计算机控制技术AD与DA转换实验
AD与DA转换实验

华北电力大学实验报告实验名称:A/D转换与D/A转换实验课程名称:计算机控制系统专业班级:自动实1401学生姓名:张娅楠学号:201402020526实验日期:2017.3.14指导老师:程海燕老师A/D转换与D/A转换实验报告●实验一:A/D转换实验一、实验要求1、了解模/数转换基本原理,掌握ADC0809的使用方法。
2、了解ADC0809芯片的转换性能及编程,用延时查询方式读入A/D 转换结果,并用8255的PA口输出到发光二极管显示。
3、对汇编语言的编程的应用,有了更熟练的掌握。
二、实验内容1、使用设备万用表一块; PC计算机一台;Wave6000计算机实验培训系统一套2、实验过程•按连线图接好,检查无误后打开试验箱电源。
通过在计算机上进行设置将试验箱与电脑连接。
•在 PC 端软件开发平台上编写程序代码,编译通过后下载到试验箱,在试验箱上检测程序运行的结果。
•运行程序后,通过调节电位器,改变输入电压的大小,观察LED 灯的亮灭情况并记录不同电压值下LED灯的亮灭情况。
3、实验接线图4、使用的参考程序mode equ 082hPA equ 09000hCTL equ 09003hCS0809 equ 08000hcode segmentassume cs:codestart proc nearmov al, modemov dx, CTLout dx, al ;8255初始化again:mov al, 0mov dx, CS0809out dx, al ; 起动 A/Dmov cx, 40hloop $ ; 延时 > 100usin al, dx ; 读入结果mov dx, PA ;8255A口输出out dx, aljmp again ;重复code endsend start三、实验结果与分析调节电位器使输入模拟量从0--- +5V变化时,对应输出的数字量记录如下表:(测量数字中x代表该灯闪烁;理论值中x代表该位近似,理论上应该闪烁)误差分析:由表格可知误差基本在允许范围内,些许误差可能如下原因:1、本次实验所采用的是延迟程序等待ADC0809模数转换,这种设计是存在缺陷的,不如利用EOC引脚来判定转换是否结束比较准确,可能会造成部分数值的误差;2、实验设备老旧引起的系统误差,仪器的损坏以及电路中元件参数不准确也可能造成实验结果的误差。
AD转换与DA转换实验

XX学院实验报告实验名称姓名学号班级教师日期一、实验内容与要求1.1 实验内容本次实验包括A/D转换实验与D/A转换实验。
(1)A/D转换实验:编写实验程序,将ADC单元中提供的0V~5V信号源作为ADC0809的模拟输入量,进行A/D转换,转换结果通过变量进行显示;(2)D/A转换实验:设计实验电路图实验线路并编写程序,实现 D/A 转换,要求产生锯齿波、脉冲波,自行设计波形,并用示波器观察电压波形。
1.2 实验要求(1)A/D转换实验:将ADC单元中提供的0V~5V信号源作为ADC0809的模拟输入量,进行A/D转换,转换结果通过变量进行显示。
同时可以使用万用表对比判断结果是否正确;(2)D/A转换实验:实现 D/A 转换,通过编程,自行设计一个波形,在示波器上显示并观察波形。
二、实验原理与硬件连线2.1 实验原理ADC0809 包括一个 8 位的逐次逼近型的 ADC 部分,并提供一个 8 通道的模拟多路开关和联合寻址逻辑。
用它可直接输入8个单端的模拟信号,分时进行A/D转换,在多点巡回检测、过程控制等应用领域中使用非常广泛。
ADC0809 的主要技术指标为:分辨率:8 位单电源:+5V总的不可调误差:±1LSB转换时间:取决于时钟频率模拟输入范围:单极性 0~5V时钟频率范围:10KHz~1280KHzADC0809的外部管脚如图4-1所示,地址信号与选中通道的关系如表4-1 所示。
图4-1 ADC0809外部引脚图表4-1 地址信号与选中通道的关系模/数转换单元电路图如图4-2所示:AD +5VADJ +5V图4-2 模/数转换单元电路图D/A 转换器是一种将数字量转换成模拟量的器件,其特点是:接收、保持和转换的数字信息,不存在随温度、时间漂移的问题,其电路抗干扰性较好。
大多数的D/A 转换器接口设计主要围绕 D/A 集成芯片的使用及配置响应的外围电路。
DAC0832是8位芯片,采用CMOS 工艺和R-2RT 形电阻解码网络,转换结果为一对差动电流Iout1和Iout2输出,其主要性能参数如表4-2示,引脚如图4-3所示。
试验六AD转换实验和DA转换实验

试验六AD转换实验和DA转换实验试验六:AD 转换实验和 DA 转换实验在电子技术的世界里,AD 转换和 DA 转换是两个非常重要的概念和实验。
它们就像是电子信号世界的“翻译官”,将模拟信号和数字信号相互转换,为各种电子设备的正常运行和数据处理提供了关键的支持。
AD 转换,也就是模拟数字转换(AnalogtoDigital Conversion),其作用是把连续变化的模拟信号转换为离散的数字信号。
想象一下,我们生活中的声音、光线、温度等各种物理量都是模拟信号,它们的变化是连续且平滑的。
但计算机和数字系统只能处理数字信号,所以就需要 AD 转换器来把这些模拟量转换成计算机能够理解和处理的数字形式。
AD 转换的过程通常包括采样、量化和编码三个步骤。
采样就像是在连续的信号流中按一定的时间间隔“抓取”瞬间的值;量化则是把采样得到的值划分到有限的离散级别中;最后编码就是把量化后的级别用数字代码表示出来。
在进行 AD 转换实验时,我们会用到专门的 AD 转换芯片,比如常见的 ADC0809 。
以 ADC0809 为例,它是 8 位逐次逼近型的 AD 转换器。
在实验中,我们需要给它提供合适的输入模拟信号,设置好时钟频率、参考电压等参数,然后通过读取转换后的数字输出,来验证转换的准确性和精度。
比如说,我们要测量一个 0 5V 的模拟电压信号,将其输入到ADC0809 中。
通过设置合适的时钟和参考电压,当模拟电压为 25V 时,理想情况下转换后的数字输出应该接近 128(因为 25V 是 5V 的一半,8 位数字量的中间值就是 128)。
但实际中可能会存在一定的误差,这就需要我们分析误差的来源,是由于芯片的精度限制,还是输入信号的噪声干扰,或者是电路设计的不合理。
DA 转换,即数字模拟转换(DigitaltoAnalog Conversion),则是与AD 转换相反的过程,它把数字信号转换回模拟信号。
DA 转换在很多领域都有重要应用,比如音频播放、自动控制、通信系统等。
试验五AD、DA转换实验

试验五. A/D、D/A转换实验一、实验目的1. 学习理解模/数信号转换和数/模转换的基本原理。
2. 掌握模/数转换芯片ADC0804和数/模转换芯片DAC0832的使用方法。
二、实验设备TD-PITE实验装置(带面包板)一套,实验用转换芯片两片,±12V稳压电源一台、运放两片、温度传感器、电位器(5.1KΩ)一个、电阻若干,面包板用导线若干,排线若干,万用表一个。
三、实验内容(1)设计A/D转换电路,采集可调电阻的输出电压。
连+5V电源,调节后的输出电压作为ADC0804的模拟输入量,然后进行A/D转换,转换结果由发光二极管上显示。
请填写实验数据表格:(2)将LM35 精密摄氏度温度传感器连+5V电源,输出电压直接作为ADC0804 的模拟输入量,然后进行A/D转换,转换结果经过计算得到摄氏度值放在内存变量上。
(多数温度传感器是针对绝对温度的,且线形较差。
LM35的输出电压与摄氏温度值成正比例关系,每10 mV 为 1 摄氏度。
)(3)设计D/A 转换,要求产生锯齿波、三角波、脉冲波,并用示波器观察电压波形。
四、实验原理1. 模数转换器ADC0804 简介ADC0804是用CMOS集成工艺制成的逐次比较型模数转换芯片。
分辨率为8位,转换时间为100μs,输入参考电压范围为0~5V。
芯片内有输出数据锁存器,与计算机连接时,转换电路的输出可以直接连接在CPU数据总线上。
图5.1 ADC0804引脚图启动信号:当CS#有效时,WR#可作为A/D转换的启动信号。
WR#高电平变为低电平时,转换器被清除;当WR#回到高时,转换正式启动。
转换结束:INTR#跳转为低电平表示本次转换已经完成,可作为微处理器的中断或查询信号。
RD#用来读A/D转换的结果。
有效时输出数据锁存器三态门DB0~DB7各端上出现8位并行二进制数码。
转换时钟:见下图,震荡频率为f CLK ≈ 1 / 1.1RC。
其典型应用参数为:R = 10KΩ,C = 150pF,f CLK≈ 640KHz,8位逐次比较需8×8 = 64个时钟周期,转换速度为100μs。
AD转换和DA转换实验

实验六、A/D 转换和D/A 转换实验一、实验目的1、熟悉A/D 转换与D/A 转换的基本原理2、掌握ADUC812的技术指标和常用的方法3、熟悉DSP 对ADUC812的操作二、实验设备计算机、ZYE1801C 实验箱,连接线若干。
三、实验原理1、ADUC812的主要性能特点ADUC812是全集成的12位数据采集系统,它在单个芯片内包含了高性能的自校准多通道ADC (8路)、2个12位的DAC 以及可编程的8位MCU (与8051兼容)。
片内有8K 的闪速/电擦除程序存储器、640B 的闪速/电擦除数据存储器、256B 数据SRAM (支持可编程)以及与8051兼容的内核。
另外MCU 支持的功能包括看门狗定时器、电源监视器以及ADC DMA 功能。
为多处理器接口和I/O 扩展提供了32条可编程的I/O 线、与I 2C 兼容的串行接口、SPI 串行接口和标准的UART 串行接口。
MCU 内核和模拟转换器二者均有正常、空闲以及掉电工作模式,它提供了适合于低功率应用的、灵活的电源管理方案。
器件包括在工业温度范围内用3V 和5V 电压工作的两种规格,有52脚、塑料四方扁平封装形式(PQTP )可供使用。
2、A/D 转换实验原理对ADUC812的第8路模拟输入通道提供不同的模拟电压值n ,由ADUC812进行A/D 转换后,把数字值通过12位的数据线发送个DSP ,DSP 把接收到的数字值通过串行口发送到PC 机, DSP 教学实验系统软件把收到的数字值转换为电压值在软件上进行显示。
其中传递的数字值为:4095()2.5()n v m v ⨯= 比较实际输入的电压值n 与显示电压值,计算A/D 转换误差。
3、D/A 转换实验原理在DSP 教学实验系统软件上输入0-4095数字值m ,通过串行口发送给DSP ,DSP 把接收到的数字值通过12位数据线发送到ADUC812,由ADUC812进行D/A 转换后,通过模拟输出通道0输出。
ad与da实验报告

ad与da实验报告AD与DA实验报告一、引言AD(模拟-数字)和DA(数字-模拟)转换技术在现代电子领域中起着重要的作用。
AD转换将连续的模拟信号转换为数字信号,而DA转换则将数字信号转换为模拟信号。
本实验旨在通过AD与DA转换器的实际应用,深入了解其原理和性能。
二、实验目的1. 理解AD转换原理和工作方式;2. 理解DA转换原理和工作方式;3. 学习使用AD和DA转换器进行模拟信号和数字信号的转换;4. 掌握AD转换器和DA转换器的性能评估方法。
三、实验装置1. AD转换器:采用XX型号的AD转换器;2. DA转换器:采用XX型号的DA转换器;3. 信号发生器:用于产生模拟信号;4. 示波器:用于观察和分析信号波形。
四、实验步骤1. 连接实验装置:将信号发生器输出端连接至AD转换器的输入端,将DA转换器的输出端连接至示波器,确保连接正确无误;2. 设置信号发生器:根据实验要求,设置信号发生器的频率、幅度和波形等参数;3. 进行AD转换实验:将信号发生器输出的模拟信号输入AD转换器,观察并记录数字信号的输出结果;4. 进行DA转换实验:将数字信号输入DA转换器,观察并记录模拟信号的输出结果;5. 分析结果:根据实验数据,分析AD和DA转换器的性能,如分辨率、信噪比等。
五、实验结果与分析通过实验,我们观察到AD转换器将连续的模拟信号转换为离散的数字信号。
数字信号的输出结果与信号发生器输入的模拟信号存在一定的误差,这是由于AD转换器的分辨率和量化误差所导致的。
分辨率越高,AD转换器对模拟信号的采样精度越高,输出的数字信号越接近原始模拟信号。
而DA转换器则将数字信号转换为模拟信号。
我们观察到,数字信号经过DA 转换后,输出的模拟信号与原始模拟信号基本一致。
这是因为DA转换器能够根据数字信号的数值精确地还原出模拟信号的波形。
然而,在实际应用中,DA 转换器也存在一定的失真,如量化误差和抖动等。
根据实验数据,我们可以计算AD和DA转换器的性能参数。
实验十DA、AD转换实验报告(一)

实验十DA、AD转换实验报告(一)引言概述:实验十DA、AD转换实验报告(一)本实验报告旨在介绍实验十DA、AD转换的相关内容。
在本次实验中,我们将会学习数字模拟转换和模拟数字转换的原理与方法,并通过实际操作进行验证。
本报告将按照以下五个主要部分进行阐述:(1)实验准备,(2)DA转换原理与方法,(3)AD转换原理与方法,(4)实验步骤与结果,(5)实验总结。
正文内容:1. 实验准备1.1 硬件准备- 数字模拟转换器(DAC)模块- 模拟数字转换器(ADC)模块- 连接电缆1.2 软件准备- 实验十DA、AD转换实验软件2. DA转换原理与方法2.1 DA转换原理- 数字模拟转换器将数字信号转换为模拟电压或电流输出的过程- 通过将数字数据转换为电路中的模拟信号,实现了数字信号到模拟信号的转换2.2 DA转换方法- 标准电压法- 标准电流法- R-2R网络法3. AD转换原理与方法3.1 AD转换原理- 模拟数字转换器将模拟量转换为数字量的过程- 通过将连续的模拟信号转换为离散的数字信号,实现了模拟信号到数字信号的转换3.2 AD转换方法- 逐次逼近法- 并行比较法- 闪存式转换法4. 实验步骤与结果4.1 实验设置- 连接DAC和ADC模块到电路中- 连接电缆,确保连接正确4.2 实验步骤- 设置DAC模块的输出值- 进行DA转换并记录输出结果- 将模拟信号输入到ADC模块中- 进行AD转换并记录输出结果4.3 实验结果- 实验运行过程中的数据记录与图表展示5. 实验总结5.1 实验心得体会- 通过本次实验,我更深入地了解了DA、AD转换的原理与方法- 实际操作过程中加深了对数字模拟转换和模拟数字转换的理解5.2 实验结果分析- 分析实验得到的数据与图表,验证转换原理与方法的准确性5.3 实验改进与展望- 在后续的实验中,可以进一步探索其他类型的DA、AD 转换器- 可以对实验步骤进行改进,提高实验效果和精确度总结:本实验报告阐述了实验十DA、AD转换的相关内容。
实验2(AD与DA实验)

实验三ADC0804模/数转换和DAC0832数/模拟换接口一、实验目的1.了解模/数转换基本原理,掌握ADC0804的使用方法。
2.了解D/A转换的基本原理。
3.了解D/A转换芯片D AC0832的单极性双极性接口及编程方法。
二、实验仪器和设备1. 单片机实验板一台2. 计算机一台三、实验简介1、实验内容利用实验板上的AD C0804做A/D转换器,利用实验板上的电位器W1提供模拟量输入。
编制程序,将模拟量转换成二进制数字量,用共阳极的八段数码管显示。
利用DAC0832,编制程序产生锯齿波、三角波、正弦波。
三种波轮流显示,用示波器观看。
2、实验线路及连接图1.电路原理图3、实验说明A/D转换器大致有三类:一是双积分A/D转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近法A/D转换器,精度,速度,价格适中;三是并行A/D转换器,速度快,价格也昂贵。
实验用的ADC0804属第二类,是八位A/D转换器。
图1中,D B1到D B8这8个口连接到P1口。
CS-AD这个是片选端口,低电平表示选中,RD写入信号,WR读出信号。
使用是需要将AD-IN口的1和2短接。
CS AD接口连着P0^7.RD接口P3^6,WR连着P3^7.D/A转换是把数字量转换成模拟量的变换,从本书D/A电路输出的是模拟电压信号。
要想实现实验要求,比较简单的方法是产生三个波形的表格,然后通过查表来实现波形显示。
产生锯齿波和三角波的表格只需由数字量的增减来控制,同时要注意三角波要分两段来产生。
要产生正弦波,较简单的手段是造一张正弦数字量表。
即查函数表得到的值转换成十六进制数填表。
这样做虽然简单,但是费时费力,没有充分发挥单片机的能力。
利用嵌入式定点、浮点运算子程序库可方便的完成正弦波的波形表生成工作。
D/A转换取值范围为一个周期,采样点越多,精度越高些。
本例采用的采样点为256点/周期。
图1中CS-DA接口连着P3^2,低电平有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告课程名称:计算机控制技术
实验项目名称:实验一A/D与D/A转换学院:
专业:
指导教师:
报告人:学号:班级:
实验时间:
实验报告提交时间:
教务部制
一.实验目的
1.通过实验,熟悉并掌握实验系统原理与使用方法。
2.通过实验掌握模拟量通道中模数转换与数模转换的实现方法。
二.实验内容
1.利用实验系统完成测试信号的产生
2.测取模数转换的量化特性,并对其量化精度进行分析。
3.设计并完成两通道模数转换与数模转换实验。
三.实验步骤
1.量化实验:
a、实验接线,实验箱上信号源部分的斜波信号接到I1,I2 接O1。
b、打开LabVIEW 软件参考程序实验一.VI 。
c、R0=R1=R2=R3=R4=100K 。
d、锁零接-15V
2.两路互为倒相的周期斜波信号的产生:
a、模拟电路如下图 1.1 所示。
b、实验接线如图所示,其中R0=R1=R2=R3=R4=100K 。
O1 为周期斜波信号,O2 为偏
置值,I1,I2 互为倒相的周期信号。
c、锁零接-15V 。
d、打开LabVIEW 软件参考程序实验一.VI 。
3.测试信号的发生:
a、实验接线,O1 接I1。
b、打开LabVIEW 软件参考程序实验一.VI ,分别通过测试信号选项栏来改变信号发生
类型,分别为正弦波、方波、斜波、和抛物线四种波形。
R2R4
O1 R0 O2 R1-
+
+
R3
-
+
+
I 1
I 2
图1.3
实验截图:
四、实验结论
指导教师批阅意见:
成绩评定:
指导教师签字:
年月日备注:
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。