SDS-聚丙烯酰胺凝胶电泳
蛋白SDS聚丙烯酰胺凝胶电泳

蛋白SDS聚丙烯酰胺凝胶电泳实验目的1.掌握垂直电泳槽的基本操作过程。
2.熟悉SDS聚丙烯酰胺凝胶电泳的原理。
实验原理SDS聚丙烯酰胺凝胶电泳可以根据蛋白质分子所带电荷的差异和分子大小的不同产生的不同迁移率,从而将蛋白分离成若干条带。
在催化剂过硫酸铵(APS)和N,N,N′,N′-四甲基乙二胺(TEMED)的作用下,丙烯酰胺(Acr)和交联剂N,N′-亚甲基双丙烯酰胺(Bis)聚合交联形成具有网状立体结构的凝胶,并以此为支持物进行电泳。
SDS是一种阴离子表面活性剂,能与蛋白分子结合形成复合物,使蛋白所带的负电荷远远超过其原有的电荷,从而掩盖了各种蛋白分子间原本的电荷差异。
因此,电泳时的迁移率不再受蛋白原有电荷和分子形状的影响。
实验器材垂直电泳槽、电泳仪、移液器、移液器吸头、烧杯等。
实验试剂30%(29∶1)Arc-Bis溶液、分离胶缓冲液(pH8.8)、浓缩胶缓冲液(pH6.8)、TEMED、10%APS、5×蛋白电泳缓冲液、10×蛋白上样缓冲液、蛋白标准液、考马斯亮蓝R-250染色液、考马斯亮蓝脱色液等。
实验操作(1)配制SDS聚丙烯酰胺凝胶:将制胶的凹型玻璃与平玻璃固定在制胶夹板上,确保不漏水后按以下配方配制12%的分离胶。
30%(29∶1)Arc-Bis溶液3ml分离胶缓冲液(pH8.8) 1.95mlH2O 2.55ml10%APS 75μlTEMED 30μl(2)混匀分离胶后,尽快灌至两块玻璃板的间隙中,在距离较短玻璃板2~3cm处停止灌胶,同时加入1~2ml的去离子水覆盖凝胶,室温静置10~20min。
(3)分离胶聚合后倒去水层,用滤纸把剩余水分吸干,按以下配方配制4%的浓缩胶。
30%(29∶1)Arc-Bis溶液650μl浓缩胶缓冲液(pH6.8) 1.3mlH2O 3ml10%APS 50μlTEMED 18μl(4)混匀后将浓缩胶灌注至已聚合的分离胶上,当灌注至与较短玻璃板顶端相齐时,立即插入梳子,同时避免产生气泡。
SDS-聚丙烯酰胺凝胶电泳

8、转移缓冲液:配制1L转移缓冲液,需称取2.9g甘氨酸、5.8gTris碱、0.37g SDS,并加入200ml甲醇,加水至总量1L。
ß
把膜置于第二抗体中,温和振荡2小时
ß
在TBST中洗膜1小时,中间更换4次
ß
显影,定影这一步骤为最重要的步骤之一,非常容易出现问题,必须小心仔细,我们在实验中采用的是上海康成公司生产的第二代化学超敏发光试剂盒,说明书另附PDF。在实验中发现有时发光很快减弱;肉眼可以看到发光,但是底片显不出来等问题。联系了康成公司的技术员,改动如下:膜与发光显色剂接触时间改为2分钟(不是说明书中的5min),底片压片时间2分钟。显影时有一些基本的原则,如严格的避光,压片前注意排除气泡,压片过程中底片不能接触液体等,按照一定的规则放置膜。将底片压片曝光结束后,将其中一角折起以助定位。定影后将膜贴于显出的条带,条带旁表明marker条带。底片注明实验日期、名称。
(2)分类
western显色的方法主要有以下几种:
i.放射自显影
ii.底物化学发光ECL
iii.底物荧光ECF
iv.底物DAB呈色
现常用的有底物化学发光ECL和底物DAB呈色,体同水平和实验条件的是用第一种方法,目前发表文章通常是用底物化学发光ECL。只要买现成的试剂盒就行,操作也比较简单,原理如下(二抗用HRP标记):反应底物为过氧化物+鲁米诺,如遇到HRP,即发光,可使胶片曝光,就可洗出条带。
2.针对样品的常见问题
B.做线粒体膜UCP2蛋白的Western Blot(以下简写成Western Blot),提取线粒体后冻存(未加蛋白酶抑制剂),用的博士德的一抗,开始还有点痕迹,现在越来越差,上样量已加到120μg,换了个santa cruz的一抗仍不行。是什么原因?蛋白酶抑制剂单加PMSF行吗?
sds聚丙烯酰胺凝胶电泳

SDS聚丙烯酰胺凝胶电泳1. 引言SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)是一种常用的蛋白质分离和分析方法。
通过SDS(十二烷基硫酸钠,Sodium Dodecyl Sulfate)将蛋白质变性并赋予负电荷,在凝胶电泳中,根据蛋白质的分子量大小,使蛋白质在电场中向阳极方向运动,从而实现蛋白质的分离。
SDS-PAGE广泛应用于蛋白质的分子量测定、复杂蛋白质混合物的分离、蛋白质组学研究等领域。
它具有简单易行、高分辨率、高灵敏度以及可以与其他技术(如质谱、Western blot 等)结合等优点。
本文将介绍SDS-PAGE的原理、实验步骤和关键注意事项,并提供相关的Markdown文本格式输出,以便读者在实验中参考。
2. 原理SDS-PAGE的原理基于SDS的作用。
SDS是一种带有负电荷的表面活性剂,能够使蛋白质在水溶液中均匀地带上负电荷,同时使蛋白质变性并展开成线性构象。
在电泳过程中,SDS包裹在蛋白质中,使蛋白质的电荷密度保持均一,从而使蛋白质的迁移速率仅与蛋白质的分子量有关,而与蛋白质的电荷无关。
SDS-PAGE通常在聚丙烯酰胺凝胶上进行。
聚丙烯酰胺是一种化学稳定性强的凝胶材料,通过聚合物的交联形成网状结构。
在凝胶电泳过程中,根据蛋白质分子量的不同,蛋白质能够在凝胶孔隙中以不同程度的速率迁移。
3. 实验步骤3.1. 制备凝胶1.准备1.5 M的Tris缓冲液,pH 8.8。
2.准备汀凝胶的原液,将30%丙烯酰胺溶液、1.5 MTris缓冲液和10%过硫酸铵按照体积比例(29:1:10)混合均匀。
3.快速加入TEMED(N,N,N’,N’-四甲基乙二胺)溶液至原液中,并迅速倒入凝胶模具中。
4.在凝胶模具上方加入异丙醇以防止凝胶表面生成凝胶。
3.2. 样品处理1.取适量的蛋白质样品。
2.加入相应的样品加载缓冲液(含有SDS和还原剂,以及测量样品体积比例的溶液)。
3.在冰上煮沸5分钟,使蛋白质样品变性并带上负电荷。
SDS-聚丙烯酰胺凝胶电泳

聚丙烯酰胺凝胶电泳PAGE作用:用于蛋白质与寡糖核苷酸的分离。
作用原理聚丙烯酰胺凝胶电泳是网状结构,具有分子筛效应,它具有两种形式,一种是非变性聚丙烯酰胺凝胶,蛋白质在电泳中保持完整的状态,蛋白在其中依三种因素分开:蛋白大小,形状和电荷。
而SDS-PAGE仅根据蛋白分子量亚基的不同而分离蛋白。
这个技术首先是196 7年由shapiro建立,他们发现在样品介质和丙烯酰胺凝胶中加入离子去污剂和强还原剂后,蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小,电荷因素可以忽视。
作用:SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强还原剂如巯基乙醇,二硫苏糖醇能使绊胱氨酸残基间的二硫键断裂。
在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
SDS-PAGE一般采用的是不连续缓冲系统,于连续缓冲系统相比,能够有较高的分辨率。
浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。
当样品液和浓缩胶选TRIS/HCL缓冲液,电极液选TRIS/甘氨酸。
电泳开始后,HCL解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。
蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。
电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成以稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。
此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。
补充信息聚丙烯酰胺凝胶电泳简称为PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。
SDS-聚丙烯酰胺凝胶电泳

三、具体实验操作
9.凝胶板剥离与染色:电泳结束后,撬开玻 璃板,将凝胶板做好标记后放在大培养皿内, 加入染色液,染色1小时左右。 10.脱色:染色后的凝胶板用蒸馏水漂洗数 次,再用脱色液脱色,直到蛋白质区带清晰。 ※剥胶时要小心,保持胶完好无损,染色要 充分.
四、实验结果分析
绘制标准曲线:
按下式计算相对迁移率:
三、具体实验操作
3. 实验步骤
1.将玻璃板用蒸馏水洗净晾干, 准备2个干净的锥形 瓶. 2.把玻璃板在灌胶支架上固定好. ※固定玻璃板时,两边用力一定要均匀,防止夹 坏玻璃板. 3.按比例配好分离胶,用移液管快速加入,大约5厘米 左右,之后加少许蒸馏水,静置40分钟. ※凝胶配制过程要迅速, 催化剂TEMED要在注胶 前再加入,否则凝结无法注胶.注胶过程最好一次性 完成,避免产生气泡.
三、具体实验操作
※水封的目的是为了使分离胶上延平直,并排除气泡 ※凝胶聚合好的标志是胶与水层之间形成清晰的界面. 4.倒出水并用滤纸把剩余的水分吸干,按比例配好浓缩胶, 连续平稳加入浓缩胶至离边缘5mm处,迅速插入样梳,静置 40分钟. ※样梳需一次平稳插入,梳口处不得有气泡,梳底需水平. 5.拔出样梳后,在上槽内加入缓冲液,没过锯齿时可拆去 底端的琼脂糖. ※要使锯齿孔内的气泡全部排出,否则会影响加样效果. 6、加样三个。 (1)取10µ l标准蛋白溶解液于EP管内, 再加入10µ 2倍样品缓冲液,上样量为20µl。 l
相对迁移率 =
蛋白样品距加样端迁移距离(cm) 溴酚蓝区带中心距加样端距离(cm)
以每个蛋白标准的分子量对数对它的相对迁移 率作图得标准曲线,量出未知蛋白的迁移率即 可测出其分于量,这样的标难曲线只对同一块 凝胶上的样品的分子量测定才具有可靠性。
SDS-PAGE(SDS聚丙烯酰胺凝胶电泳)原理

甘氨酸
最广泛使用的不连续缓冲系统最早是由Ornstein(1964) 和 Davis(1964) 设计的, 样品和浓缩胶中含 Tris-HCl(pH 6.8), 上下槽缓冲 液含Tris-甘氨酸(pH 8.3), 分离胶中含Tris-HCl(pH 8.8)。系统中所有组 分都含有0.1% 的 SDS(Laemmli, 1970)。样品和浓缩胶中的氯离子形 成移动界面的先导边界而甘氨酸分子则组成尾随边界,在移动界面的两 边界之间是一电导较低而电位滴度较陡的区域, 它推动样品中的蛋白质 前移并在分离胶前沿积聚。此处pH值较高, 有利于甘氨酸的离子化, 所形成的甘氨酸离子穿过堆集的蛋白质并紧随氯离子之后,沿分离胶泳 动。从移动界面中解脱后,SDS-蛋白质复合物成一电位和pH值均匀的 区带泳动穿过分离胶,并被筛分而依各自的大小得到分离。
Ø 加入加速剂TEMED后聚合马上开始,应立即将凝胶混匀,迅速灌胶。
保存条件: 4℃保存。
注意事项:
Ø 易燃,有腐蚀性,请注意防护。
Ø为了您的安全和健康,请穿实验服并戴一次性手套操作。
.
过硫酸铵 分子式: (NH4)2S2O8 分子量: 228.20
性状:过硫酸铵是一种白色、无味晶体,常作强氧化剂使用,也可用作单体聚合引发 剂。它几乎不吸潮,由于能达到很高的纯度而具有特别好的稳定性,便于储存。另外, 它还具有使用方便、安全等优点。 储存及使用注意事项:
.
浓缩效应:凝胶由两种不同的凝胶层组成。上层为浓缩胶,下层为分离 胶。浓缩胶为大孔胶,缓冲液pH6.7,分离胶为小孔胶,缓冲液pH8.9。 在上下电泳槽内充以Tris—甘氨酸缓冲液(pH8.3),这样便形成了凝胶孔 径和缓冲液pH值的不连续性。在浓缩胶中 HCl几乎全部解离为Cl-,但只 有极少部分甘氨酸解离为H2NCH2COO-。蛋白质的等电点一般在pH5左 右,在此条件下其解离度在HCl和甘氨酸之间。当电泳系统通电后,这3 种离子同向阳极移动。其有效泳动率依次为Cl->蛋白质> H2NCH2COO-,故C1-称为快离子,而H2NCH2COO- 称为慢离子。电 泳开始后,快离子在前,在它后面形成离子浓度低的区域即低电导区。 电导与电压梯度成反比,所以低电导区有较高的电压梯度。这种高电压 梯度使蛋白质和慢离子在快离子后面加速移动。在快离子和慢离子之间 形成—个稳定而不断向阳极移动的界面。由于蛋白质的有效移动率恰好 介于快慢离子之间,因此蛋白质离子就集聚在快慢离子之间被浓缩成— 条狭窄带。这种浓缩效应可使蛋白质浓缩数百倍。
《中国药典》2020版—SDS-聚丙烯酰胺凝胶电泳法

0541电泳法第五法 SDS-聚丙烯酰胺凝胶电泳法SDS-聚丙烯酰胺凝胶电泳法是一种变性的聚丙烯酰胺凝胶电泳方法。
SDS-聚丙烯酰胺凝胶电泳法分离蛋白质的原理是根据大多数蛋白质都能与阴离子表面活性剂十二烷基硫酸钠(SDS)按重量比结合成复合物,使蛋白质分子所带的负电荷远远超过天然蛋白质分子的净电荷,消除了不同蛋白质分子的电荷效应,使蛋白质按分子大小分离。
本法适用于蛋白质的定性鉴别、纯度和杂质控制以及定量测定。
1.仪器装置恒压或恒流电源、垂直板电泳槽和制胶模具。
2.试剂(1)水 (去离子水,电阻率不低于18.2MΩ•cm)。
(2)分离胶缓冲液(4×,A液):1.5mol/L三羟甲基氨基甲烷-盐酸缓冲液称取三羟甲基氨基甲烷18.15g,加适量水溶解,用盐酸调pH值至8.8, 加水稀释至100ml。
(3)30%丙烯酰胺溶液(B液):称取丙烯酰胺58.0g、N,N’-亚甲基双丙烯酰胺2.0g,加温水溶解并稀释至200ml,滤纸过滤(避光保存)。
(4)10%SDS溶液(C液):称取十二烷基硫酸钠10g,加水溶解并稀释至100ml。
(5)四甲基乙二胺溶液(TEMED,D液):商品化试剂,通常浓度为10%的N,N,N’,N’-四甲基乙二胺。
(6)10%过硫酸铵溶液(E液):称取过硫酸铵10g,加水溶解并稀释至100ml。
建议临用前配制,或分装于-20℃可贮存2周。
(7)浓缩胶缓冲液(4×,F液):0.5mol/L三羟甲基氨基甲烷-盐酸缓冲液称取三羟甲基氨基甲烷6.05g,加适量水使溶解,用盐酸调pH值至6.8,加水稀释至100ml。
(8)电极缓冲液(10×):称取三羟甲基氨基甲烷30g、甘氨酸144g、十二烷基硫酸钠10g ,加水溶解并稀释至约800ml,用盐酸调pH值至8.1-8.8之间,加水稀释至1000ml。
(9)非还原型供试品缓冲液(4×):称取三羟甲基氨基甲烷3.03g、溴酚蓝20mg、十二烷基硫酸钠8.0g,量取甘油40ml,加水溶解并稀释至约80ml,用盐酸调节至pH6.8,加水稀释至100ml。
SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳(PAGE)实验报告一、实验目的1.学习SDS-PAGE分离蛋白质的原理;2.掌握垂直板电泳的操作方法。
二、实验原理1、电泳:(1)定义:是指带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。
(2)影响电泳效果的因素:①带电颗粒的大小和形状:颗粒越大,电泳速度越慢,反之越快;②颗粒的电荷数:电荷越少,电泳速度越慢,反之越快;③溶液的粘度:粘度越大,电泳速度越慢,反之越快;④溶液的pH值:影响被分离物质的解离度,离等电点越近,电泳速度越慢,反之越快;⑤电场强度:电场强度越小,电泳速度越慢,反之越快;⑥离子强度:离子强度越大,电泳速度越慢,反之越快;⑦电渗现象:电场中,液体相对于固体支持物的相对移动;⑧支持物筛孔大小:孔径小,电泳速度慢,反之则快。
2、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)(1)定义聚丙烯酰胺凝胶电泳(PAGE):是以聚丙烯胺凝胶作为载体的一种区带电泳。
SDS-PAGE:是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠)(2)SDS的作用SDS是一种阴离子去垢剂,可与蛋白质结合,形成SDS-蛋白质复合物。
由于SDS带有大量负电荷,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖,即消除了蛋白质分子之间电荷差异。
因此在电泳时,蛋白质分子的迁移速度则主要取决于蛋白质分子大小(3) SDS-PAGE分类:¾SDS-PAGE按照缓冲液pH值和凝胶孔径差异分为连续系统和不连续系统两大类:连续系统:电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统:缓冲液离子成分,pH,凝胶浓度及电位梯度均不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳(4)聚丙烯胺凝胶的生成:聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SDS-聚丙烯酰胺凝胶电泳
该技术首先在1967年由Shapiro建立,1969年由Weber和Osborn进一步完善。
一、原理
聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr) 和交联剂N,N’—亚甲基双丙烯酰胺(简称Bis)在催化剂作用下,聚合交联而成的具有网状立体结构的凝胶,并以此为支持物进行电泳。
聚丙烯酰胺凝胶电泳可根据不同蛋白质分子所带电荷的差异及分子大小的不同所产生的不同迁移率将蛋白质分离成若干条区带,如果分离纯化的样品中只含有同一种蛋白质,蛋白质样品电泳后,就应只分离出一条区带。
SDS是一种阴离子表面活性剂能打断蛋白质的氢键和疏水键,并按一定的比例和蛋白质分子结合成复合物,使蛋白质带负电荷的量远远超过其本身原有的电荷,掩盖了各种蛋白分子间天然的电荷差异。
因此,各种蛋白质-SDS 复合物在电泳时的迁移率,不再受原有电荷和分子形状的影响,而只是棒长的函数。
这种电泳方法称为SDS-聚丙烯酰胺凝胶电泳(简称SDS—PAGE)。
由于SDS-PAGE 可设法将电泳时蛋白质电荷差异这一因素除去或减小到可以略而不计的程度,因此常用来鉴定蛋白质分离样品的纯化程度,如果被鉴定的蛋白质样品很纯,只含有一种具三级结构的蛋白质或含有相同分子量亚基的具四级结构的蛋白质,那么SDS—PAGE 后,就只出现一条蛋白质区带。
SDS—PAGE 可分为圆盘状和垂直板状、连续系统和不连续系统。
本实验采用垂直板状不连续系统。
所谓“不连续”是指电泳体系由两种或两种以上的缓冲液、pH 和凝胶孔径等所组成。
1.样品的浓缩效应
在不连续电泳系统中,含有上、下槽缓冲液(Tris—Gly,pH8.3)、浓缩胶缓冲液(Tris—HCl,pH6.8)、分离胶缓冲液(Tris—HCl,pH8.8),两种凝胶的浓度(即孔径)也不相同。
在这种条件下,缓冲系统中的HCl 几乎全部解离成Cl-,两槽中的Gly (pI=6.0,pK a=9.7)只有很少部分解离成Gly 的负离子,而酸性蛋白质也可解离出负离子。
这些离子在电泳时都向正极移动。
C1—速度最快(先导离子),其次为蛋白质,Gly 负离子最慢(尾随离子)。
由于C1—很快超过蛋白离子,因此在其后面形成一个电导较低、电位梯度较陡的区域,该区电位梯度最高,这是在电泳过程中形成的电位梯度的不连续性,导致蛋白质和Gly 离子加快移动,结
果使蛋白质在进入分离胶之前,快、慢离子之间浓缩成一薄层,有利于提高电泳的分辨率。
2.分子筛效应
蛋白质离子进入分离胶后,条件有很大变化。
由于其pH 升高(电泳进行时常超过9.0),使Gly 解离成负离子的效应增加;同时因凝胶的浓度升高,蛋白质的泳动受到影响,迁移率急剧下降。
此两项变化,使Gly 的移动超过蛋白质,上述的高电压梯度不复存在,蛋白质便在一个较均一的pH 和电压梯度环境中,按其分子的大小移动。
分离胶的孔径有一定的大小,对不同相对分子质量的蛋白质来说,通过时受到的阻滞程度不同,即使净电荷相等的颗粒,也会由于这种分子筛的效应,把不同大小的蛋白质相互分开。
二、注意事项
1. SDS与蛋白质的结合按质量成比例(即:1.4gSDS/g蛋白质),蛋白质含量不可以超标,否则SDS结合量不足。
2. 用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质相对分子量时,必须同时作标准曲线。
不能利用这次的标准曲线作为下次用。
并且SDS-PAGE测定分子量有10%误差,不可完全信任。
3. 有些蛋白质由亚基(如血红蛋白)或两条以上肽链(α-胰凝乳蛋白酶)组成的,它们在巯基乙醇和SDS的作用下解离成亚基或多条单肽链。
因此,对于这一类蛋白质,SDS-聚丙烯酰胺凝胶电泳法测定的只是它们的亚基或是单条肽链的相对分子量。
4. 有的蛋白质(如:电荷异常或结构异常的蛋白质;带有较大辅基的蛋白质)不能采用该法测相对分子量。
5. 如果该电泳中出现拖尾、染色带的背景不清晰等现象,可能是SDS不纯引起。
步骤:
将已清洗干净的两块玻璃板组装好,浅玻璃板朝外,固定结实,检查是否漏水;根据蛋白质分子量确定下层胶浓度,配置下层胶,在小烧杯中摇匀,沿着玻璃板之间缝隙处,缓慢灌胶,到距前玻璃板上沿1.5cm处为止,浇灌去离子水封闭空气,促进凝胶聚合,等待约15—30min,交界面有明显的折光线,且倾斜模具,交界面不随之改变,为凝胶凝固良好;
配浓缩胶,混匀,灌胶,插上齿梳,确保无气泡,等待凝胶完全聚合(约30min);小心拔出梳子,将玻璃板固定在电泳架上(浅玻璃板朝内),将整个电泳架放入电泳槽,在内外槽中倒入5×电泳缓冲液,内槽液面过前玻璃板;
蛋白样品加入100μl 2×SDS-PAGE上样缓冲液,混匀,沸水中加热10min,使蛋白完全变性,取7-8μl样品上样,蛋白Marker5μl上样;
连接好正负极导线,电流20毫安,过半换35毫安,至溴酚蓝到达分离胶底部。
剥胶,将凝胶放入考马斯亮蓝染液浸泡,微波加热1min,摇5min,再加热1min,摇5min,染色液倒回,去离子水洗胶,微波加热20min脱色,清水冲两遍,观察蛋白电泳情况。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待
你的好评与关注)。