凝胶中移动速度不同,从而实现了分离。
此外,聚丙烯酰胺凝胶中还可以添加SDS(十二烷基硫酸钠)等表面活性剂,使得蛋白质样品呈现出几乎相同的负电荷,这样不同蛋白质之间的电荷差异对分离结果的影响就可以被消除。
聚丙烯酰胺凝胶电泳分离原理是基于分子大小和电荷差异的,因此可以用于分离和检测不同大小、不同电荷的蛋白质,具有广泛的应用价值。
- 1 -。
sds聚丙烯酰胺凝胶电泳测定蛋白质相对分子量的原理;

sds聚丙烯酰胺凝胶电泳测定蛋白质相对分子量的原理;
SDS聚丙烯酰胺凝胶电泳是一种蛋白质分析方法,常用于测定蛋白质的相对分子量。
其原理是利用SDS(十二烷基硫酸钠)使蛋白质带负电,使蛋白质在凝胶中按照相对分子量大小进行分离。
具体原理如下:
1. SDS:SDS是一种表面活性剂,它可以与蛋白质发生结合,使得所有蛋白质带有相同的电荷密度。
2. 蛋白质解不性:在SDS存在条件下,蛋白质发生解性,其中SDS会形成不溶解的复合物,使蛋白质具有均一负电荷。
3. 凝胶电泳:将SDS处理后的蛋白质样品加于聚丙烯酰胺凝胶电泳胶板上,施加电场使蛋白质迁移。
4. 分离:由于凝胶电泳胶阻力不同,蛋白质经过一段时间后在凝胶上分离成锥形区带。
5. 相对分子量测定:在同一凝胶中,已知相对分子量已知的标准蛋白质样品与待测蛋白质样品进行分析,通过对比标准蛋白质样品的迁移距离和待测蛋白质样品的迁移距离,可以推算出待测蛋白质样品的相对分子量。
需要注意的是,由于SDS聚丙烯酰胺凝胶电泳是以相对分子量进行分析的,所以对于蛋白质的准确分子量测定,还需结合其他方法如质谱等进行综合分析。
SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳(PAGE)实验报告一、实验目的1.学习SDS-PAGE分离蛋白质的原理;2.掌握垂直板电泳的操作方法。
二、实验原理1、电泳:(1)定义:是指带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。
(2)影响电泳效果的因素:①带电颗粒的大小和形状:颗粒越大,电泳速度越慢,反之越快;②颗粒的电荷数:电荷越少,电泳速度越慢,反之越快;③溶液的粘度:粘度越大,电泳速度越慢,反之越快;④溶液的pH值:影响被分离物质的解离度,离等电点越近,电泳速度越慢,反之越快;⑤电场强度:电场强度越小,电泳速度越慢,反之越快;⑥离子强度:离子强度越大,电泳速度越慢,反之越快;⑦电渗现象:电场中,液体相对于固体支持物的相对移动;⑧支持物筛孔大小:孔径小,电泳速度慢,反之则快。
2、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)(1)定义聚丙烯酰胺凝胶电泳(PAGE):是以聚丙烯胺凝胶作为载体的一种区带电泳。
SDS-PAGE:是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠)(2)SDS的作用SDS是一种阴离子去垢剂,可与蛋白质结合,形成SDS-蛋白质复合物。
由于SDS带有大量负电荷,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖,即消除了蛋白质分子之间电荷差异。
因此在电泳时,蛋白质分子的迁移速度则主要取决于蛋白质分子大小(3) SDS-PAGE分类:¾SDS-PAGE按照缓冲液pH值和凝胶孔径差异分为连续系统和不连续系统两大类:连续系统:电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统:缓冲液离子成分,pH,凝胶浓度及电位梯度均不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳(4)聚丙烯胺凝胶的生成:聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。
聚丙烯酰胺凝胶电泳原理及方法

聚丙烯酰胺凝胶电泳原理及方法发布时间:11-06-01 来源:点击量:10032 字段选择:大中小聚丙烯酰胺凝胶电泳原理及方法聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支持介质的电泳方法。
在这种支持介质上可根据被分离物质分子大小和分子电荷多少来分离。
聚丙烯酰胺凝胶有以下优点:①聚丙烯酰胺凝胶是由丙烯酰胺和N,N'甲叉双丙烯酰胺聚合而成的大分子。
凝胶有格子是带有酰胺侧链的碳-碳聚合物,没有或很少带有离子的侧基,因而电渗作用比较小,不易和样品相互作用。
②由于聚丙烯酰胺凝胶是一种人工合成的物质,在聚合前可调节单体的浓度比,形成不同程度交链结构,其空隙度可在一个较广的范围内变化,可以根据要分离物质分子的大小,选择合适的凝胶成分,使之既有适宜的空隙度,又有比较好的机械性质。
一般说来,含丙烯酰胺7-7.5%的凝胶,机械性能适用于分离分子量范围不1万至100万物质,1万以下的蛋白质则采用含丙烯酰胺15-30%的凝胶,而分子量特别大的可采用含丙烯酰胺4%的凝胶,大孔胶易碎,小孔胶则难从管中取出,因此当丙烯酰胺的浓度增加时可以减少双含丙烯酰胺,以改进凝胶的机械性能。
③在一定浓度范围聚丙烯酰胺对热稳定。
凝胶无色透明,易观察,可用检测仪直接测定。
④丙烯酰胺是比较纯的化合物,可以精制,减少污染。
合成聚丙的总克数称凝胶浓度,常用T%表达;凝胶溶液中交联剂占单体和交联体总量的百分数称为交联度,常用C%表示,可用下式计算:公式a:丙烯酰胺克数;b:甲撑双丙烯酰胺克数;m:缓冲液体积(毫升)凝胶浓度过高时,凝胶硬而脆,容易破碎;凝胶浓度太低时,凝胶稀软,不易操作。
交联度过高,胶不透明并缺乏弹性;交联度过低,凝胶呈糊状。
聚丙烯酰胺凝胶具有较高的粘度,它不防止对流减低扩散的能力,而且因为它具有三度空间网状结构,某分子通过这种网孔的能力将取决于凝胶孔隙和分离物质颗粒的大小和形状,这是凝胶的分子筛作用。
由于这种分子筛作用,这里的凝胶并不仅是单纯的支持物,因此,在电泳过程中除了注意电泳的基本原理以外,还必须注意与凝胶本身有关的各种性质(网孔的大小和形状等)。
SDS聚丙烯酰胺凝胶电泳实验原理和操作步骤

实验原理:SDS-PAGE是对蛋白质进行量化,比较及特点判断的一种经济、快速、而且可重复的方法。
该法是依据混杂蛋白的分子量不同样来进行分别的。
SDS是一种去垢剂,可与蛋白质的疏水局部相结合,破坏其折叠结构,并使其广泛存在于一个广泛均一的溶液中。
SDS蛋白质复合物的长度与其分子量成正比。
在样品介质和凝胶中参加强复原剂和去污剂后,电荷因素可被忽略。
蛋白亚基的迁移率取决于亚基分子量。
试剂和器材:试剂: 1. 5x 样品缓冲液〔 10ml〕: 1mol/L 的 Tris-HCl,5ml 50% 甘油,2ml 10%的 SDS,巯基乙醇, 1ml 1%溴酚蓝,蒸馏水。
可在4℃保存数周,或在- 20℃保存数月。
2.凝胶贮液:在通风橱中,称取丙烯酰胺 30g,甲叉双丙烯酰胺,加重蒸水溶解后,定容到100ml。
过滤后置棕色瓶中, 4℃保存,一般可放置 1个月。
3.分别胶缓冲液:Tris,加1mol/L HCl 48ml,加重蒸水80ml使其溶解,调,定容至100ml, 4℃保存。
4.浓缩胶缓冲液:Tris,加1mol/L HCl 48ml,加重蒸水80ml使其溶解,调,定容至100ml, 4℃保存。
5.TEMED〔四乙基乙二胺〕原液%过硫酸铵〔用重蒸水新鲜配制〕7.Tris- 甘氨酸电极缓冲液:称取Tris ,甘氨酸,加蒸馏水约900ml,调后,用蒸馏水定容至1000ml。
置4℃保存,临用前稀释10倍。
8.考马斯亮蓝 G250染色液:称 100mg 考马斯亮蓝 G250,溶于200ml 蒸馏水中,慢慢参加70%的过氯酸,最后补足水到250ml,搅拌 1小时,小孔滤纸过滤。
器材:电泳仪,电泳槽,水浴锅,摇床。
实验操作〔一〕样品制备将蛋白质样品与 5X 样品缓冲液〔 20ul + 5ul 〕在一个 Eppendorf管中混杂。
放入 100℃加热 5 - 10min,取上清点样。
〔二〕分别胶及浓缩胶的制备 1将玻璃板、样品梳、 Spacer 用冲洗剂洗净,用 ddH2O 冲洗数次,再用乙醇擦拭,晾干;2 将两块洗净的玻璃板之间参加Spacer ,依据 Bio-Rad MiniⅡ/ Ⅲ说明书提示装好玻璃板;3按以下体积配制 10%分别胶 ml ,混匀;ddH2O mlmol/LTris-HCl pH= ml30% Acr-Bis ml10% SDS 80 ul10%AP 56 ulTEMED 6 ul4 向玻璃板间灌制分别胶,马上覆一层重蒸水,大体20 min后胶即可聚合;5 按以下体积配制 6%浓缩胶 ml ,混匀;ddH2O mol/LTris-HClpH=30% Acr-Bisml400 ul600 ul10% SDS10% AP TEMED36ul24ul4ul6将上层重蒸水倾去,滤纸吸干,灌制浓缩胶,插入样品梳;7装好电泳系统,参加电极缓冲液,上样 20 μl;8 稳压 200V,溴酚蓝刚跑出分别胶时,停止电泳,约需45 min~1hr.9 卸掉胶板,剥离胶放入染色液中,室温染色1~ 2 hr ;参加脱色液,置于 80 rpm 脱色摇床上 , 每20 min 更换一次脱色液〔 10 ml 冰乙酸; 45 ml 乙醇; 45 ml 蒸馏水〕至完好脱净。
实验四聚丙烯酰胺凝胶电泳

实验四聚丙烯酰胺凝胶电泳实验目的1.掌握聚丙烯酰胺凝胶电泳的原理及其应用范围;2.熟悉聚丙烯酰胺凝胶电泳相关缓冲液的配制方法。
实验原理1.聚丙烯酰胺凝胶简称为PAGE为网状结构,具有分子筛效应。
它有两种形式:非变性聚丙烯酰胺凝胶电泳(Native-PAGE)及十二烷基硫酸钠——聚丙烯酰胺凝胶(SDS-PAGE);2.非变性聚丙烯酰胺凝胶,在电泳的过程中,蛋白质能够保持完整状态,并依据蛋白质的分子量大小、蛋白质的形状及其所附带的电荷量而逐渐呈梯度分开。
而SDS-PAGE仅根据蛋白质亚基分子量的不同就可以分开蛋白质。
3.SDS是一种阴离子去污剂,具有变性和助溶特性,可按一定的比例和蛋白质分子结合成复合物,并打断蛋白质的氢键和疏水键,使蛋白质带负电荷的量远远超过其本身原有的电荷,使SDS蛋白质复合物在电泳时的迁移率,不再受原有电荷和分子形状的影响;4.SDS-PAGE可使蛋白质在Tris-甘氨酸(pH8.3)缓冲液中,通过电泳的方法分离不同分子量蛋白质或测定蛋白质分子量的实验技术。
实验步骤(一)相关溶液的制备1. 30%丙烯酰胺(Acr):称Acr 29g,甲叉双丙烯酰胺(Bis)1g,加蒸馏水至100mL,过滤后置棕色瓶中,4℃贮存可用1-2月。
2. 10%SDS(十二烷基磺酸钠):10g SDS 68℃助溶于纯水。
3. 1.5mol/L pH8.8 Tris-HCl缓冲液:称取Tris18.2g,加入50mL水,用1mol/L盐酸调pH8.8,最后用蒸馏水定容至100ml。
4. 1.0mol/LpH6.8Tris-HCl缓冲液:称取Tris12.1g,加入50mL水,用1mol/L盐酸调pH6.8,最后用蒸馏水定容至100mL5. 10%过硫酸铵(AP)6. TEMED(四甲基乙二胺)7. 2×样品溶解液:1.0mol/L Tris-HCl(pH6.8) 1mL, SDS200mg,β-巯基乙醇0.5mL (临用前加入,也可以200mmol/L二硫苏糖醇代替),溴酚蓝3mg,甘油2mL,最后定容至10mL。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚丙烯酰胺凝胶电泳原理及方法
发布时间:11-06-01 来源:点击量:10032 字段选择:大中小聚丙烯酰胺凝胶电泳原理及方法
聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支持介质的电泳方法。
在这种支持介质上可根据被分离物质分子大小和分子电荷多少来分离。
聚丙烯酰胺凝胶有以下优点:
①聚丙烯酰胺凝胶是由丙烯酰胺和N,N'甲叉双丙烯酰胺聚合而成的大分子。
凝胶有格子是带有酰胺侧链的碳-碳聚合物,没有或很少带有离子的侧基,因而电渗作用比较小,不易和样品相互作用。
②由于聚丙烯酰胺凝胶是一种人工合成的物质,在聚合前可调节单体的浓度比,形成不同程度交链结构,其空隙度可在一个较广的范围内变化,可以根据要分离物质分子的大小,选择合适的凝胶成分,使之既有适宜的空隙度,又有比较好的机械性质。
一般说来,含丙烯酰胺7-7.5%的凝胶,机械性能适用于分离分子量范围不1万至100
万物质,1万以下的蛋白质则采用含丙烯酰胺15-30%的凝胶,而分子量特别大的可采用含丙烯酰胺4%的凝胶,大孔胶易碎,小孔胶则难从管中取出,因此当丙烯酰胺的浓度增加时可以减少双含丙烯酰胺,以改进凝胶的机械性能。
③在一定浓度范围聚丙烯酰胺对热稳定。
凝胶无色透明,易观察,可用检测仪直接测定。
④丙烯酰胺是比较纯的化合物,可以精制,减少污染。
合成聚丙
的总克数称凝胶浓度,常用T%表达;凝胶溶液中交联剂占单体和交联体总量的百分数称为交联度,常用C%表示,可用下式计算:
公式
a:丙烯酰胺克数;b:甲撑双丙烯酰胺克数;m:缓冲液体积(毫升)凝胶浓度过高时,凝胶硬而脆,容易破碎;凝胶浓度太低时,凝胶稀软,不易操作。
交联度过高,胶不透明并缺乏弹性;交联度过低,凝胶呈糊状。
聚丙烯酰胺凝胶具有较高的粘度,它不防止对流减低扩散的能力,而且因为它具有三度空间网状结构,某分子通过这种网孔的能力将取决于凝胶孔隙和分离物质颗粒的大小和形状,这是凝胶的分子筛作用。
由于这种分子筛作用,这里的凝胶并不仅是单纯的支持物,因此,在电泳过程中除了注意电泳的基本原理以外,还必须注意与凝胶本身有关的各种性质(网孔的大小和形状等)。
可通过下式计算来选择适当的凝胶网孔。
公式
式中:P为网孔平均直径,C为多聚体浓度,d为该多聚体分子直径(若不是卷曲的分子应为5A),K为常数,K值取决于涨胶的几何构型,假如多聚体的链是以近似于直角交联的,则约为1.5根据此式,我们可以通过多聚体浓度C近似地计算出网孔直径,例如已知多聚体浓度为5%,其网孔平均直径应为:
公式
除,那电泳迁移率就取决于分子的大小,就可以用电泳技术测定蛋白质的分子量。
1967年,Shapiro等发现阴离子去污剂十二烷基硫酸钠(SDS)具有这种作用。
当向蛋白质溶液中加入足够量SDS和巯基乙醇,SDS可使蛋白质分子中的二硫键还原。
由于十二烷基硫酸根带负电,使各种蛋白质—SDS复合物都带上相同密度的负电荷,它的量大大超过了蛋白质分子原的电荷量,因而掩盖了不同种蛋白质间原有的电荷差别,SDS与蛋白质结合后,还可引起构象改变,蛋白质—SDS 复合物形成近似“雪茄烟”形的长椭圆棒,不同蛋白质的SDS复合物的短轴长度都不一样,约为18A,这样的蛋白质—SDS复合物,在凝胶中的迁移率,不再受蛋白质原的电荷和形状的影响,而取决于分子量的大小,因而SDS聚丙烯酰胺凝胶电泳可以用于测定蛋白质的分子量。
蛋白质的聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳原理及方法
一、实验目的
1.了解电泳实验原理
2.掌握电泳实验操作规程
3.用电泳方法测定蛋白分子量
聚丙烯酰胺凝胶电泳原理及方法
二、实验原理
最广泛使用的不连续缓冲系统最早是由Ornstein(1964) 和Dav is(1964) 设计的,样品和浓缩胶中含 Tris-HCl(pH 6.8), 上下槽缓冲液含Tris-甘氨酸(pH8.3), 分离胶中含Tris-HCl(pH 8.8)。
系统中所有组分都含有0.1% 的 SDS(Laemmli, 1970)。
样品和浓缩胶中的氯离子形成移动界面的先导边界而甘氨酸分子则组成尾随边界,在移动界面的两边界之间是一电导较低而电位滴度较陡的区域, 它推动样品中的蛋白质前移并在分离胶前沿积聚。
此处pH值较高,有利于甘氨酸的离子化,所形成的甘氨酸离子穿过堆集的蛋白质并紧随氯离子之后,沿分离胶泳动。
从移动界面中解脱后,SDS-蛋白质复合物
lgM w = lg K -bm =K1-bm (2) 其中M w是蛋白质分子量;K和K1为常数
b为斜率,m 是电泳迁移率,实际使用的是相对迁移率m R。
如果用几种标准蛋白质分子量的对数作纵坐标,用各自的相对迁移率作横坐标,即可画出一条斜率为负的标准曲线。
相对迁移率为:
其中,d pr、d BPB分别为样品和BPB(溴酚兰)以分离胶表面为起点迁移的距离。
欲求未知蛋白的分子量,只需求出它的相对迁移率:
m R未=d pr未/d BPB
然后,从标准曲线上就可求出此未知蛋白的分子量。
取出脱色后的凝胶平放在两块透明投影胶片中间,赶尽气泡,在复印机上复印。
在复印的凝胶图上用直尺分别量出各条蛋白带迁移的距离d pr和d BPB(以蛋白带的上沿或中心为准),计算相对迁移率,根据方程式:
lgM w = K1-bm R
用各标准蛋白分子量的对数(纵坐标)和相对迁移率m R(横坐标)画出标准曲线,由标准曲线再求出其他各条待测和未知蛋白带的分子量,如有可能计算其误差
聚丙烯酰胺凝胶电泳原理及方法
蛋白质聚丙烯酰胺凝胶电泳--生物秀PCR技术
【实验试剂和器材】
(一)试剂
1. 制备分离胶、浓缩胶有关试剂
(1)凝胶贮液:在通风橱中,称取丙烯酰胺29g,甲叉双丙烯酰胺1 g,加重蒸水溶解后,定容到100ml。
过滤后置棕色瓶中,4℃保存,一般可放置1个月。
(2)pH8.9分离胶缓冲液: Tris36.3g ,加1mol/L HCl 48ml,加重蒸水80ml使其溶解,调pH8.9,定容至100ml, 4℃保存。
(3)pH6.7浓缩胶缓冲液: Tris5.98g ,加1mol/L HCl 48ml,加重蒸水80ml使其溶解,调pH6.7,定容至100ml, 4℃保存。
(4)TEMED(四乙基乙二胺)原液
(5)10%过硫酸铵(用重蒸水新鲜配制)
2.pH8.3 Tris-甘氨酸电极缓冲液
称取Tris6.0g,甘氨酸28.8g,加蒸馏水约900ml,调pH8.3后,用蒸馏水定容至1000ml。
置4℃保存,临用前稀释10倍。
3. 50%(v/v)甘油
4. 1%(w/v) 溴酚蓝:称取100mg溴酚蓝,加蒸馏水10ml,搅拌直到完全溶解,过滤除去聚合的染料。
5.5×样品缓冲液(loadingbuffer):10ml
3.1ml1mol/L Tris-HCl(pH6.7) 312.5mmol/L
5ml 50%(v/v)甘油 25%
0.5ml1% (w/v) 溴酚蓝 0.05%
1.4ml 蒸馏水
4. 考马斯亮蓝G250染色液:称100mg考马斯亮蓝G250,溶于200m l蒸馏水中,慢慢加入7.5ml
70%的过氯酸,最后补足水到250ml,搅拌1小时,小孔滤纸过滤。
聚丙烯酰胺凝胶电泳原理及方法。